
nutrients

Article

Trans-Epithelial Transport, Metabolism, and Biological Activity
Assessment of the Multi-Target Lupin Peptide LILPKHSDAD
(P5) and Its Metabolite LPKHSDAD (P5-Met)

Carmen Lammi 1,*, Gilda Aiello 1,2, Carlotta Bollati 1 , Jianqiang Li 1, Martina Bartolomei 1 , Giulia Ranaldi 3,
Simonetta Ferruzza 3 , Enrico Mario Alessandro Fassi 1 , Giovanni Grazioso 1 , Yula Sambuy 3

and Anna Arnoldi 1

����������
�������

Citation: Lammi, C.; Aiello, G.;

Bollati, C.; Li, J.; Bartolomei, M.;

Ranaldi, G.; Ferruzza, S.; Fassi,

E.M.A.; Grazioso, G.; Sambuy, Y.; et al.

Trans-Epithelial Transport,

Metabolism, and Biological Activity

Assessment of the Multi-Target Lupin

Peptide LILPKHSDAD (P5) and Its

Metabolite LPKHSDAD (P5-Met).

Nutrients 2021, 13, 863. https://

doi.org/10.3390/nu13030863

Academic Editor: Satoshi Nagaoka

Received: 21 January 2021

Accepted: 1 March 2021

Published: 5 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Pharmaceutical Sciences, University of Milan, 20122 Milan, Italy; gilda.aiello@unimi.it (G.A.);
carlotta.bollati@unimi.it (C.B.); jianqiang.li@unimi.it (J.L.); martina.bartolomei@unimi.it (M.B.);
enrico.fassi@unimi.it (E.M.A.F.); giovanni.grazioso@unimi.it (G.G.); anna.arnoldi@unimi.it (A.A.)

2 Department of Human Science and Quality of Life Promotion, Telematic University San Raffaele,
00166 Rome, Italy

3 Food and Nutrition Research Centre, CREA, 00178 Rome, Italy; giulia.ranaldi@crea.gov.it (G.R.);
simonetta.ferruzza@crea.gov.it (S.F.); yula.sambuy@crea.gov.it (Y.S.)

* Correspondence: carmen.lammi@unimi.it; Tel.: +39-02-5031-9372

Abstract: P5 (LILPKHSDAD) is a hypocholesterolemic peptide from lupin protein with a multi-target
activity, since it inhibits both 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCoAR) and
proprotein convertase subtilisin/kexin type-9 (PCSK9). This work shows that, during epithelial
transport experiments, the metabolic transformation mediated by intestinal peptidases produces two
main detected peptides, ILPKHSDAD (P5-frag) and LPKHSDAD (P5-met), and that both P5 and
P5-met are linearly absorbed by differentiated human intestinal Caco-2 cells. Extensive comparative
structural, biochemical, and cellular characterizations of P5-met and the parent peptide P5 demon-
strate that both peptides have unique characteristics and share the same mechanisms of action. In
fact, they exert an intrinsically multi-target behavior being able to regulate cholesterol metabolism
by modulating different pathways. The results of this study also highlight the dynamic nature of
bioactive peptides that may be modulated by the biological systems they get in contact with.

Keywords: Caco-2 cells; food bioactive peptides; LDLR; PCSK9; trans-epithelial transport

1. Introduction

In addition to their nutritional values, proteins provide numerous health benefits
through their ability to modulate one or more targets involved in specific physiological
pathways [1,2]. This generally depends on the formation of bioactive peptides that are
processed by digestion from the protein sequences and subsequently absorbed at the
intestinal level [3–5]. These peptides eventually reach the organs where they modulate
the target of interest, exerting their biological activity. Indeed, food bioactive peptides are
increasingly recognized for their great potential of improving human health and preventing
chronic diseases [6].

In this framework, lupin protein hydrolysates, obtained by treating the proteins with
pepsin and trypsin, show synergistic hypocholesterolemic effects through the modulation
of both 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCoAR) and proprotein
convertase subtilisin/kexin type-9 (PCSK9) targets [7–11]. In fact, both the peptic and
tryptic hydrolysates decrease HMGCoAR activity in vitro, inducing the intracellular low-
density lipoprotein receptor (LDLR) pathway, reducing the PCSK9 one, and improving the
ability of human hepatic HepG2 cells to uptake low-density lipoproteins (LDL) from the
extracellular environment [7,11]. In addition, these lupin hydrolysates impair the protein–
protein interaction (PPI) between PCSK9 and LDLR [10]. Although it seems possible
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that these complementary activities might be due to the synergistic effects of different
peptides in the hydrolysates, it cannot be excluded that single peptides endowed of a
multi-target inhibitory behavior may be present inside these hydrolysates, which have a
very complex composition.

Recently, it has been possible to identify from the peptic hydrolysate peptide P5
(LILPKHSDAD), one of the most potent food peptides capable of inhibiting the PPI between
PCSK9 and LDLR [10,12]. A molecular docking analysis has allowed to simulate the effects
induced by P5 on this PPI. In fact, the superimposition of P5 on the EGF-A domain of
LDLR co-crystallized with PCSK9 (PDB code 4NE9) shows a good overlapping, justifying
the P5 inhibitory property [10]. In parallel, an experiment has demonstrated that P5 is
able to reduce the catalytic activity of HMGCoAR with an IC50 value of 147.2 µM and
an in silico investigation has predicted the potential binding mode to the catalytic site
of this enzyme [12]. Through the inhibition of the HMGCoAR activity, P5 increases the
LDLR protein level on HepG2 cells through the activation of the SREBP-2 transcription
factor and, through a down-regulation of HNF-1α, it reduces the PCSK9 protein levels
and its secretion in the extracellular environment [12]. This unique synergistic multi-
target inhibitory behavior of P5 determines an improved ability of HepG2 cells to uptake
extracellular LDL with a final hypocholesterolemic effect. In the peptic protein hydrolysate,
P5 stands out also for its favorable transport across the in vitro model of the intestinal
barrier provided by differentiated human Caco-2 cells [9].

Considering the very peculiar features of P5, it appeared necessary to get a deeper
insight of its bioavailability. Therefore, the first objective of this study was an investigation
of the behavior of P5 in the differentiated Caco-2 cell model, focusing the attention either
on the transport or the possible concomitant degradation by active peptidases expressed
on the apical (AP) membrane, and consequent production of metabolites. For a better
understanding of the transport phenomenon, two different conditions were examined,
i.e., P5 alone and in mixture with two other lupin peptides, YDFYPSSTKDQQS (P3) and
LTFPGSAED (P7), which had already been shown to be transported in the same model
system [13]. Interestingly, an abundantly transported metabolite, LPHKSDAD (P5-met),
was identified in these experiments. According to the hypothesis that this breakdown
peptide may retain a multi-target activity, the second objective of the work was an extensive
structural, biochemical, and cellular characterization of P5-met in comparison with P5 as
the reference compound.

2. Materials and Methods
2.1. Chemicals

Dulbecco’s modified Eagle’s medium (DMEM), stable L-glutamine, fetal bovine serum
(FBS), phosphate buffered saline (PBS), penicillin/streptomycin, chemiluminescent reagent,
and 96-well plates were purchased from Euroclone (Milan, Italy). The HMGCoAR as-
say kit, bovine serum albumin (BSA), Janus Green B, formaldehyde, HCl and H2SO4
were from Sigma-Aldrich (St. Louis, MO, USA). The antibody against LDLR and the
3,3′,5,5′-tetramethylbenzidine (TMB) substrate were bought from Thermo Fisher Scien-
tific (Waltham, MA, USA). The Quantikine ELISA kit was bought from R&D Systems
(Minnneapolis, MN, USA). The LDL-DyLightTM 550 was from Cayman Chemical (Ann
Arbor, MI, USA). The CircuLex PCSK9 in vitro binding Assay Kit was from CircuLex
(CycLex Co., Nagano, Japan). The peptides (P5, P5-met, P3, and P7) were synthesized
by the company GeneScript (Piscataway, NJ, USA) at >95% purity. The antibody against
HMGCoAR was bought from Abcam (Cambridge, UK). Phenylmethanesulfonyl fluoride
(PMSF), Na-orthovanadate inhibitors, and the antibodies against rabbit Ig-horseradish
peroxidase (HRP), mouse Ig-HRP, and SREBP-2 (which recognizes epitope located in a
region between 833–1141 and bands at about 132 kDa) were purchased from Santa Cruz
Biotechnology Inc. (Santa Cruz, CA, USA). The antibodies against hepatocyte nuclear
factor 1-alpha (HNF1-alpha) and PCSK9 were bought from GeneTex (Irvine, CA, USA).
The inhibitor cocktail Complete Midi was from Roche (Basel, Switzerland). Mini protean
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TGX pre-cast gel 7.5% and Mini nitrocellulose Transfer Packs were purchased from BioRad
(Hercules, CA, USA).

2.2. Caco-2 Cell Culture and Differentiation

Human intestinal Caco-2 cells, obtained from INSERM (Paris, France), where cultured
according to a published protocol [14]. For differentiation, they were seeded on polycar-
bonate filters, 12 mm diameter, 0.4 µm pore diameter (Transwell, Corning Inc., Lowell, MA,
US) at a 3.5 × 105 cells/cm2 density in complete medium supplemented with 10% FBS in
both AP and BL compartments for 2 d to allow the formation of a confluent cell monolayer.
Starting from day three after seeding, cells were transferred to FBS-free medium in both
compartments, supplemented with ITS (final concentration 10 mg/L insulin (I), 5.5 mg/L
transferrin (T), 6.7 µg/L sodium selenite (S); GIBCO-Invitrogen, San Giuliano Milanese,
Italy) only in the basolateral (BL) compartment, and allowed to differentiate for 18–21 days
with regular medium changes three times weekly [15].

2.3. Cell Monolayers Integrity Evaluation

The transepithelial electrical resistance (TEER) of differentiated Caco-2 cells was
measured at 37 ◦C using the voltmeter apparatus Millicell (Millipore Co., Billerica, MA,
USA), immediately before and at the end of the transport experiments. In addition, at the
end of transport experiments, cells were incubated from the AP side with 1 mM phenol-red
in PBS containing Ca++ (0.9 mM) and Mg++ (0.5 mM) for 1 h at 37 ◦C, to monitor the
paracellular permeability of the cell monolayer. The BL solutions were then collected and
NaOH (70 µL, 0.1 N) was added before reading the absorbance at 560 nm by a microplate
reader Synergy H1 from Biotek (Winooski, VT, USA). Phenol-red passage was quantified
using a standard phenol-red curve. Only filters showing TEER values and phenol red
passages similar to untreated control cells were considered for peptide transport analysis.

2.4. Trans-Epithelial Transport Experiments

Prior to experiments, the cell monolayer integrity and differentiation were checked
by TEER measurement as described in detail above. Peptide trans-epithelial passage
was assayed in differentiated Caco-2 cells in transport buffer solution (137 mM NaCl,
5.36 mM KCl, 1.26 mM CaCl2, and 1.1 mM MgCl2, 5.5 mM glucose) according to previously
described conditions. In order to reproduce the pH conditions existing in vivo in the
small intestinal mucosa, the apical (AP) solutions were maintained at pH 6.0 (buffered with
10 mM morpholinoethane sulfonic acid), and the basolateral (BL)solutions were maintained
at pH 7.4 (buffered with 10 mM N-2-hydroxyethylpiperazine-N-4-butanesulfonic acid).
Prior to transport experiments, cells were washed twice with 500 µL PBS containing Ca++

and Mg++. Peptide transportation by mature Caco-2 cells was assayed by loading the AP
compartment with P5 alone, in mixture with YDFYPSSTKDQQS (P3) and LTFPGSDAD
(P7), and/or P5-met (500 µM) in the AP transport solution (500 µL) and the BL compartment
with the BL transport solution (700 µL). The plates were incubated at 37 ◦C and the BL
solutions were collected at different time points (i.e., 15, 30, 60, 90, and 120 min) and
replaced with fresh solutions pre-warmed at 37 ◦C. All BL and AP solutions collected
at the end of the transport experiment were stored at −80 ◦C prior to analysis. Three
independent transport experiments were performed, each in duplicate. In order to assess
the involvement of transcytotic process in peptides passage, parallel transport experiments
were performed in the presence of 500 nM wortmannin in both the AP and BL compartment,
over 60 min incubation time.

2.5. LC-MS/MS Operating Conditions

The medium collected at the end of transport experiments from AP and BL chambers
(500 µL and 700 µL, respectively) were freeze-dried and residues were solubilized in HPLC
water (100 µL). Samples were desalted with C18 resin ZipTip by using 80% ACN, 0.1%
FA as eluent (Millipore Corporation, Bedford, MA, USA). Each sample was lyophilized
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under speed-vacuum for 5 h at 30◦C and re-dissolved in 50 µL (0.1% formic acid), before
MS analysis. Purified BL samples were analyzed on a SL IT mass spectrometer interfaced
with a HPLC- Chip Cube source (Agilent Technologies, Palo Alto, CA, USA). Data were
processed with MSD Trap control 4.2, and Data analysis 4.2 version (Agilent Technologies,
Palo Alto, CA, USA). The chromatographic separation was performed using a 1200 HPLC
system equipped with a binary pump. The peptide enrichment was performed on a 160 nL
enrichment column (Zorbax 300SB-C18, 5 µm pore size, Agilent Technologies Italia SpA,
Milan, Italy), followed by separation on a 150 mm × 75 µm analytical column packed
(Zorbax300SB-C18, 5 µm pore size, Agilent Technologies Italia SpA, Milan, Italy). The
samples (1 µL), acidified with formic acid, were loaded onto the enrichment column at a
flow rate 4 µL/min using isocratic 100% C solvent phase (99% water, 1% ACN and 0.1%
formic acid). After clean-up, P5-met was injected into the mass spectrometer at the constant
flow rate of 300 nL/min. The LC solvent A was 95% water, 5% ACN, 0.1% formic acid;
solvent B was 5% water, 95% ACN, 0.1% formic acid. The nano-pump gradient program
was as follows: 5% solvent B (0 min), 70% solvent B (0–8 min), and back to 5% in 2 min.
The drying gas temperature was 300 ◦C, flow rate 3 L/min (nitrogen). Data acquisition
occurred in positive ionization mode. Capillary voltage was −1900 V, with endplate offset
−500V. Mass spectra were acquired with ICC target 30,000, and maximum accumulation
time 150 ms. The LC/MS analysis were performed in multiple reaction monitoring (MRM)
mode. Specifically, The monitored MRM transitions of P5-met were from the mono-charged
precursor ion [M+H]+ (m/z 882.43) to product-ions m/z 678.3 and 407.1, respectively.

2.6. Calibration Curve for the Quantification of Absorbed P5-Met and Method Validation

The quantitative analysis of P5-met in the BL samples was carried out by the Ion Trap
MS in MRM mode, monitoring two of the most intense diagnostic transitions (882.43Ü678.3
and 882.43Ü407.1), after optimization of the acquisition parameters, such as retention time,
MS profile, and MS/MS fragmentation spectrum (Supplementary Materials, Figure S1). A
blank was analyzed between samples to ensure the absence of any carryover effect. Seven
different concentrations of standard peptide P5-met ranging from 0.1, 0.4, 0.8, 1.5, 3, 5, and
10 µM were analyzed in three technical replicates. To determine the relation between the
peak area under the curves and the concentration of peptide, the calibration curve was built
by plotting the mean response factor (peak area) against the respective concentrations of
P5-met. Then, BL samples were analyzed using the same optimized parameters. Data were
processed by Data analysis v.4.2 (Agilent Technologies, Palo Alto, CA, USA). The peak areas
of all monitored transitions from P5-met were integrated and used for the quantification.

The analytical method was validated in terms of selectivity, linearity, limit of detection
(LOD), limit of quantification (LOQ), accuracy and precision, according to the guidelines
for bioanalytical method validation of the Center for Drug Evaluation and Research of the
U.S. Food and Drug Administration (Food and Drug Administration 2001). Quality control
samples were obtained by spiking peptide P5-met (0.5 µM) in a BL sample from control
Caco-2 cells.

2.7. HepG2 Cell Culture Conditions and Treatment

The HepG2 cell line was bought from ATCC (HB-8065, ATCC from LGC Standards,
Milan, Italy) and was cultured in DMEM high glucose with stable L-glutamine, supple-
mented with 10% FBS, 100 U/mL penicillin, 100 µg/mL streptomycin (complete growth
medium) with incubation at 37 ◦C under 5% CO2 atmosphere.

2.8. HMGCoAR Aactivity Assay

The experiments were carried out following the manufacturer instructions and opti-
mized protocol [16]. The assay buffer, NADPH, substrate solution, and HMGCoAR were
provided in the HMGCoAR Assay Kit (Sigma Aldrich SRL, Milan, Italy). The experiments
were carried out following the manufacturer instructions at 37 ◦C. In particular, each
reaction (200 µL) was prepared adding the reagents in the following order: 1× assay buffer,
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a 10–500 µM doses of P5 and P5-met or vehicle (C), the NADPH (4 µL), the substrate
solution (12 µL), and finally the HMGCoAR (catalytic domain) (2 µL). Subsequently, the
samples were mixed and the absorbance at 340 nm read by the microplate reader Synergy
H1 (Winooski, VT, USA) at time 0 and 10 min. The HMGCoAR-dependent oxidation of
NADPH and the inhibition properties of peptides were measured by absorbance reduction,
which is directly proportional to enzyme activity.

2.9. In Vitro PCSK9-LDLR Binding Assay

Peptides P5 and P5-met (0.1–100 µM) were tested using the in vitro PCSK9-LDLR
binding assay (CycLex Co., Nagano, Japan) following the manufacture instructions and
conditions already optimized [10]. Briefly, plates are pre-coated with a recombinant LDLR-
AB domain containing the binding site of PCSK9. Before starting the assay, tested peptides
and/or the vehicle were diluted in the reaction buffer and added in microcentrifuge tubes.
Afterwards, the reaction mixtures were added in each well of the microplate and the
reaction was started by adding His-tagged PCSK9 solution (3µL). The microplate was
allowed to incubate for 2 h at room temperature (RT) shaking at 300 rpm on an orbital
microplate shaker. Subsequently, wells were washed 4 times with the wash buffer. After
the last wash, the biotinylated anti-His-tag monoclonal antibody (100µL) was added and
incubated at RT for 1 h shaking at 300 rpm. After incubation, wells were washed for 4 times
with wash buffer. After the last wash, 100µL of HRP-conjugated streptavidin were added
and the plate was incubated for 20 min at RT. After incubation, wells were washed 4 times
with wash buffer. Finally, the substrate reagent (tetra-methylbenzidine) was added, and
the plate was incubated for 10 min at RT shaking at ca. 300 rpm. The reaction was stopped
with 2.0 M sulfuric acid and the absorbance at 450 nm was measured using the Synergy H1
fluorescent plate reader (Winooski, VT, USA).

2.10. In-Cell Western (ICW) Assay

For the experiments, a total of 3 × 104 HepG2 cells/well were seeded in 96-well
plates. The following day, cells were washed with PBS and then starved overnight (O/N)
in DMEM without FBS and antibiotics. After starvation, HepG2 cells were treated with
4.0 µg/mL PCSK9-WT and 4.0 µg/mL PCSK9 + peptides P5 and/or P5-met (50 µM) and
vehicle (H2O) for 2 h at 37 ◦C under 5% CO2 atmosphere. Subsequently, they were fixed in
4% paraformaldehyde for 20 min at room temperature (RT). Cells were washed 5 times
with 100 µL of PBS/well (each wash was for 5 min at RT) and the endogenous peroxides
activity quenched adding 3% H2O2 for 20 min at RT. Non-specific sites were blocked with
100 µL/well of 5% bovine serum albumin (BSA, Sigma) in PBS for 1.5 h at RT. LDLR
primary antibody solution (1:3000 in 5% BSA in PBS, 25 µL/well) was incubated O/N at
+4 ◦C. Subsequently, the primary antibody solution was discarded and each sample was
washed 5 times with 100 µL/well of PBS (each wash was for 5 min at RT). Goat anti-rabbit
Ig-HRP secondary antibody solution (Santa Cruz) (1:6000 in 5% BSA in PBS, 50 µL/well),
was added and incubated 1 h at RT. The secondary antibody solution was washed 5 times
with 100 µL/well of PBS (each wash for 5 min at RT). Freshly prepared TMB substrate
(Pierce, 100 µL/well) was added and the plate was incubated at RT until desired color was
developed. The reaction was stopped with 2 M H2SO4 and then the absorbance at 450 nm
was measured using the microplate reader Synergy H1 (Winooski, VT, USA). After the
read, cells were stained by adding 1× Janus Green stain, incubating for 5 min at RT. The
dye was removed and the sample washed 5 times with water. Afterward 100 µL 0.5 M HCl
for well were added and incubated for 10 min. After 10 seconds shaking, the OD at 595 nm
was measured using the microplate reader Synergy H1 (Winooski, VT, USA).

2.11. Fluorescent LDL Uptake

HepG2 cells (3× 104/well) were seeded in 96-well plates and kept in complete growth
medium for 2 days before treatment. The third day, cells were washed with PBS and then
starved overnight (O/N) in DMEM without FBS and antibiotics. After starvation, they
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were treated with 4.0 µg/mL PCSK9 and 4.0 µg/mL PCSK9 + P5 and P5-met peptides
(50.0 µM), and vehicle (H2O) for 2 h with at 37 ◦C under 5% CO2 atmosphere. At the end
of the treatment, the culture medium was replaced with 50 µL/well LDL-DyLight™ 550
working solution (Cayman Chemical Company, Ann Arbor, MI, USA) prepared in DMEM
without FBS and antibiotics. The cells were additionally incubated for 2 h at 37 ◦C and
then the culture medium was aspirated and replaced with PBS (100 µL/well). The degree
of LDL uptake was measured using the Synergy H1 fluorescent plate reader (Winooski,
VT, USA) (excitation and emission wavelengths 540 and 570 nm, respectively). Fluorescent
LDL-uptake was finally assessed following optimized protocol [12].

2.12. Western Blot Analysis

Immunoblotting experiments were performed using optimized protocol [12]. A total
of 1.5 × 105 HepG2 cells/well (24-well plate) were treated with 50 µM of P5 and P5-met
for 24 h. After each treatment, the supernatants were collected and stored at −20◦C;
cells were scraped in 40 µL ice-cold lysis buffer (RIPA buffer + inhibitor cocktail + 1:100
PMSF + 1:100 Na-orthovanadate + 1:1000 β-mercaptoethanol) and transferred in ice-cold
microcentrifuge tubes. After centrifugation at 13,300 g for 15 min at 4 ◦C, the supernatants
were recovered and transferred into new ice-cold tubes. Total proteins were quantified
by the Bradford’s method and 50 µg of total proteins loaded on a pre-cast 7.5% Sodium
Dodecyl Sulfate-Polyacrylamide (SDS-PAGE) gel at 130 V for 45 min. Subsequently, the
gel was pre-equilibrated in H2O for 5 min at room temperature (RT) and transferred to
a nitrocellulose membrane (Mini nitrocellulose Transfer Packs,) using a Trans-Blot Turbo
at 1.3 A, 25 V for 7 min. Target proteins, on milk or BSA blocked membrane, were
detected by primary antibodies as follows: anti-SREBP-2, anti-LDLR, anti-HMGCoAR,
anti-PCSK9, anti HNF1-α and anti-β-actin. Secondary antibodies conjugated with HRP
and a chemiluminescent reagent were used to visualize target proteins and their signal was
quantified using the Image Lab Software (Biorad, Hercules, CA, USA). The internal control
β-actin was used to normalize loading variations.

2.13. Quantification of PCSK9 Secreted by HepG2 Cells through ELISA

The supernatants collected from treated HepG2 cells (50.0 µM of P5 and/or P5-met)
were centrifuged at 600 × g for 10 min at 4 ◦C and ELISA assay performed using protocol
already optimized [12]. They were recovered and diluted to the ratio 1:10 with DMEM in
a new ice-cold tube. PCSK9 was quantified by ELISA (R&D System, Minneapolis, MN,
USA). Briefly, the experiments were carried out at 37 ◦C, following the manufacturer’s
instructions. Before starting the assay, human PCSK9 standard curve (20.0, 10.0, 5.0,
2.5, 1.25, and 0.625 ng/mL) was prepared by serial dilutions from a 40 ng/mL stock.
100 µL of the Assay Diluent RD1-9 (provided into the kit) were placed in each well, before
adding the standards and the samples (50 µL) and incubating the ELISA plate for 2 h
at RT. Subsequently, wells were washed 4 times with the wash buffer, and 200 µL of
human PCSK9-conjugate (HRP-labelled anti-PCSK9) was added to each well for 2 h at
RT. Following aspiration, wells was washed 4 times with the kit wash buffer. After the
last wash, 200 µL of substrate solution were added to the wells and allowed to incubate
for 30 min at RT. The reaction was stopped with 50 µL of the stop solution (2 M sulfuric
acid) and the absorbance at 450 nm was measured using Synergy H1 microplate (Winooski,
VT, USA).

2.14. Molecular Modeling

The PCSK9/P5-met model was built starting from the coordinates of the PCSK9/P5
complex model reported by us [10]. Here, the first two residues (residues LI) of peptide P5
were manually removed from the PCSK9/P5 complex model, by means of the molecular
modeling tools available in Maestro software (Schrödinger Inc, Mannheim, Germany.).
Then, the resulting complex model was energy minimized and equilibrated through three
MD simulations replicas (each lasting more than 300 ns) utilizing the pmemd.cuda module
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of AMBER 2017 package [17]. In the production runs, the computational protocol applied
in our previous studies [18,19] was applied. In particular, the ff14SB AMBER force field [20]
was used for the protein, while the TIP3P model [21] was used to explicitly represent
water molecules (about 25,000). Then, after the addition of the sodium ions needed to
neutralize the overall charge of the simulation system, the MD trajectories acquired in
the production runs were examined by visual inspection with VMD [22], ensuring that
the thermalization did not cause any structural distortion. Finally, the three MD replicas’
trajectory frames were collected in order to cluster the conformations assumed by the
small peptide backbone atoms bound on the PCSK9 surface. The cluster analysis was
performed using the cpptraj module of AMBER17 [17]. By this, the MD frames were
divided into clusters by the complete average linkage algorithm, and the PCSK9/P5-met
complex conformations with the lowest root mean square deviation (RMSD) to the cluster
centers (the structures representative of the cluster, SRC), were acquired and visually
inspected. MM-GBSA calculations were performed on the most populated cluster of P5-
met conformations, the MMPBSA.py module of AMBER17 [17] package was used to this
aim. The computational details and applied parameters of these calculations were the ones
reported on our previous paper [19].

2.15. Circular Dichroism (CD) Spectroscopy

Circular dichroism (CD) spectra were recorded in continuous scanning mode (190–300 nm)
at 25 ◦C using a Jasco J-810 (Jasco Corp., Tokyo, Japan) spectropolarimeter. All spectra were
collected using a 1 mm path-length quartz cell and averaged over three accumulations
(speed: 10 nm min−1). A reference spectrum of distilled water was recorded and subtracted
from each spectrum.

2.16. Statistical Analysis

All the data sets were checked for normal distribution by D’Agostino and Pearson test.
Since they are all normally disturbed with p-values < 0.05, we proceeded with statistical
analyses by One-Way ANOVA followed by Dunnett’s and Tukey’s post-hoc tests and
using Graphpad Prism 9 (San Diego, CA, USA). Values were reported as means ± S.D.;
p-values < 0.05 were considered to be significant.

3. Results
3.1. Intestinal Transport of P5 Alone or in Combination with Other Peptides across Caco-2 Cells

Recently, we have demonstrated that the intestinal transport of a peptide is highly
influenced by the presence of other peptides [13]. For this reason, the kinetics of the trans-
port of P5 was investigated in two different conditions, i.e., either when it was alone or in a
mixture with P3 (YDFYPSSTKDQQS) and P7 (LTFPGSAED), two lupin peptides that had
already been shown to be transported in the same model system [9,13]. Each peptide was
added in the AP compartment at the final concentration of 500 µM. As shown in Figure 1A,
in both conditions, P5 was linearly transported across the Caco-2 cells monolayer as a func-
tion of time. When it was alone, the rate of absorption was 16.3 ± 0.3 nmoles/(mL ×min)
(R2 0.999), whereas in the mixture the rate was 80.3 ± 0.4 nmoles/(mL ×min) (R2 0.988)
(Figure 1A). Moreover, at the end of the incubation (2 h), the amount of P5 in the BL
compartment was about 3.5-fold higher when it was tested in mixture (1.1 ± 0.2 µg, equal
to 0.99 nmoles) than when it was tested alone (0.3 ± 0.02 µg, equal to 0.271 nmoles). Both
evidences suggest that the presence of other peptides favored the transport possibly by
increasing the stability of P5 and impairing its degradation.

Food derived peptides may be transported across the intestinal brush-border mem-
brane into the bloodstream via one or more of the following routes: (i) peptide transport 1
(PepT1)-mediated route, (ii) paracellular route via tight junctions (TJs), (iii) transcytosis
route, and (iv) passive transcellular diffusion [23]. Peptide size, charge, hydrophobicity,
and degradation due to the action of peptidases are among the main factors influencing
the absorption through one or more of these routes. In general, short peptides, such
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as dipeptides and tripeptides, are preferentially transported by PepT1, due to its high-
capacity, low-affinity, and high expression in intestinal epithelium [24], whereas highly
hydrophobic peptides are transported by simple passive transcellular diffusion or by tran-
scytosis [25]. Since P5 is a decapeptide with a net charge equal to −1 and a hydrophobicity
of +17.79 kcal/mol, it may be hypothesized that it might be preferentially transported
by passive transcellular diffusion or by transcytosis. Whereas it is difficult to assess the
transport via the former route, due to the lack of passive diffusion regulators, wortmannin
can be used as transcytosis inhibitor to investigate the latter route. Therefore, specific exper-
iments in the presence of wortmannin were performed in order to assess the mechanism of
transport of peptide P5 across the Caco-2 cell layer. As shown in Figure 1B,C, wortmannin
significantly impairs the transport of P5, strongly suggesting that P5 is mainly transported
by the transcytotic route.

Figure 1. Transport of P5 across differentiated Caco-2 cells. (A) Quantification of P5 in the basolateral (BL) compartment as
a function of time; pink dashed line: P5 alone; pink line: in mixture. Data represent the mean ± SD of three independent
experiments performed in triplicate. (B) HPLC-Chip MS of BL compartment at time 60 min: total ion current (TIC) of
[M + 2H]2+ m/z 554.8 without wortmannin, and (C) with wortmannin.

3.2. Analysis of the Metabolites of P5 Produced by Caco-2 Cells

Mature enterocytes develop microvilli that function as the primary surface of nutrient
absorption in the gastrointestinal tract. Their membrane is packed with enzymes that
favor the breakdown of complex nutrients into simpler compounds that are more easily
absorbed. The dynamic equilibrium between bioactive peptide degradation and transport
is crucially important from a physiological point of view. Possessing a wide range of
membrane peptidases naturally expressed by the AP side of enterocytes, including DPP-IV
and ACE [26–28], the differentiated Caco-2 model is also a reliable tool for investigating
the proteolytic activity of the brush border barrier.

Under the hypothesis that during the transport experiments P5 may also be metabo-
lized by the enzymes expressed on the AP surface of the Caco-2 cells, it was decided to look
for possible metabolites through mass spectrometry analysis of the AP solutions. Indeed,
P5 was dynamically metabolized in two main breakdown fragments (Table 1): ILPKHS-
DAD (P5-frag, m/z 995.51), deriving from the cleavage of a leucine from the N-terminal
of the parent peptide, and LPHKSDAD (P5-met, m/z 882.43), formally deriving from the
cleavage of a leucine-isoleucine fragment from the N-terminal of P5. An aminopeptidase,
such as leucine aminopeptidase (LAP), may catalyze the hydrolysis of the leucine residue at
the N-terminus of the parent peptide generating P5-frag and then the N-terminal isoleucine
may be further cleaved to generate P5-met. However, P5-met may also derive from the
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direct cleavage of a leucine-isoleucine fragment from P5. Instead, P5 does not seem to be
susceptible to the action of endopeptidases, such DPP-IV.

Table 1. Metabolites of P5 identified in the AP compartment of the Caco-2 cell model system at the end of incubation
(120 min).

Metabolite Sequence ID [M + H]+ (Da) m/z (Da) Spectral Intensity Rt(min) Mixture Alone

ILPKHSDAD P5-frag 995.51 332.42 3.88 × 106 2.2 x n.d.
LPKHSDAD P5-met 882.43 441.51 1.21 × 107 2.2 x x

x, detected; n.d., not detected.

Interestingly, whereas P5-met was abundant and was produced in both conditions,
P5-frag was detected only when P5 was tested in combination with P3 and P7 and, based
on the spectral intensity, was a minor metabolite. This suggests that the transformation
of P5-frag into P5-met may be such a fast process that only the concomitant presence
of very easily cleavable peptides (like P7) permitted its detection, by protecting it from
degradation. However, we cannot exclude that other smaller fragments, such as tripeptides
and dipeptides, were also generated in these conditions, since they are intrinsically difficult
to detect.

3.3. Characterization of the Transport of P5-Met Across the Caco-2 Cell Monolayer

Since the octapeptide P5-met was the most abundant and the smallest metabolite,
it was decided to synthetize it in order to obtain structural, functional, and biological
characterization. To compare the secondary structure of P5-met and the parent compound
P5, the CD spectra in the far-UV region of 190–240 nm were recorded. One negative peak
was observed at 200 nm, suggesting that both peptides have a random coil conforma-
tion (Figure 2) and confirming the three-dimensional structure of P5 at the end of MD
simulations and subsequent energy minimization [10].

Figure 2. Circular dichroism (CD) spectra of P5 and P5-met registered in the range of 190–240 nm.

Afterward, trans-epithelial transport experiments were performed using differentiated
Caco-2 cells (Figure 3): the rate of transport of P5-met (incubated alone in the AP compart-
ment at the concentration of 500 µM) up to 30 min was 81.7 nmoles ± 0.3 ng/(mL ×min)
(R2 0.99). A decline in transport rate was observed after 60 min (data not shown) prob-
ably due to a decline of P5-met concentration in the donor AP compartment, caused by
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metabolism. The concentration of P5-met in the BL compartment after 30 min (0.54 ± 0.02 µg,
equal to 0.613 nmoles) (Figure 3) was much higher than that of the parent peptide tested
alone after 60 min (0.20 ± 0.02 µg, equal to 0.227 nmoles) (Figure 1), suggesting that
P5-met is either efficiently transported or poorly metabolized by Caco-2 cells or both. Addi-
tional experiments showed that P5-met is transported also in the presence of wortmannin
(Figure 3B), indicating that the mechanism of transport may involve a passive diffusion
mechanism or passage through the paracellular route. It is important to underline, how-
ever, that dedicated experiments would be required for a complete characterization of
the transport mechanism of P5-met. Interestingly, similar results have been obtained in
transport experiments performed with LTFPG, a metabolite of peptide P7 [13].

Figure 3. Transport of P5-met across differentiated Caco-2 cells. (A) Quantification of P5-met in the BL compartment as a
function of time. Data represent the mean ± SD of three independent experiments performed in triplicate. The accuracy of
analytical was d higher than 95%. LOQ was 0.10 µg whereas LOD was detected equal to 0.09 µg. (B) HPLC-Chip MS of BL
compartment at time 60 min: TIC of P5-met without wortmannin, and (C) with wortmannin.

3.4. P5-Met Modulates the Hepatic LDLR Pathway through the Inhibition of HMGCoAR Activity

A biochemical investigation was carried out for assessing the ability of P5-met to
modulate in vitro HMGCoAR activity. P5-met was active as HMGCoAR inhibitor with an
IC50 of 175.3 µM (Figure 4A), similarly to the parent peptide, which displayed an IC50 of
147.2 µM, whereas the positive control pravastatin reduced the enzyme activity by 82.0%
at 1.0 µM, as indicated in the Supplementary Materials (Figure S2). Based on these results,
further experiments aimed at comparing the ability of P5-met and P5 to modulate the
LDLR and PCSK9 pathways on HepG2 cells were carried out at the fixed concentration
of 50 µM, which was the same concentration already used for testing peptide P5 on the
same cellular system [12], although different from that absorbed by Caco-2 cells after
the incubation of 500 µM in the AP side. P5-met and P5 induced an up-regulation of
the protein level of the SREBP-2 transcription factor to 130.4 ± 16.4% and 125.7 ± 16%
(p < 0.05), respectively, versus the control (Figure 4B). As a consequence, the LDLR protein
levels were increased up to 150.4 ± 29.2% and 133.4 ± 15.5% (p < 0.001), respectively
(Figure 4C), and the HMGCoAR protein levels up to 117.9 ± 12.1% and 117.3 ± 9.1%
(p < 0.05), respectively (Figure 4D). In agreement with these results, P5-met and P5 induced
an increased expression of the LDLR localized on the cellular membranes of HepG2 cells
by 145.2 ±15.2% and 153.6 ± 16.4% (p < 0.0001), respectively, versus the control (Figure 4E).
The overall up-regulation of the LDLR protein levels, led to an increased functional ability
of HepG2 cells to absorb extracellular LDL up to 181.2 ± 40.1% versus the control after
treatment with P5-met and by 174.3 ± 32.3% after treatment with P5 (Figure 4F).
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Figure 4. Modulation of low-density lipoprotein receptor (LDLR) pathway in HepG2 cells treated with P5 and P5-met.
(A) In vitro inhibition of the HMGCoAR activity with IC50 values equal to 147.2 and 175.3 µM, respectively. (B) After
the treatment of HepG2 cells with P5 and P5-met, the SREBP-2 protein level was increased, as well as (C) the LDLR and
(D) the HMGCoAR protein levels, and (E) the LDLR localized on the surface of hepatic cell. (F) Enhancement of functional
ability of hepatic cells to uptake LDL from the extracellular environment. Data points represent the averages ± SD of four
independent experiments performed in duplicate. C vs. P5 and P5-met samples were analyzed by One-Way ANOVA
followed by Dunnett’s test; (*) p <0.05; (**) p < 0.01 (***) p < 0.0001. C: control sample; ns: not significant.

3.5. P5-Met Modulates the Hepatic PCSK9 Pathway and Impairs the PPI between PCSK9 and
the LDLR

PCSK9 is a secreted protein expressed in many organs, such as liver, kidney, and
intestine, which is able to bind the LDLR expressed on the surface of the hepatocytes [29].
PCSK9-LDLR binding activates the receptor catabolism leading to degradation of the
hepatic LDLR. Thus, PCSK9 inhibition and/or modulation are considered promising
strategies for the development of new hypocholesterolemic drugs [30]. Interestingly,
PCSK9 and LDLR are co-regulated by SREBP-2, since both proteins contain functional
sterol regulatory elements (SREs) in their promoters that respond to changes in intracellular
cholesterol levels through the activation of the SREBP pathway [31,32]. However, since
the HNF-1α binding site is unique to the PCSK9 promoter and is not present in the LDLR
promoter, the modulation of the PCSK9 transcription through HNF-1α does not affect
the LDLR gene expression. Thus, the co-regulation of PCSK9 from LDLR and other
SREBP target genes is disconnected by the HNF-1α binding site [33]. Similarly to P5,
P5-met decreases the hepatic PCSK9 production and extra cellular secretion through the
downregulation of the HNF-1α protein content in HepG2 cells (Figure 5A–C). More in
detail, P5-met decreases the HNF-1α protein by 10.8 ± 3.5% and P5 by 7.7 ± 1.5% (p < 0.01;
Figure 5A). This slight, but significant reduction leads to a decrease of PCSK9 by 29 ± 8.1%
and 31 ± 4.6% for P5-met and P5, respectively (p < 0.05; Figure 5B). In agreement, both
P5-met and P5 are also able to decrease the secretion of mature PCSK9 by 22.2 ± 4.9% and
12.3 ± 1.6%, respectively (p < 0.05; Figure 5C).
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Figure 5. Modulation of PCSK9 pathway in HepG2 cells treated with P5 and P5-met. (A) Effects on the HNF1-α protein level;
(B) effects on the PCSK9 protein levels; (C) effects on mature PCSK9 secretion. Data points represent the averages ± SD of
six independent experiments performed in duplicate. C versus P5 and P5-met samples were analyzed by One-Way ANOVA
followed by Dunnett’s test; (*) p < 0.05, (**) p < 0.01. C: control sample.

Aiming at the evaluation of the multi-target inhibitory ability of P5-met, experiments
were performed in order to assess its ability to directly impair the PCSK9-LDLR PPI. Results
indicate that P5-met reduces PCSK9-LDLR binding with a dose-response trend and an IC50
of 1.7 µM (Figure 6A), which is similar to the IC50 of P5 (1.3 µM) tested in parallel. This last
result confirms P5 activity as an inhibitor of the PCSK9-LDLR PPI observed in a previous
paper [10]. The effects on the modulation of the LDLR localized on the HepG2 cell surface
were investigated using an ICW assay in the presence of PCSK9 [34]. Findings indicate that
the LDLR protein levels decrease in the presence of PCSK9 alone by 24.7 ± 1.9% (p < 0.001)
versus the control cells, and that P5 and P5-met (50 µM) are able to significantly increase
the LDLR protein levels when co-incubated with PCK9 (p < 0.0001). In particular, peptide
P5 restored the LDLR level up to 99.3 ± 1.8%, whereas peptide P5-met up to 90.1 ± 0.1%
(Figure 6B). Finally, functional experiments were carried out for assessing the ability of
each peptide to modulate the capacity of HepG2 cells to uptake extracellular LDL, treating
HepG2 cells with PCSK9 alone or in the presence of each peptide (50 µM). After treatment
with PCSK9 alone, the ability of HepG2 cells to uptake fluorescent LDL was reduced by
43.5 ± 9.7% (p < 0.05) versus untreated cells (Figure 6C), and the treatment with P5 and
P5-met reversed this effect up to 100.4 ± 7.5% and 104.1 ± 8.5% (p < 0.05), respectively
(Figure 6D).

To get a deeper inside on these phenomena, it was decided to investigate the inter-
action of P5-met with PCSK9 through a dedicated computational study. Notably, the 3D
structure of the PCSK9/P5-met complex was modeled and refined following the procedure
described in the Section 2.14. Essentially, the simulations system (enzyme, small peptide,
ions, and water) was equilibrated and optimized by means of three 300 ns-long MD simu-
lations replicas. The attained trajectories showed that the small peptide displayed diverse
binding modes over the simulation time, although it remained firmly anchored on the
PCSK9 surface. Then, a cluster analysis of the trajectory frames was accomplished in order
to establish which was the most preferred conformation of the small peptide and to acquire
major details on the PCSK9 area involved in the interaction with P5-met.
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Figure 6. Inhibition of the PPI between PCSK9 and LDLR. (A) Impairment of the protein–protein
interaction between PCSK9 and LDLR. (B) The treatment of HepG2 cells with PCSK9 (4 µg/mL)
reduced active LDLR protein levels localized on the surface of cells, which were restored by P5
or P5-met (50 µM). (C) The decreased functional ability of HepG2 cells to absorb LDL from the
extracellular space observed after incubation with PCSK9 (4 µg/mL) is improved after treatment
with both peptides. (D) Hypothetical binding mode of P5-met in the LDLR binding site located on
the surface of PCSK9. The data points represent the averages ± SD of four independent experiments
performed in duplicate. Data were analyzed by One-Way ANOVA followed by Tukey’s post-hoc test;
(*) p < 0.05, (**) p < 0.01, and (***) p < 0.0001. C: control sample; ns: not significant.

The results of these calculations showed that the small peptide backbone atoms, in the
84% of frames, was bound on PCSK9 area responsible for the interaction with the EGFA
domain of LDLR, confirming that P5-met is a PCSK9-LDLR PPI inhibitor. Moreover, the
visual inspection of the P5-met conformation displaying the lowest binding free energy
(calculated by MM-GBSA approach) permitted to acquire details on the small peptide
hypothetical binding mode (Figure 6D). In our hypotheses, the side chain of the Leu1 was
inserted in the hydrophobic pocket shaped by the PCSK9 residues Pro155, Ile369, Ala239,
and Phe379. Additionally, an H-bond network stabilized P5-met on the PCSK9 surface,
these interactions were shaped by: 1) the side chain of the small peptide His4 and the
backbone of PCSK9-Ser381, 2) the peptide charged N-term and the PCSK9-Asp238 side
chain (this bond additionally enforced by a salt bridge), 3) the backbone NH of Asp6 with
the side chain of PCSK9-Asp367, 4) the side chain Asp6 with the one of PCSK9-Ser383.
Finally, it is useful to note that two sodium ions (needed to neutralize the total charge of the
simulation system) were greatly involved in the stabilization of the binding mode of P5-met.
In fact, the negatively charged peptide C-term and the side chains of the P5-met-Asp6
and -Asp8 interacted with the side chain of PCSK9-Gln382 and the backbone atoms of
PCSK9-Ser381 and -Ser383. Both electrostatic interactions were bridged by the presence of
two positively charged sodium ions (Figure 6D).

4. Discussion

In the field of food bioactive peptides, some activities have been investigated much
more extensively than others, i.e., the angiotensin converting enzyme (ACE) and DPP-IV
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inhibitory activity [35,36]. Hence, many hypotensive and antidiabetic peptides have been
identified from several different food matrices. On the contrary, only scarce and incomplete
information are available about hypocholesterolemic peptides. In this panorama, lupin
peptide P5 represents a unique case of multi-target biological activity. In fact, P5 is able
to inhibit both HMGCoAR and PCSK9 activities, showing a multi-target behavior. Both
enzymes are among the main targets for the treatment of the hypercholesterolemia and the
prevention of cardiovascular disease [37]. Some peptides able to inhibit HMGCoAR have
been identified from amaranth [38], soybean [39,40], lupin [12], and cowpea [41] proteins.

On the contrary, PCSK9 is a new target for the prevention and treatment of hyperc-
holesterolemia [42,43], which has been only rarely investigated in the area of food bioactive
peptides. In fact, P5 is the unique peptide described so far that is able to inhibit PCSK9.
This gap of knowledge on the one hand suggests the need to increase the efforts for identi-
fying new active peptides from different food sources, and on the other indicates that it
is crucial to promote the exploitation of the few known active species through in-depth
studies regarding, in particular, their bioavailability. Indeed, intestinal metabolism and
transport of bioactive peptides still remain relevant issues that need to be addressed in
order to overcome the discrepancy observed between in vitro assays and in vivo results
and to select good candidates to be translated into practice.

From a physiological point of view, the dynamic equilibrium between the transport
and degradation of bioactive peptides is crucially important. In this context, a relevant
outcome of this study is the demonstration that the transport across the Caco-2 monolayer
is highly affected by the concomitant presence of other peptides. Indeed, the transport
is more efficient and its degradation less extensive when P5 is incubated in the presence
of peptides P3 and P7. It is important to note, however, that P5 and P7 have completely
different behaviors, since the transport rate of P5 tested alone is 1.8 ± 0.3 ng/(mL ×min)
and in mixture becomes 8.9 ± 0.4 ng/(mL ×min), whereas the transport rate of P7 alone is
4.2 ± 0.6 ng/(mL × min) and in mixture becomes 1.98 ± 0.21 ng/(mL × min) [13]. The
outcomes on P5 and P7 are therefore divergent, being the transport of P5 favored by the
presence of the other peptides, while that of P7 impaired. P5 appears to be less sensitive
to the activity of endopeptidases, such as DPP-IV, but more sensitive to the activity of
aminopeptidases, which generate two main breakdown fragments, i.e., P5-frag and P5-met.
Instead, when tested in mixture, P7 is sensitive not only to the action of aminopeptidases,
such as LAP, but also to endopeptidases, such as DPP-IV, leading to the formation of
metabolites TFPGSAED and LTFPG, respectively [13].

Another relevant outcome of this study is the information acquired on the mechanism
of transport of P5 and P5-met. In fact, although both species are efficiently transported, P5
is mainly transported by transcytosis, whereas P5-met mainly by the paracellular or other
passive mechanism.

The biological characterization of P5-met indicates that it retains the multi-target
inhibitory activity of the parent peptide on HMGCoAR and PCSK9. In addition, P5-met is
also capable to modulate the PCSK9 signaling pathway at the intracellular level, leading to
a decrease of mature PCSK9 secretion through the reduction of HNF-1α. More in detail,
after the inhibition of HMGCoAR, P5-met leads to the up-regulation of the LDLR pathway,
with an increase of LDLR protein levels due to the augmentation of SREBP-2 transcription
factor. The molecular modulation of the LDLR-pathway has the consequence of the
improvement of the functional ability of HepG2 cells to uptake LDL from the extracellular
environment. Notwithstanding the SREBP-2 activation, the HNF-1α protein level reduction
leads to a significant decrease of PCSK9 protein level and a subsequent reduction of mature
PCSK9 secretion. Indeed, these results highlight the very original hypocholesterolemic
mechanism of action of P5 and P5-met that differs from the mechanism of statin. In fact,
statins increase PCSK9 expression, which dampens an effective LDL clearing by promoting
LDLR degradation [31], thereby counteracting their therapeutic effects. Instead, literature
suggests that curcumin [44], from Curcuma longa, and berberine [45,46], from plants of the
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Berberidaceae family, display a hypocholesterolemic activity through the reduction of PCSK9
protein levels.

P5 and P5-met are also able to impair the PPI between PCSK9 and the LDLR. The
experimental results were confirmed in silico, through the prediction of the binding mode
of P5-met in the LDLR binding site located on the PCSK9 target. The inhibition of PCSK9-
LDLR by P5-met leads to an efficient restoration of active LDLR protein levels localized on
the cellular membrane of hepatocytes co-incubated with PCSK9 and P5 or P5-met versus
HepG2 cells incubated with PCSK9 alone. Accordingly, a recovery of the functional capacity
of HepG2 cells to uptake extracellular LDL is also observed. In light of these results,
we propose a new concept of hypocholesterolemic peptide, based on the modulation
of peripheral cholesterol homeostasis rather than simple cholesterol inhibition. In this
context, P5 and P5-met are unique and interesting examples of food-derived intrinsically
multi-target peptides able to exert complementary effects on the regulation of cholesterol
metabolism, which undoubtably opens the route toward a new area of active molecules
with cholesterol-lowering properties. Finally, our results suggest that P5 may be a good
candidate for further in vivo study.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
643/13/3/863/s1, Figure S1. Transport of P5 across differentiated Caco-2 cells, Figure S2. Effect of
pravastatin (1.0 µM) on the HMGCoAR activity.
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