(g/kg diet)				
~ ~ ~	Control	HGB		
Casein	200	157.4		
Corn starch	197.5	-		
α -Corn starch	132	27.3		
Sucrose	100	100		
Soybean oil	70	70		
Lard	200	192.4		
Cellulose	50.0	-		
Barley flour ("White Fiber")	-	402.4		
AIN-93G mineral mixture	35	35		
AIN-93 vitamin mixture	10	10		
L-cystine	3	3		
Choline bitartrate	2.5	2.5		
<i>t</i> -butylhydroquinone	0.014	0.014		

Table S1. Composition of the control and HGB diets.

Barley flour ("White Fiber") from the Hakubaku Co. Ltd (Yamanashi, Japan), White fiber is contained β-glucan, 8.0%; total dietary fiber, 12.4%; protein, 8.4%; fat, 1.9%. HGB: High β-glucan barley group.

Phylum	Forward (Fw) / Reverse (Rv)	Primer sequence	Standard bacteria strain	. Strain No.	Reference
Bacteroidetes	Fw	5'-CRAACAGGATTAGATACCCT-3'	Bacteroides fragilis	JCM11019	De Gregoris <i>et al</i> : J. Microbial Methods, Sep;86(3): 351-6, 2011.
	Rv	5'-GGTAAGGTTCCTCGCGTAT-3'			•
Firmicutes	Fw	5'-TGAAACTYAAAGGAATTGACG-3	' Ruminococcus albus	JCM14654	De Gregoris <i>et al</i> : J. Microbial Methods, Sep;86(3): 351-6, 2011.
	Rv	5'-ACCATGCACCACCTGTC-3'			
Actinobacteria	Fw	5'-TACGGCCGCAAGGCTA-3'	Bifidobacterium longum	JCM1217	De Gregoris <i>et al</i> : J. Microbial Methods, Sep;86(3): 351-6, 2011.
	Rv	5'-TCRTCCCCACCTTCCTCCG-3'			
Total bacteria	Fw	5'-AAACTCAAAKGAATTGACGG	Ruminococcus albus	JCM14654	De Gregoris <i>et al</i> : J. Microbial Methods, Sep;86(3): 351-6, 2011.
	Rv	5'-CTCACRRCACGAGCTGAC-3'			
Genus	Fw / Rv	Primer sequence	Standard bacteria	Strain No.	Reference
Bacteroides fragilis group	Fw	5'-GTCAGTTGTGAAAGTTTGC-3'	Bacteroides fragilis	JCM11019	Bernard AE <i>et al</i> : Appl Environ Microbiol, 66: 1587-94, 2000.
	Rv	5'-CAATCGGAGTTCTTCGTG-3'			
Lactobacillus	Fw	5'-TGGAAACAGGTGCTAATAGGC-3	' Lactobacillus ramnosus	ATCC8530	Roy Byun <i>et al</i> : J Clin Microbiol, 42(7): 3128- 36, 2004.
	Rv	5'-GTCCATTGTGGAAGATTCCC-3'			
Bifidobacterium	Fw	5'-AGGGTTCGATTCTGGCACAG-3'	Bifidobacterium longum	JCM1217	Kok RG <i>et al</i> : Appl Environ Microbiol, 62: 3668-72, 1996.
	Rv	5'-CATCCGGCATTACCACCC-3'			
Prevotella	Fw	5'-CACCAAGGCGACGATGA-3'	Prevotella malaninogenica	JCM6325	Larsen <i>et al</i> : PLos ONE, 5: e9085, 2010.
	Rv	5'-GGATAACGCCTGGACCT-3'			
Clostridium leptum subgroup	o Fw	5'-GCACAAGCAGTGGAGT-3'	Ruminococcus albus	JCM14654	Matsuki <i>et al</i> : Appl Environ Microbiol, 70: 7220-8, 2004.
	Rv	5'-CTTCCTCCGTTTTGTCAA-3'			
Clostridium coccoides group	Fw	5'-AAATGACGGTACCTGACTAA-3'	Clostridium coccoides	JCM1395T	Matsuki <i>et al</i> : Appl Environ Microbiol, 70: 7220-8, 2004.

Table S2. List of standard bacterial strain and primer sequence for real time PCR.

	Rv	5'-CGGRGCTTCTTCTGCAGG-3'			
Atopobium cluster	Fw	5'-GGGTTGAGAGACCGACC-3'	Collinsella aerofacience	JCM10188	Matsuki <i>et al</i> : Appl Environ Microbiol, 70: 7220-8, 2004.
	Rv	5'-CTTTGAGTTTCATTCTTGCGAA-3'			

R =A or G, K=T or G, Y=C or T.

gono gymhol	Eanword	Dovonco	reference
gene symbol	rorwaru	Keverse	reference
IFN-γ	5'-GCATCTTGGCTTTGCAGCT-3'	5'-CCTTTTTCGCCTTGCTGTTG-3'	Takiguchi, H et al: J Oral Sci, 54: 23-32, 2012.
IL-1β	5'-CGCAGCAGCACATCAACAAGAGG-3'	5'-TGTCCTCATCCTGGAAGGTCCAC-3'	Aoe, S et al: Int J Hum Cult Stud, 26: 277-282, 2016.
IL-4	5'-CTTCCAAGGTGCTTCGCATA-3'	5'-AAGCCCGAAAGAGTCTCTGC-3'	Yoon et al: BMC Complement Altern Med, 15: 353, 2015.
IL-5	5'-CCCCCACGGACAGTTTGATT-3'	5'-TGAGGCTTCCTGTCCCTACT-3'	Primer design was performed by NCBI Primer-Blast tool.
IL-6	5'-CGGCCTTCCCTACTTCACAA-3'	5'-TCTGCAAGTGCATCATCGTT-3'	Mio, K et al: nutrients, 12: 3546, 2020.
IL-10	'5'-TGGACAACATACTGCTAACC-3'	5'-GGATCATTTCCGATAAGGCT-3'	Paiva et al: BMC Microbiology, 13: 69, 2013.
IL-12	5'- AGCACCAGCTTCTTCATCAGG -3'	5'-GCGCTGGATTCGAACAAAG-3'	Paiva et al: BMC Microbiology, 13: 69, 2013.
IL-17	5'-GCTCCAGAAGGCCCTCAGA-3'	5'-CTTTCCCTCCGCATTGACA-3'	Paiva et al: BMC Microbiology, 13: 69, 2013.
IL-33	5'-GGGCTCACTGCAGGAAAGTA-3'	5'-TTTGCCGGGAAATCTTGGA-3'	Primer design was performed by NCBI Primer-Blast tool.
TNF-α	5'-ACCCTCACACACTCAGATCATCTTC-3'	5'-TGGTGGTTTGCTACGACGT-3'	Aoe, S et al: Int J Hum Cult Stud, 26: 277-282, 2016.
TGFβ	5'-AGGGCTACCATGCCAACTTC-3'	5'-CCACGTAGTAGACGATGGGC-3'	Lai D et al: PLoS One, 9(5): e98749, 2014.
pIgR	5'-TTGTTCACGCTCTTGGTAACTG-3'	5'-ACAGGCCTCGGTTACTGGTACC-3'	Blanch, VJ et al: J Immunol, 62: 1232-5, 1999.
Reference			
36B4	5'-GGCCCTGCACTCTCGCTTTC-3'	5'-TGCCAGGACGCGCTTGT-3'	Aoe, S et al: nutrients, 11: 1674, 2019.

Table S3. List of primers used for real-time PCR.

R =A or G. IFN-γ, interferon gamma; IL-10, interleukin 10; IL-12, interleukin 12; IL-17, interleukin 17; IL-1β, interleukin 1 beta; IL-33, interleukin 33; IL-4, interleukin 4; IL-5, interleukin 5; IL-6, interleukin 6; pIgR, polymeric immunoglobulin receptor; TGFβ, transforming growth factor beta; TNF-*α*, tumor necrosis factor-*α*.

ID	Pathway name	Count	P value	FDR
mmu00591	Linoleic acid metabolism	12	8.3e-6	2.0e-3
mmu00590	Arachidonic acid metabolism	15	3.0e-5	3.6e-3
mmu04640	Hematopoietic cell lineage	14	7.8e-5	6.2e-3
mmu00830	Retinol metabolism	14	1.3e-4	7.4e-3
mmu04060	Cytokine-cytokine receptor interaction	25	1.5e-4	7.4e-3
mmu05150	Staphylococcus aureus infection	10	2.9e-4	1.1e-2
mmu05340	Primary immunodeficiency	8	5.8e-4	2.0e-2
mmu05204	Chemical carcinogenesis	13	6.7e-4	2.0e-2
mmu04514	Cell adhesion molecules (CAMs)	18	7.5e-4	2.0e-2
mmu04662	B cell receptor signaling pathway	11	9.1e-4	2.2e-2
mmu00140	Steroid hormone biosynthesis	12	1.4e-3	3.1e-2
mmu04610	Complement and coagulation cascades	11	1.7e-3	3.4e-2

Table S4. KEGG enrichment analysis with upregulated DEGs in the ileum of barley group by using DAVID database.

FDR were adjusted by using Benjamini–Hochberg algorithm.

	Control	HGB
Initial weight (g)	20.0 ± 0.3	20.0 ± 0.4
Final weight (g)	424 ± 1.5	$38.4 \pm 1.2^*$
Body weight gain (g/day)	0.25 ± 0.02	$0.20 \pm 0.01^*$
Food intake (g/day)	2.85 ± 0.06	2.82 ± 0.04
Food efficiency ratio (%)	8.7 ± 0.4	$7.2 \pm 0.3^*$
Liver (g)	1.5 ± 0.1	$1.2 \pm 0.1^{*}$
Cecum with digesta (g)	0.2 ± 0.02	$0.4 \pm 0.03^{*}$
Epididymal fat (g)	2.3 ± 0.1	2.2 ± 0.2
Retroperitoneal fat (g)	1.0 ± 0.1	$0.7 \pm 0.1^{*}$
Mesenteric fat (g)	1.1 ± 0.2	$0.6 \pm 0.1^{*}$

Table S5. Final weight, body weight gain, food intake, and organ weight in mice fed the control and HGB diets.

Values are mean ± SE (n=8).* *p*<0.05 showed significantly different among each group. Food efficiency ratio (%) = Body weight gain/Food intake × 100. HGB: High β-glucan barley group.

Figure S1. Flow chart showing the study design of the animal studies. sIgA, secretory immunoglobulin A; SCFAs, Short-chain fatty acids.

Figure S2. DEGs up-regulated by barley group involved in B cell receptor signaling pathway (extracted from Kyoto Encyclopedia of Genes and Genomes pathway). DEGs: Differential expressed genes had selected the cut-off criteria (Log-ratio > 1.3 fold in the barley group compared with the control group). The color depth in the figure indicates the Log-ratio values.

Figure S3. The concentration of IL-10 (a) and IL-6 (b) in serum. Values are means \pm SE, n=8. C: control group, HGB: high β -glucan barley group. "NS" is not significant difference between each group.

(a)

Figure S4. The concentration of SCFAs and organic acids in feces. Values are means ± SE, n=8. * *p*<0.05, ** *p*<0.01, *** *p*<0.001 showed a significant difference between each group, "NS" is not significant. C: control group, HGB: high β-glucan barley group. C: control group, HGB: high β-glucan barley group.