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Abstract: The consumption of energy drinks (e.g., containing caffeine and taurine) has increased
over the last decade among adolescents and athletes to enhance their cognitive level and improve
intellectual and athletic performance. Numerous studies have shown that drinking moderate doses
of such drinks produces beneficial effects, as they considerably boost the sporting performance of
elite athletes in various sports, including both endurance and explosive events. However, apart from
their ergogenic effects, the regular consumption of energy drinks also increases blood pressure and
consequently incites problems such as hypertension, tachycardia, and nervousness, all of which can
lead to cardiovascular disorders. A potential positive correlation between genetics and the moderate
consumption of energy drinks and athletic performance has recently been reported; notwithstanding,
a better understanding of the genetic variants involved in metabolism is a key area for future research
to optimize the dose of energy drink consumed and obtain the maximal ergogenic effect in elite sports.
The aim of this literature review, therefore, is to present the results of recent studies, classifying them
according to the differences in the associations between energy drinks and: (i) Athletic performance;
(ii) cardiovascular risk factors while practicing sports; and (iii) genetic associations and future
prospects between the consumption of energy drinks and performance.
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1. Introduction

Energy drinks first made their appearance in Europe and Asia in 1960. Energy drinks
first appeared in Austria in 1987 with a well-known brand and erupted across the globe
over the following years. Their consumption has increased exponentially as they have
gained in popularity and it has now become a multibillion-dollar industry [1].

It is necessary to differentiate between energy drinks and traditional beverages (coffee,
tea, isotonic, hypotonic and hypertonic sports drinks, and soft drinks such as cola). Energy
drinks have a high caffeine content which is normally combined with large amounts of
vitamins, minerals, taurine, amino acids, and different mixtures of phytochemicals [2].

This type of drink has gained particular prominence, as evidenced by its consumption
by various demographic groups, with and without risks of disease, such as youths, workers,
students, professional athletes, amateur athletes, and nightlife revelers [3]. No countries
restrict or place age limits on the consumption and sale of energy drinks, so they are readily
accessible to all populations and ages.

Regarding physical exercise, energy drinks form part of training prioritization in terms
of the physical qualities to condition, nutritional practices, pharmacological approach or
psychological techniques that can improve training adaptations and/or the output of the
exercise [4]. This includes aids that may benefit individuals when exercising, increase the
efficiency of the exercise and/or improve subsequent recovery [4,5].
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The use of dietary supplements is widespread throughout the general population, but
it takes on particular importance for those who practice sports and their consumption by
athletes corresponds to a significant proportion of their sales [4,6–8]. Dietary supplements
can play an important role in helping athletes achieve an ideal intake of calories and
nutrients. However, they should never be considered as a substitute for a healthy diet [4].

Energy drinks have emerged as a key dietary supplement to enhance athletic perfor-
mance, particularly in the acute consumption, with the effects of caffeine and taurine being
the most studied in several different sports [9–11]. The association between performance
and the consumption of energy drinks has been demonstrated in American football and soc-
cer [12–14], athletics [15–17], volleyball [18], and handball [19], amongst others. Although
there is comprehensive evidence of the positive association between the consumption of
these drinks and improved sporting performance, there are risks in terms of the potential
for cardiovascular problems due to hypertension, altered sleep patterns in adolescents,
aggravation of mental illnesses, physiological dependence and an increased possibility of
subsequent addiction [20,21], while their potential for toxicity can result in tachycardia,
arrhythmia, vomiting, convulsions and even death [22]. The adverse effects of energy
drink intake may occur in healthy people, but some people may be particularly prone to
complications. High-risk groups include young, caffeine-deficient or caffeine-sensitive
pregnant women, competitive athletes, and people with underlying cardiovascular dis-
ease [23]. Moreover, the effects of chronic high-dose caffeine and taurine intake in children,
adolescents and athletes are not yet known [22].

Possibly one of the most interesting areas for research regarding the consumption of
energy drinks associated with athletic performance and the observed cardiovascular risks
would be to study the genetic markers that indicate a greater predisposition to improve
performance by consuming energy drinks [24] and a protective effect against the damage
they can cause to the cardiovascular system. The field of nutrigenomics is expanding
our understanding of sports performance [25], but it is still a long way from obtaining
evidence-based knowledge. In the area of caffeine, recent evidence related to cytochrome
P450 1A2 (CYP1A2) -163C>A polymorphism has helped optimize the caffeine dose an
athlete needs to improve their performance [26–28] in endurance sports [29], as well as in
team sports and explosive efforts [19,28,30,31].

Several studies have shown significant relationships between the consumption of
energy drinks, sports performance and increased prevalence of cardiovascular risk factors.
However, the results reported to date remain inconsistent, so a full general description of
the studies in this field is necessary. For a more detailed analysis of the matter, we have
classified recent studies according to the differences in the associations between the energy
drinks and: (i) Athletic performance; (ii) cardiovascular risk factors while practicing sports;
and (iii) genetic associations and future prospects between the consumption of energy
drinks and performance.

2. Energy Drinks and Sport Performance
2.1. Caffeine and Sport Performance

Energy drinks are beverages that combine different substances among their ingredi-
ents, including vitamins, minerals, taurine, amino acids, and mixtures of phytochemicals
such as caffeine [2]. Their main impacts on sporting performance are attributed to the
effects of caffeine and taurine.

Caffeine (1,3,7-trimethylxanthine) is a phytochemical found in the leaves, fruits, and
seeds of various plants such as coffee, tea, and mate [32]. It is a socially-acceptable drug that
has been used as an ergogenic aid or performance enhancer in multiple sporting disciplines
for many years now. It can be used in various physical forms as a legal nutritional
method of improving sports performance in training sessions and competition [33]. Its
consumption was banned by the World Anti-Doping Agency (WADA) up until 2004.
Athletes were sanctioned if they presented urinary caffeine concentrations above 12 µgm/L.
From 2004, caffeine was removed from the list of substances and methods prohibited in-
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and out-of-competition and placed on the monitoring program [34]. Since then, its sale and
consumption has remained unrestricted in the context of international sports.

Caffeine can be consumed in different forms. It is available in gels, bars, chewing
gums, lozenges, coffee, tea, cocoa products, cola drinks, and energy drinks. The delivery
form determines the rate at which it is absorbed and reaches the bloodstream [35]. The
fastest means of caffeine absorption is in the form of chewing gum [36] due to drugs
absorbed via the buccal cavity bypass intestinal and hepatic first pass metabolism, which
potentially increases their extent of absorption of caffeinated substances. Of all the caffeine
consumption routes, the most common method of ingesting caffeine across the globe is in
energy drinks [37].

Several researchers have tried to determine the optimal doses necessary to enhance
sports performance by studying caffeine dose–response relationships and the subse-
quent ergogenic effect on athletic performance. In this regard, a randomized study by
Pasman et al. [38] analyzed the ergogenic dose–response effect during endurance training
in nine well-trained cyclists and observed a significant effect at doses of 5 mg/kg or more
(endurance times of 47 ± 13 min, 58 ± 11 min, 59 ± 12 min and 58 ± 12 min for 0 mg, 5 mg,
9 mg and 13 mg caffeine/kg of body weight, respectively [p < 0.05]). In a controlled trial,
Polito et al. [39] studied the acute effects of ingesting two different doses of caffeine (3 and
6 mg/kg) on performance during a resistance training session (chest press, shoulder press
and biceps curl exercises) compared to placebo. The results showed that the placebo group
completed significantly fewer repetitions (93.6 ± 22.4) than the groups that took 3 mg/kg
(108.0 ± 19.9, p = 0.02) and 6 mg/kg (109.3 ± 19.8, p = 0.03) of caffeine, while there were
no differences between the two caffeine doses. Another controlled study, published by
Jenkins et al. [40], compared the dose–response effect of 1, 2 and 3 mg/kg on the athletic
performance of 13 trained cyclists against placebo. The results revealed an increase in
performance of 4% after ingesting 2 mg/kg and 3% with 3 mg/kg upon completing a
15-min time trail at 60% of VO2max.

The literature also includes studies in which the acute consumption of at least 3 mg/kg
of caffeine was necessary to improve the performance in different disciplines and move-
ments, as well as cognitively [41]. The optimal dose range to obtain ergogenic effects is
3–6 mg/kg, whether taken acutely in capsules or consumed as an energy drink [16]. Doses
of 6 and 9 mg/kg had the same effects without producing an accumulative dose-response
effect [42], while the total doses ingested in energy drinks were around 40–325 mg of
caffeine, which is comparable to doses of 3–6 mg/kg in capsules [9].

The ergogenic effects of caffeine during exercise were first recorded in the scientific
community over 100 years ago [43]. Caffeine is known to have a positive effect by increasing
physical performance in endurance sports [44], intermittent exercises such as team and
racket sports [45,46], and high-intensity disciplines (from 1–60 min) such as swimming,
rowing and middle- and long-distance running [33].

2.2. Taurine and Sport Performance

Taurine (2-aminoethanesulphonic acid) is a stimulant commonly found in energy
drinks. It is the most prevalent free amino acid found in mammalian muscle tissue [47]
and is present in high concentrations in meat and seafood [48].

Taurine corresponds to 50–60% of free amino acids in mammals and fulfils some
essential biological functions. Within muscle fiber, taurine stimulates the release of Ca2+

from the sarcoplasmic reticulum and maintains the sensitivity of contractile elements to
Ca2+, acting directly on excitation-contraction-relaxation processes, contractile properties
and force production [49], and also exhibiting positive effects on athletic performance
in animal models [50]. These findings have been confirmed in both cardiac and skeletal
myocytes [51], with such effects considered responsible for the improved performance
reported in some studies, such as that of Balshaw et al. [52] who demonstrated the positive
effect of the acute consumption of 1000 mg of taurine on sports performance in a 3 km time
trial test. A randomized study by Rutherford et al. [53] also observed a 16% increase in
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fat oxidation during a cycle ergometer test at a moderate intensity (66.5 ± 1.9% VO2max)
for 90 min in trained cyclists. While another trial attributed prescribed an antioxidant
effect to taurine that facilitated the equilibrium in the mitochondrial matrix and improved
the efficiency of energy fluctuations in the form of ATP in mice muscle fibers (treatment
decreased muscle taurine levels to <40% of controls; p < 0.05) [50].

The amounts of taurine in energy drinks range between 71 and 3105 mg [9]. How-
ever, some studies have used higher doses (4000–6000 mg/day for 7 days) [54], with the
most frequently used doses to date ranging between 1000 and 2000 mg, according to the
literature [55].

2.3. Energy Drinks Combining Caffeine and Taurine in Sport Performance

Combining caffeine with taurine enhances its effects on the sarcoplasmic reticulum
in cardiomyocytes. Both taurine and caffeine have shown in vitro physiological effects
on intracellular calcium concentrations in vascular smooth muscle. The highest levels of
both substances are found in the heart tissues of patients with congestive heart failure and
experimental models of cardiac hypertrophy [56], and can also produce a positive inotropic
effect, supporting the idea that caffeine and taurine may act in synergy [56].

The consumption of energy drinks serves different purposes depending on the pop-
ulation drinking them. One of their main uses is to enhance sports performance [57].
This, together with their increased consumption due to their popularity and worldwide
availability, has to lead to an increase in the number of scientific studies published in recent
years. Various clinical trials have shown that drinking an energy drink that combines
caffeine and taurine correlates positively with an improved athletic performance in a range
of sporting situations. A study by Quinlivan et al. [58] compared the effect of an energy
drink (Red Bull®), 3 mg/kg of caffeine and placebo on the sporting performance of cyclists
through 1 h time trial at 75% peak power output and found that the group who consumed
the energy drink improved their performance by 120 ± 172 s (3768 ± 257 s) (3.1%, p = 0.043)
compared to placebo (3877 ± 260 s) and the caffeine group (3757 ± 278 s) by 109 ± 153 s
(2.8%, p = 0.039). Similarly, a double-blind, placebo experimented study presented by Cure-
ton et al. [59] in 16 trained cyclists reported that subjects completed 15–23% more work
during a 135 min continuous ride after consuming a caffeinated sports drink with taurine
compared to placebo (p < 0.05). A controlled trial performed by Ivy et al. [60] in trained
cyclists who consumed an energy drink (Red Bull®) found that the athletes completed a 1 h
time trial at 70% maximum Watts (Wmax) in a shorter time than for placebo (3690 ± 64 s
vs. 3874 ± 93 s, p < 0.01); which are very similar results to those of Kovacs and Cureton
studies [59,61].

In other sporting disciplines with predominantly cyclic and acyclic movements such as
football, a randomized study by Lara et al. [13] found that 60 min after drinking an energy
drink (Fure®: Standardized as 3 mg/kg of body weight, maltodextrin (300 mg/g), taurine
(400 mg/g), L-carnitine (40 mg/g), B-group vitamins (10 mg/g) and sodium bicarbonate
(100 mg/g)), the athletes’ performance improved compared to placebo in countermovement
jumps (heights of 27.4 ± 3.8 cm vs. 26.6 ± 4.0 cm; p < 0.05), a 7 × 30 m sprint test (top speeds
of 24.5 ± 1.7 km/h vs. 24.2 ± 1.6 km/h; p < 0.05) and a simulated football match monitored
with GPS devices (total distances run of 7.087 ± 1.501 m vs. 6.631 ± 1.618 m; p < 0.05).

In repeated high-intensity efforts, Del Coso et al. [62] also described that the consump-
tion of an energy drink (Fure®) increased the athletic performance of elite rugby sevens
players as evidenced by greater muscle power output during a 15 s maximal jump test
(25.6 ± 11.8 vs. 23.5 ± 10.1 kW with and without the energy drink; p < 0.05), running
pace during matches (95.4 ± 12.7 vs. 87.5 ± 8.3 m/min, p < 0.05) and pace at sprint
velocity (6.1 ± 3.4 vs. 4.6 ± 3.3 m/min, p < 0.05). In another study, Del Coso et al. [63]
also showed the effect of Fure® on athletic performance in sports requiring accelerations
and repeated high-intensity movements (elite field hockey players). In this case, the en-
ergy drink reduced the distance covered at moderate-intensity running (793 ± 135 and
712 ± 116 m-placebo drink vs. energy drink; p = 0.03) and increased the distance covered
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at high-intensity running (303 ± 67 vs. 358 ± 117 m; p = 0.05) and sprinting (85 ± 41 vs.
117 ± 55 m; p = 0.02).

A positive correlation between energy drink consumption and improved sporting
performance has also been observed in sports such as volleyball. Pérez-López et al. [64] re-
ported a positive correlation between athletic performance and drinking Fure®. Compared
to placebo, the energy drink increased ball velocity in the standing spike (19.2 ± 2.1 vs.
19.7 ± 1.9 m/s; p = 0.023) and jumping spike (17.9 ± 2.2 vs. 18.8 ± 2.2 m/s; p = 0.038) and
also improved jump height in the squat jump (28.1 ± 3.2 vs. 29.4 ± 3.6 cm; p = 0.028), CMJ
(countermovement jump) (32.0 ± 4.6 vs. 33.1 ± 4.5 cm; p = 0.018), spike jump (43.3 ± 4.7
vs. 44.4 ± 5.0 cm; p = 0.025) and block jump (35.2 ± 5.1 vs. 36.1 ± 5.1 cm; p = 0.044).

Another randomized study in a sample of sprint swimmers published by Lara et al. [65]
revealed a similar effect to that observed in previous works. Consuming Fure® improved
the CMJ (49.4 ± 5.3 vs. 50.9 ± 5.2 cm; p < 0.05), maximal force during the handgrip test
with the right hand (481 ± 49 vs. 498 ± 43 N; p < 0.05) and peak power output (273 ± 55
vs. 303 ± 49 W; p < 0.05), while reducing the time needed to complete a simulated 50 m
competitive swim (27.8 ± 3.4 vs. 27.5 ± 3.2 s; p < 0.05).

Furthermore, the effect of energy drink intake has been studied in racket sports such as
badminton and tennis. Abian et al. [66] evidenced an ergogenic effect of Fure® consumption
on athletic performance in 15 elite badminton players as they increased their squat jump
(SJ) height (34.5 ± 4.7 vs. 36.4 ± 4.3 cm; p < 0.05), squat jump peak power (p < 0.05), CMJ
(37.7 ± 4.5 vs. 39.5 ± 5.1 cm; p < 0.05) and CMJ peak power (p < 0.05) compared to placebo.
They also observed more total impacts during a simulated badminton match in comparison
with placebo (7395 ± 1594 vs. 7707 ± 2033 impacts; p < 0.05). Gallo-Salazar et al. [67] con-
ducted a randomized study that also found a positive correlation between the consumption
of energy drinks containing caffeine and taurine and improved athletic performance in
elite youth tennis players. Drinking Fure® increased handgrip strength by 4.2 ± 7.2%
(p = 0.03) in both hands, high intensity running pace (46.7 ± 28.5 vs. 63.3 ± 27.7 m/h;
p = 0.02), and number of sprints (12.1 ± 1.7 vs. 13.2 ± 1.7; p = 0.05) during the simulated
match. Compared to the placebo drink, subjects tended to produce a greater maximal
running velocity during the sprint test (22.3 ± 2.0 vs. 22.9 ± 2.1 km/h; p = 0.07) and
win more points on serve (49.7 ± 9.8% vs. 56.4 ± 10.0%; p = 0.07) with the caffeinated
energy drink. Considering the increased performance in power-specific movements, there
is a proven positive correlation between the consumption of energy drinks and improved
performance in strength exercises, endurance work, vertical jump tests and specific sprint
tests or accelerations (Table 1).

When assessing the effect of consuming energy drinks with caffeine and taurine on
the physical component of athletic performance, randomized, double-blind studies show
that such consumption correlates positively with aerobic endurance capacity. This was
evidenced in treadmill tests conducted by Rahnama et al. [68], who found that VO2 max
was greater in athletes who ingested energy drinks (p < 0.05), as well as in cycle ergometer
tests by Ganio et al. [69], in which a group taking caffeine, taurine and B-complex vitamins
solution presented improved physical performance between minutes 30 and 120 of the exer-
cise (p < 0.001). With respect to the basic physical quality of strength, Sünram-Lea et al. [70]
have also shown that the use of 330 mL of energy drinks correlates positively with im-
provements in isometric strength exercises. Ratamess et al. [71] studied dynamic strength
in squat and bench press exercises in subjects given a combination with caffeine, taurine,
creatine and essential branched-chain amino acids (BCAAs), reporting statistically sig-
nificant improvements (p < 0.05). In a study by Astley et al. [72], after consuming an
energy drink with 64 mg of caffeine and 800 mg of taurine per 200 mL, 15 resistance-trained
athletes performed better in specific strength tests compared to placebo, as measured by the
number of repetitions in a unilateral knee extension test with the dominant leg (9.5 ± 0.8
vs. 11.5 ± 0.9 reps; p = 0.001) and bench presses (8.1 ± 0.5 vs. 10.2 ± 0.4 reps; p = 0.01).

Alford et al. [73] have also shown that drinking an energy drink (Red Bull®) presents
a positive association with athletic performance, reporting significantly (p < 0.05) improved
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aerobic endurance (sustained max. heart rate of 65–75%) and anaerobic performance
(sustained max. speed) on cycle ergometers.

In a recent randomized study, Chtourou et al. [74] found that the acute effects of
consuming an energy drink included reductions in reaction times, depression, confu-
sion, fatigue, anger, anxiety, rating of perceived exertion (RPE) and affective load scores
compared to placebo in 19 physical education students.

However, focusing on jumping movements, results reported in the literature reflect a
lesser effect. For instance, the results presented in the Jacobson et al. [75] study, suggest
that there is more evidence and a stronger positive association for this type of drink in
upper body muscle groups than in large, complex muscle bundles in the lower body.

However, although we have described different studies which demonstrate a positive
correlation between the consumption of energy drinks and athletic performance, it is
worth highlighting that some studies did not report this positive association (Table 1).
A recent study by Thomas et al. [76] investigated the effects of energy drinks on the
sporting performance of eSports players (before and after playing three rounds of League
of Legends with 15 min recovery between rounds) by assessing attention (Erikson Flanker
Test), reaction speed (Go/No-Go test) and working memory (n-back test); only the memory
test revealed a statistically significant association (p = 0.004), while physical components
such as handgrip strength and finger tap speed presented a negative association with
sporting performance (p = 0.803). Similarly, Umaña-Alvarado and Moncada-Jiménez [77]
did not observe a positive effect on physical performance in terms of endurance in 11
runners who competed in two 10 km races, as there were no significant differences between
their times when they drank the energy drink or placebo (p > 0.05). Candow et al. [78]
did not find any differences between an energy drink and placebo among 17 university
students after performing a time-to-exhaustion treadmill run at 80% VO2max (Red Bull®:
12.6 ± 3.8 min, placebo: 11.8 ± 3.4 min; perceived exertion Red Bull®: 17.1 ± 2.0, placebo:
16.6 ± 1.8). Nor did Dall’Agnol and Souza [79] report any differences during an incremental
exercise test performed in 22 healthy volunteers after they ingested either 160 mg of caffeine
with 2000 mg of taurine or placebo (332.50 ± 56.83 vs. 342 ± 40.60 W), while Kammerer
et al. [80] did not find any differences in VO2max values after volunteer soldiers consumed
an energy drink compared to a placebo-controlled scenario. In the same vein, Pettitt
et al. [81] observed that consuming an energy drink did not improve the gas exchange
threshold in eight recreationally trained subjects during a graded exercise test on a cycle
ergometer. Nelson et al. [82] also reported that there was no significant difference in the
time-to-exhaustion between placebo and energy drink trials (43.8 ± 9.3 vs. 45.5 ± 9.8 min;
p = 0.62).

With respect to anaerobic factors, we found three studies that did not evidence a
positive association between the consumption of an energy drink and peak anaerobic
power (p > 0.05) in strength and power athletes, namely those by Hoffman et al. [83],
Gwacham and Wagner [12] and Eckerson et al. [84]. Regarding the basic physical quality
of muscle strength, a randomized, double-blind study by Goel et al. [85] did not discover
any significant differences in maximal voluntary contraction between an energy drink and
control (males: Before and after consumption of energy drink 381 ± 37 vs. 371 ± 36 N and
control drink 375 ± 61 vs. 363 ± 36 N; females: Energy drink 227 ± 23 vs. 227 ± 32 N and
control 234 ± 46 vs. 228 ± 37 N). All detailed results concerning the correlation between
energy drinks and sport performance are presented in Table 1.
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Table 1. Characteristics of studies referring to the association between energy drinks and sport performance.

Statistically Significant Positive Association

First Author/Country/ Year Study Design Sample (n) Gender/Age/Mean Age Caffeine Dosage Taurine Dosage Exercise Performance Test Result

Kovacs et at./the
Netherlands [61] 1998

Randomized double
blind, placebo

controlled, crossover

15
(Well-trained triathletes

and cyclists)
Male, 23.3 ± 0.9 y

Drinks of 14 mL/kg
BM of a placebo and
four carbohydrate-
electrolyte solution

containing 150 mg/L
CAF, 225 mg/L CAF,
and 320 mg/L CAF

All drinks contained 70
mg/L

Warm-up protocol (20 min)
and a 1-h time trial cycling

performance

Improved in min with
caffeine supplementation:

62.5 ± 1.3, 61.5 ± 1.1,
60.4 ± 1.0, 58.9 ± 1.0, and
58.9 ± 1.2 min for placebo-
carbohydrate-electrolyte

solution,
carbohydrate-electrolyte

solution-150mg/L,
carbohydrate-electrolyte
solution-225mg/L, and

carbohydrate-electrolyte
solution-320mg/L,

respectively (p < 0.05)

Alford et al./the UK
[73] 2001

Double-blind,
randomized, repeated

measures
39

(Healthy volunteers) Both, 18–30 y
Red Bull® Energy

Drink contains
carbonated water,
caffeine (80 mg)

Red Bull Energy Drink
contains taurine (1000

mg)

Psychomotor performance
(reaction time,

concentration, memory),
subjective alertness and

physical endurance on cycle
ergometer

Red Bull® Energy Drink
significantly improved

(p < 0.05) aerobic endurance
(maintaining 65–75% max.
heart rate) and anaerobic

performance (maintaining
max. speed)

Cureton et al./the USA
[59] 2007

A double-blind,
placebo-controlled,
repeated-measures

experimental design

16
(Trained cyclist) Male, 27 ± 7 y

Commercially available
7%

CHO-electrolyte sports
drink containing 195

mg/L caffeine

1.92 g/L taurine

Cycled continuously for a
total of 135 min, alternating

the exercise intensity
between 60% and 75%

VO2max every 15 min for
the first 120 min. The last 15
min of cycling, the subjects
were instructed to ride as

hard as possible

The performance ride was
15–23% greater for energy
drink compared to placebo.

Ratings of perceived
exertion were lower with

energy drink.
Strength loss was less for
energy drink than for the

other beverages or placebo
(5% vs. 15%)

Ratamess et al./the
USA [71] 2007 Randomized,

double-blind crossover
8

(Resistance trained) Male, 20 ± 2 y

Amino Shooter,
Champion Nutrition,
Concord with 110 mg

of caffeine

1500 mg/L taurine

5 min of light stationary
cycling at a self-selected

cadence and an additional
component of very light

stretching and performance
of 2–3 light to moderate sets
of the squat. Protocol was of
6 sets of the squat exercise
with a load equivalent to

75% of subjects
predetermined 1-RM.

Area under the curve of
resistance-exercise volume

was significantly less in
baseline than energy drink
(10%) and placebo (8.6%).

Energy drink
(18.4% ± 12.0%) was

significantly lower for
fatigue rate than baseline

(32.9% ± 8.4%)

Ivy et al./the USA [60] 2009
Double-blind,

randomized and
placebo-controlled

12
(Cyclist athletes) Both, 27 ± 3 y

Red Bull Energy Drink
contains carbonated

water, caffeine (80 mg)

Red Bull Energy Drink
contains taurine (1000

mg)

Trained cyclists consumed
500 mL of either flavoured

placebo or Red Bull® Energy
Drink. Performance was

measured to 1 hr of cycling
at 70% Wmax

Performance improved with
energy drink compared

with placebo (3.690 ± 64 s
vs. 3,.874 ± 93 s, p < 0.01)
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Table 1. Cont.

Statistically Significant Positive Association

First Author/Country/ Year Study Design Sample (n) Gender/Age/Mean Age Caffeine Dosage Taurine Dosage Exercise Performance Test Result

Ganio et al./the USA
[69] 2010

Double-blind,
randomized, crossover,

repeated measures
15

(Cyclist) Male, 27 ± 6 y 125 mg/L of caffeine 1920 mg/L of L-taurine

14 male cyclists cycled for
120 min submaximal and
then completed a 15-min
performance trial. Also,
maximal voluntary leg

isometric extension

Total work accumulated
during performance trial
was greater (p < 0.05) in

energy drink (233 ± 34 KJ)
than placebo (205 ± 52KJ)
but not in carbohydrate-
electrolyte-only solution
(225 ± 39 KJ) vs. placebo.

MVC (N) declined
(p < 0.001) from pre to post
in placebo (988 ± 213 KJ to

851 ± 191KJ) and
carbohydrate-electrolyte-

only solution (970 ± 172 KJ
to 870 ± 163KJ) but not in

energy drink (953 ± 171 KJ
to 904 ± 208 KJ). At Minutes
60, 90, 105, and 120 RPE was
lower in energy drink than

in placebo (p < 0.001).

Rahnama et al./Iran
[68] 2010

Randomized, placebo
controlled,

counterbalanced
double-blind

10
(Student athletes) Male, 22 ± 2 y Red Bull® Energy

Drink caffeine (80 mg)

Red Bull® Energy
Drink 1000 mg of

taurine

Maximal oxygen
consumption tests on a

treadmill.

Greater value in VO2max
and time to exhaustion for
the Red Bull® and Hype

trial compared to placebo
(p < 0.05)

Sünram-Lea et al./the
UK [70] 2012 Double-blind and

mixed measures design
81

(Healthy volunteers) Both, 27 ± 1 y

Two drinks; (1) 50 g
glucose and 40 mg

caffeine and
(2) 10.25 g of

fructose/glucose (59%
glucose and 41%

fructose) and 80 mg
caffeine

No Taurine
Range of cognitive tasks,
mood, and physiological
measures (handgrip test)

An increase in grip strength
and improved memory

performance after ingestion
of the drink containing 50 g
glucose and 40 mg caffeine

was observed and both
active drinks.

Improved performance on
the information processing

task compared to the
placebo
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Table 1. Cont.

Statistically Significant Positive Association

First Author/Country/ Year Study Design Sample (n) Gender/Age/Mean Age Caffeine Dosage Taurine Dosage Exercise Performance Test Result

Del Coso et al./Spain
[62] 2013

Double-blind, placebo
controlled and

randomized
experimental

16
(Rugby-seven athletes) Female, 23 ± 2 y

(Fure®, ProEnergetics,
Spain) provide a dose
of 3 mg of caffeine per

kg of BM.

18.7 mg/kg

Participants performed 15 s
maximal jumps test,

6 ×30 m sprint test and 3
rugby matches (running

distance)

Fure® increased the ball
velocity (19.2 ± 2.1m/s vs
19.7 ± 1.9 m/s, p = 0.023),

jumping spike
(17.9 ± 2.2 m/s vs.

18.8 ± 2.2 m/s, p = 0.038)
and jump height in the SJ

(28.1 ± 3.2 cm vs.
29.4 ± 3.6 cm, p = 0.028),

CMJ (32.0 ± 4.6 vs.
33.1 ± 4.5 cm, p = 0.018),

spike jump (43.3 ± 4.7 cm
vs. 44.4 ± 5.0 cm, p = 0.025),
and block jump (35.2 ± 5.1

cm vs. 36.1 ± 5.1 cm,
p = 0.044).

Lara et al./Spain [13] 2014
Double-blind, placebo

controlled, randomized
experimental design

18
(Soccer players) Female, 21 ± 2 y (Fure®, ProEnergetics,

Spain)
18.7 mg/kg

Standardized warm-up and
CMJ, 7 × 30 m sprint and

2 × 40 m

Fure® increased
performance in CMJ

(26.6 ± 4.0 cm vs
27.4 ± 3.8 cm; p < 0.05),

7 × 30m sprint (24.2 ± 1.6
km/h vs. 24.5 ± 1.7

km/h; p < 0.05) and in
match simulation 2 × 40m
(6.631 ± 1.618 m with the

placebo drink and
7.087 ± 1.501 m with the
caffeinated energy drink

(p < 0.05).

Del Coso et al./Spain
[18] 2014

Double-blind, placebo
controlled, randomized

experimental

15
(Volleyball players) Male, 22 ± 7 y (Fure®, ProEnergetics,

Spain)
18.7 mg/kg

Volleyball-specific tests:
standing spike test, maximal
SJ, maximal CMJ, 15RJ test,

and agility T-test

Energy drink increased the
spike test (73 ± 9 km/h

75 ± 10 km/h, p < 0.05) and
jump height in SJ
(31.1 ± 4.3 cm vs.

32.7 ± 4.2 cm, p < 0.05), CMJ
(35.9 ± 4.6 vs. 37.7 ± 4.4 cm,

p < 0.05), and 15RJ
(29.0 ± 4.0 cm vs.

30.5 ± 4.6 cm, p < 0.05). The
agility test time was

significantly reduced with
the caffeinated energy drink
(10.8 ± 0.7 s vs. 10.3 ± 0.4 s,

p < 0.05).
Players performed

successful volleyball actions
more frequently

(24.6% ± 14.3% vs
34.3% ± 16.5%, p < 0.05)

compared to placebo.
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Table 1. Cont.

Statistically Significant Positive Association

First Author/Country/ Year Study Design Sample (n) Gender/Age/Mean Age Caffeine Dosage Taurine Dosage Exercise Performance Test Result

Abian et al./Spain [66] 2015

Double-blind, placebo
controlled and

randomized
experimental design

15
(Elite badminton

players)
Male, 25 ± 7 y (Fure®, ProEnergetics,

Spain)
18.7 mg/kg

Handgrip maximal force
production, smash jump

without and with
shuttlecock, SJ, CMJ and the

agility t-test.
45-min simulated

badminton match was
played.

Energy drink increased SJ
height (34.5 ± 4.7 cm vs.

36.4 ± 4.3 cm; p < 0.05), SJ
peak power (p < 0.05), CMJ

(37.7 ± 4.5 vs. 39.5 ± 5.1 cm;
p < 0.05) and CMJ peak

power (p < 0.05).
An increased number of
total impacts was found
during the badminton

match (7395 ± 1594 impacts
vs. 7707 ± 2033 impacts,

p < 0.05).

Gallo-Salazar
et al./Spain [67] 2015

Double-blind, placebo
controlled and

randomized
experimental

14
(Young elite-level

tennis players)
Male 16 ± 1 y (Fure®, ProEnergetics,

Spain)
18.7 mg/kg

Handgrip-strength test, a
maximal-velocity serving

test, and an 8 × 15-m sprint
test.

Were carried out simulated
singles match (best of

3 sets).

Energy drink increased
handgrip force by

4.2% ± 7.2% (p = 0.03) in
both hands, the running

pace at high intensity
(46.7 ± 28.5 vs. 63.3 ± 27.7

km/h, p = 0.02), and the
number of sprints

(12.1 ± 1.7 vs. 13.2 ± 1.7,
p = 0.05) during the
simulated match.

Lara et al./Spain [65] 2015

Double-blind, placebo
controlled and

randomized
experimental

14
(Sprint swimmers) Male, 20 y (Fure®, ProEnergetics,

Spain)
18.7 mg/kg

CMJ, handgrip test, 50 m
simulated swimming

competition and swim
ergometer maximal

intensity test.

Energy drink increased the
height in the CMJ
(49.4 ± 5.3 cm vs.

50.9 ± 5.2 cm, p < 0.05),
maximal force during the

handgrip test with the right
hand (481 ± 49 vs. 498 ± 43,

p < 0.05).
Energy drink reduced the

time needed to complete the
50 m simulated swimming
competition (27.8 ± 3.4 s vs.
27.5 ± 3.2 s, p < 0.05) and it
increased peak power (273
± 55 vs. 303 ± 49, p < 0.05).
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Table 1. Cont.

Statistically Significant Positive Association

First Author/Country/ Year Study Design Sample (n) Gender/Age/Mean Age Caffeine Dosage Taurine Dosage Exercise Performance Test Result

Pérez-López
et al./Spain [64] 2015

Double-blind, placebo
controlled and

randomized
experimental

13
(Elite volleyball) Female, 25 ± 5 y (Fure®, ProEnergetics,

Spain)
18.7 mg/kg

Standardized heating and
performed standing spike,
jumping spike, spike jump,

blocking jump, SJ, CMJ,
manual dynamometry, and

agility t-test.

Energy drink increased the
ball velocity (19.2 ± 2.1 m/s

vs. 19.7 ± 1.9 m/s,
p = 0.023), jumping spike

(17.9 ± 2.2 m/s vs.
18.8 ± 2.2 m/s, p = 0.038)
and jump height in the SJ

(28.1 ± 3.2 cm vs.
29.4 ± 3.6 cm, p = 0.028),
CMJ (32.0 ± 4.6 cm vs.

33.1 ± 4.5 cm, p = 0.018), SJ
(43.3 ± 4.7 cm vs.

44.4 ± 5.0 cm, p = 0.025),
and block jump

(35.2 ± 5.1 cm vs.
36.1 ± 5.1 cm, p = 0.044).

Quinlivan
et al./Australia [58] 2015 Double-blind,

crossover
11

(Cyclist and triathletes) Male, 31.6 ± 6.1 y
Red Bull® Energy

Drink contains caffeine
(80 mg)

Red Bull® Energy
Drink contains taurine

(1000 mg)

1 h cycling at 75% peak
power output

Red Bull® intake
significantly increased

sports performance
109 ± 153 s (2.8%, p = 0.039)
in comparison with placebo
120 ± 172 s (3.1%, p = 0.043).

Del Coso et al./Spain
[63] 2016

Double-blind, placebo
controlled and

randomized
experimental

13
(Field hockey players) Male, 23 ± 4 y (Fure®, ProEnergetics,

Spain)
18.7 mg/kg

2 × 25 min simulated field
hockey game (total distance,

distance high intensity,
distance low intensity and

sprints)

Energy drink reduced the
distance covered at

moderate-intensity running
(793 ± 135 and 712 ± 116,
respectively, p = 0.03), the

distance covered at
high-intensity running

(303 ± 67 m and 358 ± 117
m, p = 0.05) and sprinting

(85 ± 41 m and 117 ± 55 m,
respectively, p = 0.02) in

comparison with placebo.

Jacobson et al./the USA
[75] 2018

Randomized,
double-blind and

placebo-controlled
36

(Healthy volunteers) Both, 23 ± 2 y Energy drink with 240
mg of caffeine

Energy drink with 200
mg of taurine

3 separate trials of CMJ and
isolated forehand stroke
with 15 s rest intervals

The energy drink group
increased a significant

velocity (p = 0.05) and W for
the forehand stroke, but not

for the CMJ, regarding to
placebo..
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Table 1. Cont.

Statistically Significant Positive Association

First Author/Country/ Year Study Design Sample (n) Gender/Age/Mean Age Caffeine Dosage Taurine Dosage Exercise Performance Test Result

Astley et al./Brazil [72] 2018 Double-blind
cross-over randomized

15
(Resistance-trained

athletes)
Male, 21 ± 0.3 y

The energy drink with
soda water containing

caffeine (64 mg/200
mL)

The energy drink
containing taurine (800

mg/200 mL)

Maximum repetition test
(80% 1-RM) in bench press,

unilateral leg extension,
handgrip test, standing long

jump and repeated sprint
ability

Energy Drink intake
increased performance

compared to the placebo for
the number of repetitions in

the unilateral knee
extension test of the

dominant leg
(11.5 ± 0.9 reps vs.

9.5 ± 0.8 reps, p = 0.001) and
bench press (10.2 ± 0.4 reps
vs. 8.1 ± 0.5 reps, p = 0.01).

Increased isometric strength
in the hand-grip maximal

test in the right
(53.7 ± 1.5 kg vs.

47.7 ± 1.6 kg, p = 0.02) and
left hand (52.9 ± 1.5 kg vs.

45.9 ± 1.3 kg, p = 0.02).

Chtourou et al./France
[74] 2019

Randomized double
blind,

placebo-controlled,
counterbalanced and

crossover

19
(Physical-education

students)
Male, 21 ± 1 y

Red Bull® Energy
Drink contains

carbonated water,
caffeine (80 mg)

Red Bull® Energy
Drink contains taurine

(1000 mg)

During 60 min, the subjects
developed visual reaction

time, handgrip test and 30-s
Wingate

Energy drinks improves
peak and mean power

output, handgrip force, pre-
and post-exercise blood

glucose, blood pressure, and
vigor, correlated with

reduction of fatigue, anxiety
and anger.

Reductions in reaction times,
depression, confusion,

fatigue, anger, anxiety, RPE,
and affective load scores

were observed after energy
drink compared to placebo.

Energy drinks improves
physical performances and

reaction times with RPE,
affective load, and pre- and

post-exercise blood
glucose levels.

No statistically significant positive association

Umaña-Alvarado and
Moncada-

Jiménez/Costa Rica
[77]

2005 Double-blind and
randomized crossover

11
(Runners or triathletes) Male, 30 ± 11 y

The commercially
available ED provided

(for 100 mL) 32 mg/mL
of caffeine

The commercially
available ED provided

(for 100 mL) 400
mg/mL of taurine

Participants completed two
10 km cross country run

No significant differences
were found between mean

racing times; however,
ratings of perceived exertion

were significantly lower
when participants ingested
the energy drink vs placebo
(7.02 ± 1.21 vs.8.01 ± 0.75,

p < 0.05)
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Table 1. Cont.

Statistically Significant Positive Association

First Author/Country/ Year Study Design Sample (n) Gender/Age/Mean Age Caffeine Dosage Taurine Dosage Exercise Performance Test Result

Candow et al./Canada
[78] 2009

Double-blind,
crossover, repeated

measures
17

(University students) Both, 21 ± 4 y
Sugar-free Red Bull®

with 2 mg/kg of
caffeine

Sugar-free Red Bull®

with 25 mg/kg of
taurine

Run time-to-exhaustion at
80% VO2max treadmill test

No differences in run
time-to-exhaustion (Red

Bull®: 12.6 ± 3.8 min,
placebo: 11.8 ± 3.4 min),
perceived exertion (Red
Bull: 17.1 ± 2.0, placebo:

16.6 ± 1.8), or blood lactate
between groups

Dall’Agnol and
Souza/Brazil [79] 2009 Double-blind and

randomized crossover
22

(Healthy volunteers) Male, 26 ± 4 y Energy drink with 160
mg of caffeine

Energy drink with 2000
mg of taurine

Participants completed and
incremental test on

cycle-ergometer

There was an increase of 10
W with the administration
of the experimental drink,

without statistical
significance (342 ± 40.60 W

vs. 332.50 ± 56.83 W,
p > 0.05)

Hoffman et al./the
USA [83] 2009

Randomized
double-blind and

crossover

12
(Strength-power

athletes)
Male, 21 ± 1 y

Redline Extreme®

contained 158 mg of
caffeine

No taurine
Reaction test and Wingate

(20 s Wingate anaerobic
power test)

Significant difference in
reaction test was seen

between energy drink and
placebo in both average
number of targets struck
(55.8 ± 7.4 vs. 51.9 ± 7.4,

respectively) and percent of
targets struck (71.9 ± 10.5%

vs. 66.8 ± 10.9%,
respectively).

No significant differences
between trials were seen in

any anaerobic power
measure. Subjective feelings

of energy (3.5 ± 0.5 vs.
3.1 ± 0.5) and focus

(3.8 ± 0.5 vs. 3.3 ± 0.7) were
significantly higher during

energy drink compared
to placebo

Gwacham and
Wagner/the USA [12] 2012

Double-blind,
randomized and

crossover
20

(Football players) Male, 20 ± 2 y
AdvoCare Spark

energy drink contained
120 mg of caffeine

AdvoCare Spark
energy drink contained

200 mg of taurine

Sprint performance and
anaerobic power

Energy drink did not
significantly affect power
(3.84, p = 0.066) or sprint

time (3.06, p = 0.097). There
was a significant interaction
effect between caffeine use
and the beverage for sprint

times (4.62, p = 0.045), as
well as for anaerobic power
(5.40, p = 0.032), indicating a

confounding effect.

Abbreviations: 1-RM, one-repetition maximum; 15RJ, 15-s rebound jump test; b/min, beats/minute; BM, body mass; CAF, caffeine; CHO, carbohydrate, CI, confidence interval, CMJ, Countermovement jump;
ED, energy drink, ES, effect size; Kg, kilogram; km/h, kilometres/hour; L, liter; L/min; liter/minute; m, meters; m/s, meters/second, mg, milligram; mg/kg, milligram/kilogram, mg/L, milligram/liter, mL,
milliliters; min, minutes; mmol/L, millimole/liter; MVC, maximal voluntary contraction, N, Newton, PLA, placebo; RPE, rating of perceived exertions; seconds; SJ, squat jump, VO2max, maximal oxygen
consumption; W, Watts; y, years.
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3. Energy Drinks and Cardiovascular Risk Factors

Coffee and caffeine influence the cardiovascular system through their positive in-
otropic and chronotropic effects, affecting the central nervous system by stimulating
locomotor activity and anxiogenic effects. This underlines the need to examine whether
these effects may be harmful to health, particularly in the world of sport [86].

Reissig et al. [87] have described several effects linked to excessive caffeine consump-
tion. Over a lifetime, people should only consume large amounts of caffeine for short
periods, but this sort of consumption is more common on a regular basis. Furthermore,
some people use caffeine to improve their concentration and memory or enhance their
physical performance and, in some cases, could develop a dependence syndrome. Caffeine
use transforms into “abuse” when individuals develop an uncontrolled need to consume
caffeine, even if it is harmful to their health; it transforms into “dependence” when mecha-
nisms of tolerance and abstinence develop, and certain chronic usage habits make caffeine
even more damaging. Along with caffeine dependence, subjects who consume extremely
high doses continuously for years, ignoring all safety concerns by combining two or more
sources of caffeine, for example, coffee and energy drinks, without any evidence that such
combinations provide any desirable benefits [86].

Given the significant number of incidents reported among energy drink consumers,
it seems pertinent to summarize the available data and establish causal links between
the use of these products and the development of health complications. Occasional to
moderate consumption of these drinks seems to pose little risk to healthy adults. However,
excessive consumption related to their combination with drugs in amounts that far exceed
the manufacturers’ recommended intakes could induce negative consequences for human
health, especially among subjects with cardiovascular disorders [88].

The risk factors may increase the rate of adverse events, particularly cardiovascular
events in individuals who consume energy drinks, due to underlying conditions [37], and
they may suffer a caffeine overdose, as has been reported in the literature [22,88–91]. A
lethal dose of caffeine has been noted as 5 g, which is equivalent to approximately 42 cups
of coffee with 120 mg caffeine/cup [90]. Sepkowitz et al. [92] suggested that the acute
intake of 3 g of caffeine can provoke significant side effects, which may even be fatal, with
arrhythmia being the most common factor producing death by this lethal dose. A review
by Nawrot et al. [93] stated that a healthy adult can consume up to 400 mg of caffeine/day
(equivalent to 6 mg/kg in individuals weighing less than 65 kg) without being associated
with any adverse effects.

The combined use of caffeine and ephedra has been reported also as a risk factor
for cardiovascular problems [94]. There is evidence to suggest that the short-term use
of ephedra, with caffeine, promotes short-term weight loss. One example is the meta-
analysis by Shekelle et al. [95] in which subjects who took caffeine and ephedrine lost
around 0.9 kg/month more over a short period than the placebo group (p < 0.01), no
regarding long-term weight loss to support the use of ephedra for athletic performance
(p > 0.05). Ephedra is known to be ergogenic during anaerobic exercises, such as bench
presses (p < 0.05), especially when taken with caffeine; however, a point to consider is that
systolic blood pressure increased significantly before both tests in subjects treated with
ephedrine compared to the other tests [96]. A clinical trial by Haller et al. [97] carried
out in 16 healthy subjects showed an increment in the stimulating and metabolic effects
of combined ephedrine (25 mg) and caffeine (200 mg) as they increased systolic blood
pressure (maximum difference of 11.7 ± 9.4 mmHg compared to placebo; p = 0.0005) and
heart rate (maximum difference of 5.9 ± 8.8 beats/min; p = 0.001). The study demonstrated
that, individually, ephedrine and caffeine had modest effects, but in combination, they
produced significant cardiovascular, metabolic, and hormonal responses at moderate doses,
data which should be taken into account to avoid such risks when indicating the dose to
produce the desired ergogenic effect.
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4. Energy Drinks, Sport Performance, and Genetics

The main enzyme responsible for caffeine metabolism is cytochrome P450 1A2 (CYP1A2),
more specifically polymorphism c.-163A>C (rs762551), which corresponds to approxi-
mately 95% of caffeine clearance known to date, being known that caffeine metabolism is
also carried out by xanthine oxidase and N-acetyltransferase 2 (NAT2) [86,98].

What is more, polymorphism c.1976T>C (rs5751876) in gene ADORA2A (adeno-
sine A2A receptor) has been shown to modulate sleep-wake activity [99], contribute to
individual sensitivity to caffeine’s effects on sleep [100], increasing susceptibility to caffeine-
induced anxiety [101,102].

In the case of taurine, its effects have been confirmed in animal models. For example,
an animal model was used to study the effects of taurine administration on antidepressant-
like behaviors in rats and depression-related signal transduction in the hippocampus [103].
Similarly, taurine and β-alanine supplementation were found to be viable therapeutic
strategies to improve the fatigue resistance of dystrophic skeletal muscle in mice [104].

Several studies have shown that the rate of caffeine metabolism may have implications
for athletic performance, but findings are still currently ambiguous [29,105–107]. Some pub-
lications and certain sports present ergogenic effects that may help improve performance.
For example, Guest et al. [29] conducted 10 km cycling time trials and found that 2 mg/kg
of caffeine reduced times by 4.8% (0.8 min) in the AA genotype compared to placebo
(17.8 ± 0.4 vs. 17.0 ± 0.3 min; p = 0.0005) and 6.8% (1.2 min) at 4 mg/kg (17.8 ± 0.4 vs. 16.6
± 0.3 min; p < 0.0001). However, they did not observe any differences between 2 and 4
mg/kg of caffeine, so the authors suggested that the consumption of 2 and 4 mg/kg im-
proved times in 10 km time trial, but only in AA genotype subjects, while it had no effect on
the AC genotype and reduced performance at a dose of 4 mg/kg in the CC genotype. A ran-
domized study by Pataky et al. [107] reported that, besides the genotype shown by CYPA12,
the effects of caffeine were associated with the circadian rhythm in a 3 km cycling test. The
study revealed that performance was not only influenced by genetic factors at higher doses
of 6 mg/kg, along with early activity before 10 a.m., since AC heterozygotes experienced
greater performance gains with caffeine ingestion than AA homozygotes, albeit without
producing statistically significant results (p = 0.12). This shows that factors other than
genetic (genotype) and circadian (time of day) parameters affect the ergogenic value of
caffeine consumption and may facilitate the more personalized prescription of caffeine
ingestion strategies in order to maximize performance. In a randomized study conducted
by Womack et al. [105] among trained cyclists administered caffeine or placebo before
completing a 40 km time trial, the authors observed a greater reduction in times among
caffeine-doped AA homozygotes (4.9%; placebo: 76.1 ± 5.8 min; caffeine: 72.4 ± 4.2 min)
compared to C-allele carriers (1.8%; placebo: 72.2 ± 4.2 min; caffeine: 70.9 ± 4.3 min)
(p < 0.05). These results suggest that homozygous individuals for the A allele of this
polymorphism can experience a greater ergogenic effect after ingesting caffeine.

Continuing with more cycling tests in endurance sports, a recent double-blind, crossover
study performed by Carswell et al. [108] with dose at 3 mg/kg of caffeine, reported an
increase in the cognitive effects for “fast” CYP1A2 metabolizers against “slow” metaboliz-
ers with respect to reaction times during exercise (−18 ± 9 vs. −1.0 ± 11 ms), fastest 10%
reaction time at rest (−18 ± 11 vs. −3 ± 15 ms) and lapses at rest (−3.8 ± 2.7 vs. +0.4 ± 0.9)
(p < 0.05), while there were no differences among the ADORA2A genotypes (p > 0.05).

Regarding resistance-trained athletes, they can experience acute improvements in
resistance exercise, jumping and sprinting performance after consuming caffeine in con-
junction with power tests, as shown in the study by Grgic et al. [28] who examined the acute
effect of caffeine (3 mg/kg of body mass) compared to placebo. The authors found caffeine
enhanced movement velocity and power output across all loads (effect size (ES): 0.20–0.61;
p < 0.05); the quality and quantity of repetitions completed at 85% of one-repetition max-
imum (ES: 0.27–0.85; p < 0.001); vertical jump height (ES: 0.15; p = 0.017); and power
output in the Wingate test (ES: 0.33–0.44; p < 0.05). However, they did not find a significant
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interaction effect between CYP1A2 genotype and caffeine intake (p-values ranged from
0.094 to 0.994) in the performance results analyzed in this group of athletes.

When analyzing the effects of polymorphism in CYP1A2 and ADORA2A on perfor-
mance, we start to observe contradictions in team sports, such as the recent study among
professional handball players by Muñoz et al. [19], showing that the ergogenic response to
acute caffeine intake was not modulated by CYP1A2 or ADORA2A genotypes, with just
one genotype x treatment interaction for ball throwing from 7 m (p = 0.037), indicating that
the ergogenic effect of caffeine in this test was greater in CYP1A2 AA homozygotes than
in C-allele carriers. There were no genotype x treatment interactions for either CYP1A2
or ADORA2A in the remaining variables. Collectively, caffeine increased CMJ height,
performance in the sprint velocity test and ball throwing velocity from 9 m (2.8–4.3%;
p = 0.001–0.022; effect size: 0.17–0.31) as a whole group. Similarly, in elite basketball play-
ers, Puente et al. [30] found that polymorphism CYP1A2 c.-163C>A had a minimal effect
on ergogenic derived from consuming a moderate dose of caffeine (3 mg/kg) compared
to placebo. Caffeine only increased Abalakov jump height by a mean of 2.9 ± 3.6% in AA
homozygotes (p = 0.03), while this result did not reach statistical significance for C-allele
carriers (2.3 ± 6.8%; p = 0.33), it did not affect sprint time in the CODAT test in either geno-
type, but it increased the number of impacts during a simulated game in AA homozygotes
(4.1 ± 5.3%; p = 0.02) and C-allele carriers (3.3 ± 3.2%; p = 0.01).

Another randomized study with adolescents (15 ± 2 years) published by Spineli et al. [109]
found that a caffeine dose of 6 mg/kg increased number of sit-ups (35 ± 8 vs. 37 ± 9), push-
ups (24 ± 11 vs. 26 ± 11) and distance in the Yo-Yo IR1 test (903.2 ± 325.7 vs. 1010.4 ± 378.9 m)
(all p < 0.05), but did not influence handgrip strength (33.7 ± 8.7 vs. 35.1 ± 8.9 kgf), CMJ
(47.9 ± 13.8 vs. 49.3 ± 12.6 cm), spike jump height (52.9 ± 14.5 vs. 54.2 ± 13.6 cm) and time
in agility test (15.9 ± 1.3 vs. 15.8 ± 1.1 s) (all p > 0.05). The authors concluded that caffeine
improves muscular endurance and aerobic performance in adolescent athletes, regardless
of their CYP1A2 c.-163 C>A genotype. However, Salinero et al. conducted a randomized
pilot study [106] in a healthy population and reported that CYP1A2 variations did not modify
the benefits or disadvantages of caffeine during exercise at a dose of 3 mg/kg, as caffeine
consumption increased peak power (667 ± 137 vs. 682 ± 140 W; p = 0.008) and mean power
during the Wingate test (518 ± 111 vs. 527 ± 111 W; p < 0.001) without any differences between
AA homozygotes and C-allele carriers (p > 0.05). The reaction times were similar between
caffeine and placebo (269 ± 71 vs. 276 ± 31 ms; p = 0.681), again without any differences
between AA homozygotes and C-allele carriers (p > 0.05). A recent randomized study by
Glaister et al. [110] concluded that cyclists who took 5 mg/kg of caffeine achieved a significant
time reduction in a time trial (placebo: 30.8 ± 2.3 min; caffeine: 29.7 ± 1.8 min; p < 0.05), but
there was no effect associated with the genotype for either CYP1A2 or ADORA2A. During
submaximal exercise, compared to placebo, caffeine reduced mean heart rate by 2.9 ± 3.7 bpm
(p < 0.05), with effects that dissipated as exercise intensity increased, although there was no
relation to genotype.

One study report on caffeine consumption derived from energy drinks in cyclists,
presented by Davenport et al. [111]. They found that a 200 mg supplement of caffeine
35 min before exercise seemed optimal to improve performance in a time trial, reducing
the perception of effort in which the individuals with genotype AA of CYP1A2.

Future studies with larger samples are required to fully elucidate this area of research.
Table 2 shows the detailed results regarding the correlation between caffeine consumption
and its association with genetics.
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Table 2. Characteristics of studies referring to the association between energy drinks and genetics.

Statistically Significant Positive Association

First Author/Country/ Year Study Design Sample (n) Gender/Age/Mean Age Caffeine dosage Exercise Performance test Result

Womack et al./the USA
[105] 2012 Randomly, double-blind,

placebo-controlled trial
35

(Trained cyclist) Male, 25.0 ± 7.3 y 6 mg/Kg BM of anhydrous
caffeine or a placebo

Simulated 40-km time trials
on a cycle ergometer

Caffeine supplementation reduced
40-kilometre time (p < 0.05) in AA

homozygotes (4.9%;
caffeine = 72.4 ± 4.2 min,

placebo = 76.1 ± 5.8 min) compared
to C allele carriers (1.8%;
caffeine = 70.9 ± 4.3 min,
placebo = 72.2 ± 4.2 min)

Guest et al./Canada [29] 2018
Split-plot randomized,

double-blinded,
placebo-controlled

101
(Competitive athletes) Male, 25 ±4 y 0–2–4 mg/Kg caffeine 10-km cycling time trial

AA genotype decreased time 4.8% at
2 mg/Kg (17.0 ± 0.3 vs.

17.8 ± 0.4 min, p = 0.0005) and 6.8%
at 4 mg/Kg (16.6 ± 0.3 vs.

17.8 ± 0.4 min, p < 0.0001). CC
genotype, 4 mg/Kg increased

cycling time 13.7% (20.8 ± 0.8 vs.
18.3 ± 0.5 min, p = 0.04). Among

AA/CC with the AC genotype time
decreased 4.8% at 2 mg/Kg

(17.0 ± 0.3 vs. 17.8 ± 0.4 min,
p = 0.0005) and 6.8% at 4 mg/Kg

(16.6 ± 0.3 vs. 17.8 ± 0.4 min,
p < 0.0001).

Significant (p < 0.0001) caffeine-gene
interaction was observed. 4 mg/Kg
caffeine decreased cycling time by
3% versus placebo (17.6 ± 0.1 vs.

18.1 ± 0.1 min, p = 0.01)

Puente et al./Spain [30] 2018 Case-control ecological
experimental

19
(Elite basketball players) Both, 26.7 ± 3.5 y 3 mg/Kg of caffeine

Abalakov jump test followed
by the CODAT test. 20-min
simulated basketball game

Caffeine intake increased Abalakov
jump height by a mean of 2.9 ± 3.6%
in AA homozygotes (p = 0.03) while

this effect did not reach statistical
significance for C-allele carriers

(2.3 ± 6.8%, p = 0.33).
The number of impacts during the
simulated game also increased in

both AA homozygotes (4.1 ± 5.3%,
p = 0.02) and C-allele carriers

(3.3 ± 3.2%, p = 0.01).

Carswell et al./the UK
[108] 2020

Double-blind,
placebo-controlled

crossover
18

(Health adults) Both, 24 ± 4 y 3 mg/Kg of caffeine

15-min cycling time trial and
cognitive performance PVT

pre, 50 and 95-min
post-supplementation)

Caffeine enhanced exercise
performance (p < 0.001), but effects

were not different between
participants with ADORA2A ‘high
metabolizers’ vs. ‘low’ sensitivity

genotype (+6.4 ± 5.8% vs.
+8.2 ± 6.8%), or CYP1A2 ‘fast

metabolizers’ vs. ‘slow’ metabolism
genotype (+7.2 ± 5.9 vs. +7.0± 6.7%,

p > 0.05)
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Table 2. Cont.

Statistically Significant Positive Association

First Author/Country/ Year Study Design Sample (n) Gender/Age/Mean Age Caffeine dosage Exercise Performance test Result

Grgic et al./Australia [28] 2020 Double-blind, randomized,
crossover

22
(Resistance-trained

participants)

Male, 27.0 ± 5.6 AA group;
29.8 ± 3.6 CT/TT group 3 mg/Kg of caffeine

Movement velocity, power
output in the bench press,
quality, and quantity of

performed repetitions in the
bench press exercise, vertical

jump height in a CMJ test
and power output in a

Wingate test

Caffeine ingestion enhanced
movement velocity and power

output across all loads (ES: 0.20–0.61,
p < 0.05, the quality and quantity of
performed repetitions with 85% of

1RM (ES: 0.27–0.85, p < 0.001 for all),
vertical jump height (ES: 0.15,

p = 0.017) and power output in the
Wingate test (ES: 0.33–0.44, p < 0.05

for all genotypes)

Spineli et al./Brazil [109] 2020 Randomized, crossover
and double-blind

100
(Adolescents) Both, 15 ± 2 y 6 mg/Kg of caffeine

Handgrip strength, vertical
jumps, agility test, sit-ups,

push-up, and the Yo-Yo
intermittent recovery test

level 1 (Yo-Yo IR1).

Caffeine enhanced sit-up repetitions
(CAF = 37 ± 9; PLA = 35 ± 8) and

push-up repetitions (CAF = 26 ± 11;
PLA = 24 ± 11) and increased

distance covered in Yo-Yo IR1 test
(CAF = 1010.4 ± 378.9 m;

PLA = 903.2 ± 325.7 m) (p < 0.05)

No statistically significant association

Pataky et al./the USA [107] 2016

Randomly
counterbalanced,

double-blind,
placebo-controlled

38
(Recreational trained

cyclists)
Male, 21 ±1 y

6 mg/Kg of caffeine
Additionally, 25 mL of

1.14% caffeine or placebo
solution were mouth

rinsed before each time
trial

3-km simulated time trials

No association in endurance
performance in CYP1A A genotypes

vs placebo, but favoring AC
genotype (5.1% ± 6.1%, p = 0.12) vs

placebo

Salinero et al./Spain [106] 2017 Double-blind randomized
experimental

21
(Healthy participants) Both, 29.3 ± 7.7 y 3 mg/Kg of caffeine 30 s Wingate test, visual

attention, and side effects

No differences in reaction times
between caffeine and placebo

conditions (276 ± 31 milliseconds vs.
269 ± 71 milliseconds, p = 0.681)
between AA homozygotes and

C-allele carriers.
31.3% of the C-allele carriers

reported increased nervousness after
caffeine ingestion, while none of the

AA homozygotes reported them.
Caffeine ingestion increased peak

power (682 ± 140 W vs.
667 ± 137 W, p = 0.008) and mean

power during the Wingate test
(527 ± 111 W vs. 518 ± 111 W,

p < 0.001)

Davenport et al./the UK
[111] 2020

Double-blind,
four-treatment, randomly,

crossover
13

(Well-trained cyclists) Both, 28 ± 2 y
200 mg of caffeine, 1600

mg of β-alanine and 1000
mg quercetin

30 min of steady-state
exercise on a cycle ergometer

followed by a 15-min
time trial

Caffeine supplementation appeared
optimal for improved performance
in a subsequent fatiguing time trial

without statistical differences
(p > 0.05)



Nutrients 2021, 13, 715 19 of 28

Table 2. Cont.

Statistically Significant Positive Association

First Author/Country/ Year Study Design Sample (n) Gender/Age/Mean Age Caffeine dosage Exercise Performance test Result

Muñoz et al./Spain [19] 2020
Double-blind,

placebo-controlled,
crossover

31
(Professional handball

players)
Both, 23.7 ± 2.8 y 3 mg/Kg of caffeine

CMJ test, a sprint test, an
agility test, an isometric

handgrip test, and several
ball throws

There were no genotype x treatment
interactions for CYP1A2 or for

ADORA2A (p < 0.05), only for the
ball throwing from 7 m (p = 0.037),

higher in CYP1A2 AA homozygotes
than in C-allele carriers

Glaister et al./the UK [110] 2020 Randomized, double-blind,
placebo controlled

66
(Trained cyclist) Male, 41.9 ± 8.6 y

5 mg/Kg of BM of caffeine
or placebo one hour before

performance test

Incremental cycling test,
followed by ± 30 min of

time-trial

Caffeine reduced the time to
complete the time-trial, without

effect of genotype (caffeine:
29.7 ± 1.8 min; placebo:

30.8 ± 2.3 min (p < 0.05));. During
submaximal exercise, caffeine

reduced mean heart rate by
2.9 ± 3.7 b/min, and also reduced

perceived exertion by 0.5 ± 0.8, and
increased blood lactate by

0.29 ± 0.42 mmol/L, respiratory
exchange ratio by 0.013 ± 0.032, and

minute ventilation by
3.1 ± 6.8 L/min.

Abbreviations: 1-RM, one-repetition maximum; ADORA2A, Adenosine A2a Receptor; b/min, beats/minute; BM, body mass; CAF, caffeine; CMJ, Countermovement jump; CYP1A2, cytochrome P450 1A2;
CODAT, Change-of-Direction and Acceleration Test; ES, effect size; Kg, kilogram; L/min; liter/minute; m, meters; mg, milligram; mL, milliliters; min, minutes; mmol/L, millimole/liter; PVT, psychomotor
vigilance test; PLA, placebo; VO2max, maximal oxygen consumption; W, Watts; y, years.



Nutrients 2021, 13, 715 20 of 28

5. Discussion

The results of the studies analyzed herein are ambiguous or even contradictory. This
discrepancy is mainly due to the influence of genetics on the ergogenic effects of caffeine,
particularly when the correlation between caffeine and athletic performance appears to be
more evident and validated in the scientific literature. Due to the lack of studies, there are
still some confounding factors which may contribute to these discrepancies in the results.

5.1. Energy Drinks and Relationship in Sports Performance

Caffeine is the main component of energy drinks, as mentioned previously. As such,
to understand the effects of energy drinks we need to understand the mechanisms that
this phytochemical produces in the human body. Caffeine is absorbed rapidly, reaching its
peak plasma concentration in 30–120 min [112]. Its absorption rate is regulated by various
factors such as the pharmacokinetics in the function of cytochrome activity, mainly those
which metabolize caffeine in the liver and above all enzyme CYP1A2. In pharmacological
terms, it has been shown that consuming more than 6 mg of caffeine per kg of body mass
seems to saturate hepatic caffeine metabolism, as stronger effects are not observed when
greater amounts are ingested [113].

The consumption of caffeine stimulates the central nervous system through the block-
ade of peripheral and cerebral adenosine receptors, thus generating a delay in the onset of
fatigue [114]. Caffeine also stimulates motor neurons by increasing their recruitment [115].
Its effect is also associated with an increased release of Ca2+ stored in intracellular neuronal
reserves, triggering a range of important neuronal processes [116]. Caffeine enhances the
mobilization of glycerol and free acids in blood [117], thereby increasing fat oxidation dur-
ing exercise at low and moderate loads [118]. Furthermore, caffeine stimulates adrenaline
(epinephrine) secretion. This response, together with all those mentioned above, produces a
series of metabolic changes associated with ergogenic effects that illustrate its consumption
in athletic performance [16].

With respect to caffeine’s different mechanisms of action once ingested by humans, its
use is considered an ergogenic aid to increase sporting performance [119] and improve cog-
nitive aspects such as concentration, alertness and reaction time [120]. In addition, energy
drinks possess effective doses that trigger these stimulating consequences in the human
body, so it is not surprising that the consumption of such drinks and their inclusion of
taurine and other phytochemicals exhibits a positive correlation with physical performance
in many different sporting movements, disciplines and sports (Table 1).

On the other hand, we also found several studies that did not observe a positive
association between the consumption of energy drinks combining caffeine and taurine and
improved athletic performance, even with the risk they may pose to the nervous system
of those who consume them [121]. The reasons why these studies did not evidence any
positive associations with increased physical performance could be because their subjects
were already habituated to caffeine consumption [78,122], because of the subjects’ high
level of training, or due to a lack of statistical power arising from small sample sizes.

A systematic review and meta-analysis [9] were published in 2017 to study the er-
gogenic effects of energy drinks and different expressions of sporting performance. The
authors concluded that the analyzed literature demonstrated a significant improvement in
athletic performance in tests of muscle strength, jumps, resistance exercises and specific
actions performed in distinct sporting disciplines and that drinks which contained taurine
significantly increased these effects. They also highlighted the need for more research into
the area and more control in the testing protocols. This review confirms the data published
in the literature and completes the findings reported to date.

5.2. Energy Drinks and Relationship in Cardiovascular Risk

Adolescents, young adults and above all athletes are drawn towards energy drinks
because of their perceived benefits. However, these individuals are often unaware of the
harmful effects associated with these drinks. The body gets used to consuming these drinks
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in order to function and maintain a level of performance [60,84]. Although a plethora of
studies have shown that energy drinks are more effective at enhancing cognitive function or
increasing energy levels compared to traditional soft drinks, their excessive consumption
can be detrimental to both an individual’s athletic performance and their health [85].
The use of energy drinks, coffee and other caffeinated drinks as a substitute for sleep
in relation to school, sporting or day-to-day duties has developed into a regular habit
among adolescents and young adults, giving rise to particular concern about the risk
such consumption could imply for the population’s health [84]. Numerous studies have
evidenced the risks of cardiovascular diseases that derive from constant dependence in
an otherwise healthy population [86,87], including hypertension, tachycardia and even
sudden death from lethal doses of 5 g, equivalent to approximately 42 cups of coffee with
120 mg caffeine/cup [90], or just 3 g [92].

The ergogenic dose of caffeine necessary to improve neuromuscular performance
during sport depends on the magnitude and duration of the activity. Researchers have
shown that 3 mg/kg is enough to improve muscle actions in strength and endurance
sports, yet a higher dose (9 mg/kg) is associated with the appearance of unwanted side
effects [123]. At the same time, a healthy adult can consume up to 400 mg of caffeine/day
(equivalent to 6 mg/kg in individuals weighing less than 65 kg) without producing any
adverse effects [93]. Studies which have reported changes in heart rate and blood pressure
involved the supplementation of caffeine with ephedrine in synergy, such as the works of
Haller et al. [97] and Shekelle et al. [95], which observed increases in heart rate and blood
pressure and weight loss, respectively, but at moderate doses (200 mg of caffeine and 25 mg
of ephedrine) and without the participants reporting any adverse events. Similar results
were found in the study of Nowak et al. [124], in which, after ingesting energy drinks
containing 80 mg of caffeine, glucose, taurine, vitamins and other ingredients glucuronide,
acute intake of energy drinks can increase diastolic blood pressure by more than 8%, blood
sugar and discomfort level of healthy young people. Besides, Hajsadeghi et al. [125]
confirmed that drinking energy drinks (caffeinated energy drinks) before and at a specific
time point of 4 h may lead to decreased heart rate and more frequent ST-segment and
T-wave (ST-T) changes in healthy young people.

In addition, Red Bull® has the same effect on blood pressure as a considerable amount
of caffeine, this increase occurs through different hemodynamic pathways. Reed Bull
mainly affects cardiac parameters, while caffeine mainly causes vascular effects. In addition,
the auxiliary components of Red Bull® (taurine, glucuronide, and group B vitamins) do
not seem to affect these pathways [126].

To date, no studies have recorded any severe adverse events in athletes related to
energy drink use, with the doses that are currently used by this population ideal for
enhancing sporting performance without provoking harm thanks to the control exerted by
the WADA [34].

5.3. Energy Drinks, Genetics, and the Relationship with Athletic Performance; Future Prospects

The influence of the genes CYP1A2 and ADORA2A on the body’s response to caffeine
has been discussed in detail and there is a general overview in the current literature. The
role of these two genes can explain a significant proportion of the interindividual variation
in performance following caffeine ingestion reported in studies [26]. By determining the
extent to which these genes and any new polymorphisms discovered in the future can
moderate an individual’s response to caffeine during exercise, we will be able to guarantee
that caffeine supplementation programs can be tailored to each athlete in order to maximize
the potential ergogenic effect of energy drinks [27].

Several randomized, placebo-controlled studies have published data that feature sub-
jects’ inhomogeneous groups in terms of sporting level, age and sex for both the caffeine
and placebo cohorts [19,28–30,105–110]. Most studies reviewed in the present work that
examined the link between genetics and athletic performance in strength and endurance
events observed that polymorphism c.-163C>A (rs762551) in gene CYP1A2 presents an
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association with improved performance, while they did not observe any ergogenic effects
in relation to gene ADORA2A. It has been shown that the most effective dose to improve
sports performance in association with genetics is around 3 mg/kg of body weight (equiv-
alent to 200 mg of caffeine per energy drink), as this enhances endurance performance
in cycling [29], reduces reaction times and improves cognitive performance [108], and
augments power [28], as observed in team sports, such as handball [19] and basketball [30],
where improvements in various tests were reported in association with polymorphism
of CYP1A2. In turn, a dose of 5–6 mg/kg of body weight (equivalent to 400–500 mg of
caffeine), particularly in cycling [105,107,110], is known to prolong the ergogenic effects in
certain aspects of endurance events (cycling, athletics, triathlon) and therefore sustain im-
proved performance. Furthermore, genetic factors are known to maintain this performance
in competitions, data which should be studied in these events in the future, as explained
by Grgic et al. [31]. In their review of the ergogenic effects of caffeine associated with
polymorphism in CYP1A2, the authors found few studies that reported a better response
to caffeine in terms of sporting performance among the AA genotype subjects, observing
that variations in this gene can modular the ergogenic effects of caffeine, but differences
between genotypes were small, inconsistent or limited to specific exercises. Grgic’s findings
agree with those presented in our review, highlighting areas for future research in order to
amplify the information on genetics and improved athletic performance with the use of
energy drinks.

Polymorphism c.1976T>C (rs5751876) in gene ADORA2A has been shown to modulate
sleep–wake activity [99,100]. Yet when studied in conjunction with a polymorphism in
CYP1A2 the results did not reveal a clear relationship with performance, concentration or
states of nervousness, as indicated by Carswell et al. [108]. While self-reported insomnia,
diuresis and excessive activity was documented in handball players with TT genotype [19]
and an ergogenic response to caffeine consumption has recently been observed in C-allele
carriers [127].

Successive studies with larger sample sizes should be conducted to address the
discrepancies between genetic condition and sports performance that have been exposed
in the scientific literature.

According to the recent review of caffeine in the context of athletic performance
published by Martins et al. [128] improvements in performance were noted at doses of
2–9 mg/kg. This is notable because the physiological mechanisms that are involved when
the dose is increased remain unclear, since the subject’s regular consumption and the time
of day when the caffeine is taken may have positive or negative effects on the ensuing
benefits. Recent findings show that caffeine can enhance or diminish performance during
exercise. These antagonistic responses may even occur when using the same dose and in
individuals with the same characteristics. These effects are subdivided into those linked
to the caffeine itself, daily consumption habits, physiological factors and genetic factors.
A range of hypotheses has been put forward that indicate the genetic influences related
to polymorphisms in the genes CYP1A2 and ADORA2A. Current evidence suggests that
CYP1A2 only has a strong influence in endurance activities, where the TT genotype has
greater benefits upon increasing the caffeine dose, while individuals of CC genotype suffer
a decline in performance with the use of caffeine. On the other hand, there do not appear
to be any differences between responses with respect to the polymorphism in CPY1A2 in
intermittent and anaerobic exercises, but only a few studies with limited participants have
been completed, which underlines this is an interesting area for future studies. Another
potential focal point where there is a lack of results is the caffeine ingestion time before
carrying out short tests [129], with the ergogenic effect of caffeine known to develop 1–3 h
after consumption, as highlighted by the present review and in accordance with the 2002
study by Bell et al. [130]. It is important to note that there are only ambiguous results in the
current literature concerning physical characteristics (training, sex, etc.), caffeine abstinence
and the possible impact of polymorphism in gene ADORA2A. All the factors in this review
should be taken into account when designing studies that aim to improve the current body
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of research, as described in this section on future prospects for an improved understanding
of the effects of caffeine, its ergogenic effects and the role of genetics.

Year after year, new polymorphisms are discovered to have a bearing on different
aspects of athletic performance, with as many as 120 polymorphisms known to hold a direct
relationship with the performance [131]. According to a recent review by Joyner [132],
we are still a long way from developing a complete understanding of genetics’ influence
on sporting performance, and in the future, we might be able to model it using field
tests, which, with more variables, could be highly predictive of an athlete’s performance.
In this context, a recent study of interest is that of Varillas et al. [133], which looked at
another cytochrome P450 gene (CYP2D6) and variants in the glutathione S-transferase
family (GSTM, GSTP, and GSTP), as it found “favorable” frequencies in endurance athletes
compared to a control population using genetic scoring, as Joyner explains, to determine
which are the most useful in terms of predicting performance. Such information on these
hepatic variables would be of interest to promote genetic scoring in various genes involved
in hepatic metabolism and which affect caffeine’s action—such as CYP1A2, ADORA2A,
CYP2D6, and the glutathione S-transferase (GST) family—to expand on current knowledge
and help resolve some of the contrasting results in the literature. Genetic scoring could
represent a more powerful tool and means of discovering the weight of each polymorphism
on the metabolism of caffeine absorbed from energy drinks and its ergogenic effects in
endurance sports and strength tests [31].

6. Conclusions

Energy drinks mainly comprised of caffeine and taurine demonstrate a positive effect
in terms of enhancing sporting performance, although several studies did not report any
such effect. The exact mechanism of caffeine’s ergogenic effect during exercise is still
relatively unknown; the same is true for the risks its consumption may pose to the health of
athletes, as it can provoke multifactorial adverse events. The field has received insufficient
attention and requires further investigation to answer all of these questions. Nevertheless,
the increase in athletic performance may also be related to alterations in perceived effort,
reaction time, cognition and/or mood. There is a dearth of studies that confirm caffeine’s
effectiveness in sports such as sprinting, athletics, football, tennis, handball, and hockey,
plus a lack of research on the role of genetics, where the results appear to contradict each
other. Therefore, we need to study more cytochromes involved in caffeine metabolism
to open new lines in our understanding of the association between genetics and athletic
performance following the consumption of caffeine and, in turn, energy drinks.
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