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Abstract: Non-alcoholic-fatty liver disease (NAFLD) is spreading worldwide. Specific drugs for
NAFLD are not yet available, even if some plant extracts show beneficial properties. We evaluated
the effects of a combination, composed by Berberis Aristata, Elaeis Guineensis and Coffea Canephora,
on the development of obesity, hepatic steatosis, insulin-resistance and on the modulation of hep-
atic microRNAs (miRNA) levels and microbiota composition in a mouse model of liver damage.
C57BL/6 mice were fed with standard diet (SD, n = 8), high fat diet (HFD, n = 8) or HFD plus plant
extracts (HFD+E, n = 8) for 24 weeks. Liver expression of miR-122 and miR-34a was evaluated by
quantitativePCR. Microbiome analysis was performed on cecal content by 16S rRNA sequencing.
HFD+E-mice showed lower body weight (p < 0.01), amelioration of insulin-sensitivity (p = 0.021),
total cholesterol (p = 0.014), low-density-lipoprotein-cholesterol (p < 0.001), alanine-aminotransferase
(p = 0.038) and hepatic steatosis compared to HFD-mice. While a decrease of hepatic miR-122 and
increase of miR-34a were observed in HFD-mice compared to SD-mice, both these miRNAs had
similar levels to SD-mice in HFD+E-mice. Moreover, a different microbial composition was found
between SD- and HFD-mice, with a partial rescue of dysbiosis in HFD+E-mice. This combination
of plant extracts had a beneficial effect on HFD-induced NAFLD by the modulation of miR-122,
miR-34a and gut microbiome.

Keywords: insulin resistance; metabolic syndrome; miR-34a; miR-122; gut microbiome; NAFLD

1. Introduction

In parallel to the global epidemic of obesity during the last decades, the increased
prevalence of non-alcoholic fatty liver disease (NAFLD) has brought this pathology to the
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forefront of health care concerns [1,2]. Since it has a close association with obesity and
insulin resistance, NAFLD has been described as the hepatic manifestation of the metabolic
syndrome [3].

Although great efforts have been made to unravel the molecular mechanisms involved
in this pathology [4], to date there are no approved drugs for the treatment of NAFLD
and, therefore, lifestyle modification is the main therapeutic option for patients with liver
steatosis [5]. However, some plant extracts are used as alternative nutraceutical approach
on account of their well-recognized health benefits that may contribute to the improvement
of NAFLD [6–8].

Previous in vitro and in vivo studies suggest that berberine, a plant alkaloid present
in Berberis Aristata, increases the expression of low-density lipoprotein (LDL) receptors and,
therefore, reduces the serum levels of LDL cholesterol [9,10]. Furthermore, berberine seems
to be able to improve insulin resistance [11] and hepatic steatosis [12,13]. Several studies
have also shown that tocotrienols, the less common form of vitamin E which are present
in Elaeis Guineensis, reduce cholesterol and triglyceride levels through the modulation
of lipogenic genes [14,15] and improve the antioxidant defense system of the cells [16].
Furthermore, experimental studies have shown that coffee also improves antioxidant status
and reduces fat deposition in the liver through the gene expression modulation of the
tumor necrosis factor-α (TNF-α), peroxisome proliferator-activated receptor-α (PPAR-α)
and mitochondrial chaperones [17,18].

MicroRNAs (miRNAs) represent a class of non-coding RNA molecules consisting
of approximately 22 nucleotides. They play an important role in the regulation of sev-
eral crucial biological pathways by affecting gene expression at the post-transcriptional
level [19]. Increasing evidence suggests that miRNAs are key epigenetic regulators of the
lipid and glucose metabolism [20] and that alterations in their expression contribute to the
development of liver steatosis [21–23].

In recent years, in the pathogenesis of NAFLD, the gut microbiota has emerged as a
key regulator and as an actionable target for the development of specific therapies [24–26].
In presence of microbial dysbiosis and leaky gut, bacteria and their products trigger proin-
flammatory pathways which result in hepatocellular inflammation and fibrosis [27,28].

The aim of this study was to evaluate the effects of a combination of plant extracts,
composed by Berberis Aristata, Elaeis Guineensis and decaffeinated green coffee from Coffea
Canephora (Trixy®, Nathura S.p.A., Montecchio Emilia, RE, Italy), added to a high fat
diet (HFD) in a mouse model of NAFLD. The effects of this extract combination on the
development of obesity, hepatic steatosis and insulin resistance have been investigated.
Moreover, the hepatic levels of specific miRNAs and the gut microbiota composition have
been also studied.

2. Materials and Methods
2.1. Study Design and Dietary Intervention

Twenty-four male 4-week-old C57BL/6J mice were purchased from Envigo Italy
(Milan, Italy). Mice were housed in standardized condition for animal facilities with a 12-h
light/dark cycle, temperature conditions of 22 ± 1 ◦C. Food and water were provided ad
libitum. After 1 week of acclimation the mice were divided into three groups (n = 8 each)
and assigned into one of the following 24 weeks diets: (1) Standard diet (SD); (2) HFD;
(3) HFD enriched with plant extracts (HFD+E) (140 mg/Kg/die) The HFD composition
was 60% of energy derived from fats, 23% from proteins and 17% from carbohydrates,
5.6 kcal/g (Mucedola, Italy). The SD composition was 3% of energy derived from fats,
18.5% from proteins and 78.5% from carbohydrates, 3.3 kcal/g (Mucedola, Italy). A detailed
composition of the diets is reported in Supplementary Table S1. The weight and food intake
of mice were recorded weekly. At the end of the treatment, the mice were fasted overnight,
and then euthanized by an overdose of avertin. Animal experiments were approved by the
local ethics committee (Prot. n. 432/2016-PR) and the procedure were conducted within
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the animal welfare regulations and guidelines of the Italian National law D.L. 04/03/2014,
n. 26, about the use of animals for research.

2.2. Plant Extracts

A mixture of plant extracts in powder form, consisting of Berberis Aristata, Elaeis
Guineensis and decaffeinated green coffee from Coffea Canephora, were added to diet prepa-
ration. The plant extracts were generously donated by Nathura S.p.A., Italy. The concentra-
tion of plant extracts was 140 mg/Kg of body weight per day, of which 103.3 mg of Berberis
Aristata (87.84 mg of berberine), 25.1 mg of Elaeis Guineensis (5.27 mg of tocotrienols), and
11.8 mg of decaffeinated green coffee from Coffea Canephora (5.28 mg of chlorogenic acid).
The dose of the extracts was chosen based on the effective quantities of the plant extracts
adjusted to the body surface area of the mouse [29].

2.3. Insulin Tolerance Tests

At the end of diet protocol, mice were fasted for 4 h and then received an intraperi-
toneal injection of insulin (0.75 U/kg body weight) to test the insulin tolerance. Blood
samples (5 µL) were collected from the tail vein before and at 15, 30, 45, 60, 90 and 120 min
after the bolus of insulin. Blood glucose was measured using a portable glucometer
(OneTouch Verio Flex System Kit, Johnson & Johnson Medical S.p.a., Pomezia, RM, Italy).

2.4. Liver Histology

At the time of sacrifice, mouse livers were fixed in 10% buffered formalin and em-
bedded in paraffin. Liver tissue was cut into 4-µm-thick sections that were stained with
hematoxylin and eosin. All slides were evaluated using a light microscope by an expe-
rienced pathologist who was blinded to the experiments. Specimens were scored for
the severity of hepatocellular steatosis (percentage of affected hepatocytes), ballooning
degeneration (present or absent), and necro-inflammation (present or absent). Steatosis
was evaluated as percentage of affected hepatocytes on a 0> to 3 scale: 0 = absent ≤ 5%,
1 ≥ %–≤ 33%, 2 ≥ 33%–≤ 66%, 3 ≥ 66%.

2.5. Serum Measurements

At 24 weeks of diet, alanine aminotransferase (ALT), glucose, total cholesterol, low-
and high-density lipoproteins (LDL and HDL) cholesterol serum levels were measured
using a Modular Autoanalyzer (Pentra 400, HORIBA ABX, HORIBA Medical, Rome,
Italy). Serum insulin was determined using an ELISA assay (Bio-Rad, Hercules, CA, USA)
according to the manufacturer’s protocol.

2.6. RNA Isolation, Reverse Transcription, and Real-Time PCR

In order to investigate the molecular mechanisms underlying the improvements in
hepatic steatosis and serum metabolic profiles due to the supplementation of HFD with
the plant extracts, the hepatic levels of miR-122 and miR-34a have been analyzed in the
three groups of mice. In this analysis, miRNA selection criteria are based on their well-
documented role in or association with lipid metabolism, steatosis and NAFLD [30,31].
Disruption and homogenization of mouse liver samples were performed in QIAzol Lysis
Reagent (QIAGEN, Hilden, Germany) using the TissueLyser LT (QIAGEN srl, Hilden,
Germany). Total RNA was isolated from mouse liver samples by miRNeasy mini kit
(QIAGEN srl, Hilden, Germany), according to the manufacturer’s instructions. After
quantification by NanoDrop 2000 spectrophotometer (Thermo Scientific, Waltham, MA,
USA), reverse transcription of 1 µg of total RNA was performed using the miScript II RT
Kit (QIAGEN), according to the manufacturer’s instructions. Quantitative real-time PCR
assays were performed in triplicate using miScript SYBR Green PCR Kit (QIAGEN) on
iCycler Real-Time Detection System (Bio-Rad Laboratories, Hercules, CA, USA) and relative
quantification of miRNA expression was calculated by the ∆∆Ct method [32]. Each Ct value
was normalized to the respective U6 snRNA Ct value of a sample to account for variability
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in the concentration of RNA and in the conversion efficiency of the RT reaction. Data were
reported as arbitrary units (REU). Specific primers used for amplification were purchased
from QIAGEN: Mm_miR-34a_1 miScript Primer Assay, MS00001428; Hs_miR-122a _1
miScript Primer Assay MS00003416; RNU6B_13 miScript Primer Assay, MS00014000.

2.7. Gut Microbiome Analysis

The cecal content was collected from each mouse at time of sacrifice, immediately
cooled in dry ice and stored at −80 ◦C until time of the analysis. Genomic DNA was
obtained from each collected stool sample. DNA extraction was performed using the
16 LEV Blood DNA kit and the Maxwell 16 instrument (both from Promega, Madison, WI,
USA). In particular, 100 mg of each sample were treated with 400 µL of lysis buffer, v ortexed
to completely homogenize it, and incubated at 95 ◦C in thermomixer for 5 min at 800 rpm.
After a centrifugation step at 13,000 rpm for 5 min, 300 µL of supernatant/sample were
transferred into a new tube, treated with 30 µL of proteinase K, vortexed and incubated
at 56 ◦C in thermomixer for 20 min at 500 rpm. Then, the samples are added to the LEV
cartridge to complete the extraction and eluted in 100 µL of elution buffer. Genomic
DNAs concentration and quality were assessed by Nanodrop spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA). Next, all DNA samples were diluted to 2 ng/µL
before to proceed with libraries preparation. The DNA libraries were obtained using the
Microbiota Solution B reagents (Arrow Diagnostics, Genova, Italy), following manufacturer
instructions [33]. This kit allows the amplification of the V3, V4 and V6 hypervariable
regions of the bacterial 16S rDNA gene. The first step provides the amplification of the
target regions. Once amplicon quality has been assessed on a 2% agarose gel, the PCR
products are purified using the AMPure beads (Beckman Coulter, Brea, CA, USA) and used
as template for a second step PCR required to add a specific index/sample. Indeed, the
index is a short sequence of nucleotides used as a unique barcode specifically tagging each
sample. At the end of the index PCR, the amplicons are assessed for quality (Tape Station,
Agilent Technologies, Santa Clara, CA, USA), and beads purified (AMPure beads). The
obtained libraries were quantified with the Qubit fluorometer (Thermo Fisher Scientific)
and diluted to a final concentration of 10 nM. Next, 3 µL of different libraries can be pooled
before sequencing. The sequencing reactions were carried out on the MiSeq instrument
using a V2 Nano PE 250 × 2 flowcell (Illumina, San Diego, CA, USA) and loading the
libraries pool to a final concentration of 6 pM with a 10% of PhiX.

The FASTQ files produced at the end of sequencing have been analyzed using the
Microbat system software (SmartSeq, Novara, Italy). This tool, specifically conceived for
microbiome sequences analysis, allows a quality assessment of the reads and the taxonomic
assignment within each sample. Moreover, it allows to associate several samples into a
group and to export the OTU table and the taxonomy table for further analyses. Indeed,
these files were used to perform additional evaluations using the web-based tool Micro-
biome Analyst [34,35]. The latter allows to carry out diversity analysis, composition and
comparative analyses, and to predict metabolic potentials. OTU annotation was performed
using QIIME [36]. Data filtering was done to remove low quality or low abundance reads,
setting a prevalence filter of 20%. Several tests were used to evaluate samples richness
and/or evenness and the ANOVA test was done to highlight significant differences. Bray–
Curtis dissimilarity index was used to evaluate beta diversity coupled with PERMANOVA
test to assess the significance of samples grouping. Differential abundance analysis was per-
formed using univariate statistical comparisons based on parametric test (t-test/ANOVA);
p-values were adjusted using FDR method.

2.8. Statistical Analyses

Numeric data are presented as means ± SD (standard deviation). Statistical analysis
has been performed, as appropriate, by one-way analysis of variance (ANOVA) with
Tukey’s test correction for multiple comparisons between groups, using GraphPad Prism
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7.00 (GraphPad Software, San Diego, CA, USA). Correlation analysis was calculated using
Pearson’s correlation coefficient.

3. Results
3.1. Effect of Plant Extracts on Metabolic Profile of HFD Mice

All the C57BL/6J mice included in the study showed similar body weight at baseline
(Figure 1a). During the diet protocol, HFD mice started to gain higher weight than SD
mice already at the 4th week. HFD+E mice showed no significant difference in body
weight compared to SD mice until the 21st week of diet, while maintained a lower body
weight than HFD mice for the entire duration of diet protocol (Figure 1a). There were
no differences in food intake between HFD and HFD+E mice until the 20th week of diet
(Figure 1b). As expected, caloric intake was higher in both mice groups receiving HFD and
HFD+E compared to SD mice (not shown).
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To evaluate whether supplementation of plant extracts may have any effects on HFD-
induced metabolic alteration, we analyzed metabolic parameters in the three groups of
mice at 24 weeks of diet. Body weight was increased 1.37 fold in HFD and only 1.15 fold in
HFD+E compared to SD. Serum fasting glucose was 2.3 and 2.2 fold increased in HFD and
HFD+E mice, respectively, as compared to SD. Fasting insulinemia was 2.4-fold increased by
HFD compared to SD, while no significant increase was detected in HFD+E compared to SD
mice. Total cholesterol, LDL-cholesterol and LDL/HDL-cholesterol ratio are significantly
increased by HFD, as expected, and reduced by 15%, 45% and 46%, respectively, by plant
extracts supplementation to HFD (see Table 1).

Following the insulin tolerance test (Figure 2a), glucose levels remained higher in
HFD mice compared to SD mice during the entire length of the test. At variance, insulin
sensitivity was improved in HFD+E group, as shown by a significant decrease of their blood
glucose levels (Figure 2a). The iAUC indicates that HFD mice developed insulin resistance
(7529 ± 1469 mg/dL) compared to SD mice (13,804 ± 1816 mg/dL) and, interestingly,
HFD+E administration was able to induce a partial rescue of insulin sensitivity in mice
(10,138 ± 1620 mg/dL) (Figure 2b).
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Table 1. Metabolic parameters analyzed at 24 weeks of SD (standard diet), HFD (high fat diet) and HFD+E (high fat diet
plus plant extracts) fed mice (n = 8 for each group).

Variable SD HFD HFD+E p-Value

Body weight (g) 34.6 ± 2.8 47.4 ± 6.0 40.0 ± 3.6
p = 0.001 (HFD vs. SD)

p = 0.024 (HFD+E vs. SD)
p = 0.018 (HFD+E vs. HFD)

Glycaemia (mg/dL) 85.6 ± 2.7 200.0 ± 41.3 191.1 ± 34.25 p < 0.001 (HFD vs. SD)
p < 0.001 (HFD+E vs. SD)

Insulinemia (pg/mL) 473.9 ± 80.0 1156.3 ± 307.4 725.8 ± 270.0 p < 0.001 (HFD vs. SD)
p = 0.046 (HFD+E vs. HFD)

Cholesterol (mg/dL) 110.0 ± 8.3 209.3 ± 19.9 178.0 ± 16.9
p < 0.001 (HFD vs. SD)

p < 0.001 (HFD+E vs. SD)
p = 0.014 (HFD+E vs. HFD)

LDL-Cholesterol (mg/dL) 5.3 ± 2.0 19.3 ± 1.6 10.7 ± 3.3
p < 0.001 (HFD vs. SD)

p = 0.007 (HFD+E vs. SD)
p < 0.001 (HFD+E vs. HFD)

LDL/HDL-Cholesterol 0.09 ± 0.03 0.28 ± 0.05 0.15 ± 0.05
p < 0.001 (HFD vs. SD)

p = 0.024 (HFD+E vs. SD)
p < 0.001 (HFD+E vs. HFD)

ALT (U/L) 29.3 ± 11.2 81.3 ± 47.1 38.7 ± 24.35 p < 0.025 (HFD vs. SD)
p < 0.038 (HFD+E vs. HFD)

Data are presented as mean ± SD. Statistical significance was evaluated using one-way ANOVA.
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Figure 2. Effect of plant extracts on insulin sensitivity in HFD-fed mice. At 24 weeks of diet protocol, mice were subjected
to insulin tolerance test. (a) Curves show the glycemic trend over 120 min following insulin bolus in SD (circles), HFD
(squares) and HFD+E (triangles)-fed C57BL/6. (b) Bars show the inverse calculation of the area under the curves (iAUC) of
the three groups of mice. Values are expressed as means ± SD of determinations in 8 mice per group. Statistical significance
was evaluated using one-way ANOVA.

3.2. Effect of Plant Extracts on Steatosis Development of HFD Mice

Hematoxylin and eosin staining of liver sections showed severe (>66%) mixed micro-
macrovescicular steatosis in all mice on HFD. In seven out of eight animals, steatosis
involved more than 80% of hepatocytes, only sparing a rim of peri-portal cells. Steatosis
was absent or minimal (<5%) in five out of eight mice receiving the plant extracts. SD mice
showed normal liver tissue (Figure 3). Moreover, liver damage was reflected by the 2.8-fold
increase of ALT levels in HFD-fed mice. Any significant increase in ALT levels was not
revealed in HFD+E-fed mice (Table 1).
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Figure 3. Effect of plant extracts on the development of hepatic steatosis. Representative images of Hematoxylin-Eosin
staining of liver sections (10× magnification) from SD (A), HFD (B), and HFD+E mice (C).

3.3. Effect of Plant Extracts on miR-122 and miR-34a Levels in HFD Mice

In the present study, in comparison to SD, HFD induces a 50% decrease of miR-122
levels, which were completely rescued by the plant extracts co-administration (Figure 4a).
Conversely, a four-fold increase of miR-34a was induced by HFD and its expression is
reduced to levels similar to SD mice in mice fed with HFD+E diet (Figure 4b).
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Statistical significance was evaluated using one-way ANOVA.

A correlation analysis was performed between the expression levels of miR-122 and
miR-34a in the livers of the three groups of mice and serum metabolic parameters. A
significant negative correlation with total cholesterol and LDL-cholesterol was observed
for miR-122 (r = 0.605, p = 0.02; r = 0.68, p = 0.007 respectively) (Figure 5a,b) Conversely, a
significant positive correlation with total cholesterol and LDL-cholesterol was observed for
miR-34a (r = 0.499, p = 0.0005; r = 0.573, p = 0.01 respectively) (Figure 5c,d).

3.4. Gut Microbiota Modifications

The bacterial gut microbiome composition was evaluated in the three differentially fed
mice-groups as described under Methods. Two sequencing runs were totally performed
by analyzing 12 samples/run and obtaining an average of 40,324 reads/sample. Alpha
diversity analysis was carried out to assess the within-group diversity using different
metrics. Chao1 index and observed species number did not highlight any significant
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difference between the three groups. Moreover, richness of the gut microbiota was similar
between SD and HFD groups. Thus, it is suggested that the HFD diet did not affect the
bacterial richness. A not significant richness reduction was present in the HFD+E mice.
Although no significant richness was observed by Chao1 and observed species indices,
higher bacterial richness and evenness in the HFD+E mice compared to the other two
groups was reported using the Shannon metric (p = 0.003) (Figure 6A).
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34a (c,d) expression with total cholesterol (a,c) and LDL-cholesterol (b,d) was assessed by linear regression analysis and
calculated using Pearson’s correlation coefficient. Correlations with a p value < 0.05 was considered statistically significant.

Next, beta diversity was analyzed to verify the differences between samples; principal
coordinate analysis (PCoA) showed a significant clusterization among the three groups
(p < 0.001), suggesting their clear separation based on bacterial communities’ composition
(Figure 6B). Abundances comparison showed a different taxa composition among the
study groups (Figure 6C). Interestingly, at the phylum level, SD mice showed a higher
abundance of Bacteroidetes and a lower abundance of Firmicutes compared to HFD mice.
Moreover, this imbalance seems to be partially restored in the HFD+E group showing also
the reduction of the Verrucomicrobia phylum.

Thus, a clustering analysis was performed to visualize abundance patterns able to
cluster the samples. As shown in Figure 7A, samples belonging to the same group were
more similar than samples from the other groups at phylum level, and this behavior
was present at all taxonomic levels (data not shown). This trend was confirmed also by
dendrogram analysis showing a higher distance of HFD+E samples compared to the other
two groups (Figure 7B). As shown in Figure 7A, lower Bacteroides and higher Firmicutes
phyla were observed in HFD compared to SD group, but the HFD+E mice showed a partial
correction of dysbiosis.
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assignment highlights a different microbial composition between the three groups. Phyla variation into three groups (C).

Finally, to highlight significant differences between the three differently fed mice
groups, differential abundance analysis was performed. All the significantly expressed
taxa from phylum to species level are reported in Supplementary Table S1. At phylum
level, nine taxa are significantly different. Among these, the Actinobacteria (Figure 8A)
and the Firmicutes (Figure 8B) phyla are most abundant in the HFD mice than in the other
two groups, while Bacteroidetes is more abundant in the SD and, mostly, in the HFD+E
groups than in the HFD mice (Figure 8C); finally, the Deferribacteres (Figure 8D) and
the Verrucomicrobia (Figure 8E) phyla were respectively high and lower expressed in the
HFD+E mice.

At genus level, we found 54 differentially expressed taxa (Supplementary Table S2),
the most significantly different being the Bacteroides genus that appear more abundant in
the HFD+E mice than in the other two groups (Figure 9A).
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taxa have been identified using differential abundance analyses coupled with t-test/ANOVA (adjusted p-value < 0.05). At genus
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(C), Anaerotruncus (D) and Mucispirillum (E) genera. On the other side, the genera Desulfovibrio (B) and Olsenella (F) were more
abundant in the HFD than in the other groups.
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4. Discussion

NAFLD is the most common cause of liver disease and, in association with metabolic
comorbidities, it represents a worldwide health problem [37]. Currently, there are no
licensed drugs approved for the treatment of hepatic steatosis and, therefore, lifestyle
modification is the standard therapeutic approach recommended [5].

Our study demonstrates that the addition of the combination of plant extracts com-
posed by Berberis Aristata, Elaeis Guineensis and Coffea Canephora to HFD induces the
amelioration of metabolic parameters and of hepatic steatosis in mice, modulating miRNAs
and gut microbiota.

Previous studies have analyzed either a single plant extract or the main bioactive
compounds purified from plant extracts, documenting their therapeutic effect on the mod-
ulation of the glucose and lipid metabolism in diabetic or dyslipidemic patients, as well
as in animal models [9–18]. Nonetheless, their combined effects and their mechanisms of
action remain largely unexplored. In particular, berberine showed hypoglycemic, insulin-
sensitizing and lipid-lowering effects through several mechanisms. Cameron J. et al. [9]
showed that berberine increases the LDL receptor expression through the inhibition of
PCSK9 (proprotein convertase subtilisin/kexin type 9). In addition, Zhang H. et al. demon-
strated that berberine has its insulin-sensitizing effect through the activation of adenosine
monophosphate-activated protein kinase (AMPK), which may play a role in reducing
insulin resistance [12]. In relation to tocotrienols effects, Burdeos GC et al. [15] showed
that its lipid-lowering effects occurs through the modulation of lipogenic gene expres-
sion, such as Srbf1 (sterol regulatory element-binding transcription factor 1). Finally,
Vitaglione P. et al. [18] showed that the addition of decaffeinated coffee to a high fat diet
(HFD) in rats determined a reduction in hepatic fat accumulation, systemic and liver
oxidative stress, and liver inflammation.

Studies indicate that mice fed with a fatty diet develop insulin resistance and hepatic
steatosis [38]. Insulin resistance plays a key role in the development of hepatic steatosis by
increasing both free fatty acid delivery from the adipose tissue and de novo lipogenesis in
the liver [39,40]. Our results show that C57BL/6J mice fed with an HFD develop obesity
associated with insulin resistance. Interestingly, the administration of plant extracts reduces
the weight gain and the metabolic alterations during the HFD period, although the quantity
of food intake was the same in the two different groups. The lower body weight in the
HFD+E mice may contribute to the higher insulin sensitivity compared to the HFD mice at
the end of the diet period. The data shown here demonstrate that HFD+E mice have lower
fasting insulin levels than HFD mice. The reduction of fasting insulinemia is consistent
with the partial rescue of insulin tolerance, measured by ITT, in HFD+E mice compared
to HFD mice. Although these data indicate that HFD+E improves insulin sensitivity,
fasting glycaemia is similar in both HFD and HFD+E mice. In light of our data, we cannot
exclude that tissue-specific alterations (such as higher basal hepatic glucose production)
may contribute to keep high fasting glucose levels in HFD+E mice.

An ameliorative effect, due to the extracts’ administration, on the metabolic alter-
ations induced by the HFD is also the reduction of total cholesterol levels and the ratio
of LDL/HDL cholesterol found in the HFD+E mice compared with the HFD mice. Fur-
thermore, histological analysis demonstrates that all the mice fed with HFD develop a
severe hepatic steatosis, while the addition of the extracts reduces the accumulation of fat
in the liver.

Recently, the causal role of miRNAs in the development and progression of NAFLD
has been increasingly recognized [22]. MiR-122 is one of the most abundant miRNAs in
the liver and several studies have demonstrated the hepatic downregulation of miR-122
in participants with fatty liver disease [41–43]. Moreover, the significance of miR-122 in
the regulation of lipid metabolism and its part in the development of NAFLD has been
strongly suggested by a number of studies both in vitro and in vivo [44–47]. In a steatotic
hepatocyte model, human hepatic cell line L02 treated with oleic acid, the effect of miR-122
in the fat deposition has been observed [44] and the reduction of Yin Yang 1 (YY1) mRNA
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stability with the consequent upregulation of the Farnesoid X Receptor (FXR) signaling
has been demonstrated as a contribution of miR-122 to the lipid droplet formation and
hepatic triglyceride accumulation [45]. In addition, the silencing of miR-122 in another
hepatocyte model HepG2 cells produces an expression pattern of key hepatic lipogenic
genes similar to human NASH, including the mature Sterol Regulatory Element-Binding
Transcription Factor isoform 1c and 2 (SREBP-1c and SREBP2) and their downstream targets
Fatty Acid Synthase (FAS) and 3-Hydroxy-3-Methyl-Glutaryl-CoA reductase (HMGR) [46].
Using an in vivo loss-of-function model mice with germline knockout (KO) or liver-specific
knockout (LKO) of the Mir122 locus, the prolonged absence of miR-122 leads to an ac-
cumulation of hepatic triglycerides in young mice. This abnormality is associated with
the upregulation of several gene products that catalyze triglyceride biosynthesis and stor-
age, including the direct miR-122 targets 1-Acylglycerol-3-Phosphate O-Acyltransferase
1 (AGPAT1) and Cell Death-Inducing DFFA-like Effector C (CIDEC), also known as Fat
Specific Protein 27 (FSP27). Besides, the hepatic steatosis observed in miR-122a–deficient
mice is also a consequence of the global impairment of lipid metabolism and lipoprotein
assembly and secretion, as demonstrated by the repression of multiple genes involved
in lipid metabolism [47,48]. Finally, miR-122 also regulates Hypoxia-Inducible Factor-1
(HIF-1 alpha) and Vimentin in hepatocytes, thus correlating with fibrosis in diet-induced
steatohepatitis [49].

Besides miR-122, miR-34a is weakly expressed in the hepatocytes but it tightly reg-
ulates the lipid metabolism. In human hepatic cells and in mouse models of steatosis,
miR-34a is able to regulate several genes, whose downregulation is associated with higher
TG accumulation and liver steatosis. This is the case of Hepatocyte Nuclear Factor 4 α

(HNF4α) [50], PPARα [51] and sirtuin 1 (SIRT1) [52,53]. miR-34a is also significantly up-
regulated in the liver of both animal models and human patients with NAFLD [54–57].
Our data have shown that the hepatic levels of miR-122 are reduced in the mice fed with
an HFD, but they were comparable to those in the SD group when the plant extracts
were added to the HFD. Conversely, increased hepatic levels of miR-34a are observed in
the HFD group while lower levels are found in the HFD+E group, similarly to SD mice
group. Therefore, our study has demonstrated that Berberis Aristata, Elaeis Guineensis and
Coffea Canephora extracts administrated in combination are able to prevent alterations in
the hepatic expression of both miR-122 and miR-34a caused by an HFD.

Furthermore, in the present study, the hepatic levels of miR-122 are inversely corre-
lated with the serum levels of total cholesterol and LDL-cholesterol and those of miR-34a
are directly correlated with the serum levels of total cholesterol and LDL-cholesterol,
supporting the role of these miRNAs in the regulation of cholesterol and the fatty acid
metabolism in the liver.

In an attempt to investigate the mechanisms underlying the beneficial effects of
this extract combination, the analysis of the gut microbiome has gained our attention,
since: i. a large number of recent studies have showed that herbal medicines are capable
of reversing the abnormal gut microbiota composition in diseased human cohorts and
model animals [58,59], and ii. gut-microbiota derived metabolites are capable to regulate
miRNA expression with effects on metabolism [60,61]. 16S rRNA sequencing analysis
was carried out to assess the gut microbial composition of HFD compared to SD fed
mice and verify the effect of plant extracts addiction to HFD in the modulation of the gut
microbiota composition. First, we were able to assess a different bacterial composition
in the gut microbiota of SD and HFD mice. Moreover, the HFD+E mice showed its own
microbiota suggesting that the plant extracts are able to modulate the microbiota promoting
the establishment of specific bacteria. As already reported elsewhere [62,63], the HFD
mice had a significant increased abundance of Firmicutes and a decreased abundance of
Bacteroidetes respect to SD. This alteration is restored in the HFD+E treatment group,
supporting a beneficial effect of the treatment.

In the present study, changes in 54 taxa, even genus level, were reported. In particular,
the genus Bacteroides, belonging to the Bacteroidetes phylum, was the most significantly
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different and was highly abundant in the HFD+E mice. The phylum Bacteroidetes is
known to be involved in short chain fatty acids (SCFAs) production in the gut, starting
from dietary fibers [63]. It has been assessed that SCFAs, moving into the blood circulation,
are able to exert positive effects on lipid metabolism in the liver [64]. Thus, this may be
a mechanism through which the plant extracts, by modulating the bacterial dysbiosis
at gut level, may exert a beneficial effect on liver functions. On the contrary, the genus
Desulfovibrio was highly represented in the HFD mice respect to the other groups (Figure 9B).
Desulfovibrio is a sulphate-reducing bacterium that has been found increased in association
with inflammatory bowel diseases [65]. As a consequence, its abundant reduction in the
HFD+E mice may ameliorate some NAFLD-related clinical features. Furthermore, it is
interesting to underline that some species were highly abundant in the HFD+E treated
group. In particular, we found an increased abundance of the genera Parabacteroides
(Figure 9C), Anaerotruncus (Figure 9D), and Mucispirillum (Figure 9E).

A reduction of the genus Parabacteroides has been recently reported in neonatal cholesta-
sis disease and it seems to exert a positive modulation on bile acids metabolism and obe-
sity [66]. The Anaerotruncus genus has been found to negatively correlate with obesity in
child [67] and to positively impact on the outcome of fecal transplantation in inflammatory
bowel disease patients [68]. Finally, the genus Mucispirillum has been reported to exert a
positive effect on gut inflammation [69].

On the other side, the genus Olsenella was significantly increased in the HFD group
respect to the others (Figure 9F). This genus has been already reported as increased in the
caecum of HFD models and it has been suggested it may be involved in gut permeability
modifications.

Moreover, we found both in SD and HFD+E mice lower levels of the Lachonospiraceae
family, present also at genus level (unclassified_ Lachonospiraceae) compared to the HFD
group. A member of this family, the Lachnoclostridium, has been associated to colorectal
cancer [70] and recently proposed to be related also to NAFLD [62].

This study has some limitations. Firstly, this is a pilot small animal study evaluating
the combination of plant extracts on hepatic steatosis and more studies are needed to
confirm these results. Secondly, the role of this combination on the modulation of miRNAs
and gut microbiota must be clarified by further studies.

Conversely, the strength of our study is the use of the combination of three plant
extracts, never previously evaluated, as novel therapeutic strategy for hepatic steatosis.
Although it is not possible to discriminate which component of the extract mixture has
led to the improvement of the metabolic profile, it is possible to hypothesize a synergistic
action of the three plant components.

5. Conclusions

In conclusion, our study shows, for the first time, that this combination of plant extracts
has a protective effect on obesity, hepatic steatosis, insulin resistance and dyslipidemia.
The metabolic outcomes are associated with the expression of miR-122 and miR-34a in
the liver. Although the role of miR-122 and miR-34a on the lipid metabolism and NAFLD
has previously been highlighted, further studies will be useful to demonstrate how these
miRNAs are modulated by these plant extracts in combination. The positive effect on
the gut microbiota demonstrated here using the extract combination may be directly
responsible for the miRNA expression in the liver, as previously published. However,
we cannot exclude that the extract effects on miRNA hepatic levels and metabolism may
be also indirectly dependent on gut microbiota, in light of the absence of weight gain.
However, either way, the outcome of this work suggests the use of the combination of
Berberis Aristata, Elaeis Guineensis and Coffea Canephora as an adjuvant therapy for the
prevention of obesity-induced NAFLD, supporting the gut microbiota-miRNA pathway as
a reasonable target for the therapy of NAFLD.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nu13041281/s1. Supplementary Table S1. Ingredients and composition of study diets for male
C57BL/6J mice fed an SD or HDF alone or supplemented with a powder mixture of plant extracts
consisting of Berberis Aristata, Elaeis Guineensis and decaffeinated green coffee from Coffea Canephora
for 24 weeks. Supplementary Table S2. Full list of significantly different taxa identified by differential
abundance analyses and assessed by T-Test/ANOVA and considering an adjusted p-value < 0.05 as
threshold. Taxa are reported from phylum to species and ordered based on p-values (from the most
significant value).
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