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Abstract: The aim of this systematic review and meta-analysis is to assess the effectiveness of
probiotics in inducing body weight loss in patients with overweight or obesity with related metabolic
diseases. The research was carried out on PubMed and Scopus, focusing on studies reporting the
effect on anthropometric measures (weight, body mass Index (BMI), waist circumference (WC), and
hip circumference (HC) after administration of various probiotic strains compared to placebo. Twenty
randomized controlled trials, that included 1411 patients, were considered. The meta-analyzed
mean differences (MD) for random effects showed no significant decrease in body weight after
probiotic supplementation (−0.26 kg [−075, 0.23], p = 0.30), while a significant BMI decrease was
found (−0.73 kg/m2 [−1.31, −0.16], p = 0.01). For WC and HC, the meta-analyzed MD for random
effects showed a significant decrease (WC: −0.71 cm [−1.24; −0.19], p = 0.008 and HC: −0.73 cm
[−1.16; −0.30], p = 0.0008). The risk of bias was also evaluated considering a high risk and a low risk
according to PRISMA criteria. In conclusion, the results of this meta-analysis highlight a positive
trend of probiotics supplementation on the amelioration of anthropometric measures of overweight
and obese patients with related metabolic diseases. However, further research is needed before
recommending the use of probiotics as a therapeutic strategy for these patients. The focus of the
future research should be to evaluate the efficacy of different probiotic strains, the quantities to be
administered, and the duration of the intervention.

Keywords: probiotics; weight loss; obesity; body weight

1. Introduction

The role of gut microbiota in metabolic disorders is increasingly considered. Although
microbiota is influenced by different factors, diet seems to be the major contributor of its
diversity [1]. Both the type of diet and its caloric content are able to modify the relative
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proportion of gut microbes (increase of Firmicutes with parallel decrease of Bacteroides) and
consequently their capability of harvesting energy from food [2,3].

The “energy harvest” hypothesis refers to the body’s ability to extract energy from
resistant starch or dietary fiber that remains indigestible in the small intestine, which is
well observed in subjects affected by obesity [4,5]. The fermentation of these residues
produces short-chain fatty acids (SCFAs), which are used for lipid or glucose synthesis [6].
In some studies, subjects with obesity showed higher SCFAs (first propionate, followed by
butyrate, valerate, and acetate) in the feces than their leaner controls, without differences
in the characterization of the main bacterial phyla [7,8].

A relationship between human gut microbiota and metabolic disease exists, but
what has to be clarified is whether the change in intestinal microbiota occurs before the
development of inflammation or vice versa [9]. In humans, some studies showed that
obesity is associated with a reduced bacterial diversity and an altered representation of
bacterial species [10,11]; while Kasai et al. showed that bacterial diversity was significantly
greater in subjects with obesity compared with subjects without obesity [12]. A metanalysis
published in 2014 failed to show changes in microbial diversity between obese and non-
obese populations [13].

Firmicutes and Bacteroidetes represent the two predominant phyla in murine and human
microbiota and an alteration in this ratio is implicated in many diseases. It was first reported
by Ley et al. that an increase in Firmicutes and a decrease in Bacteroidetes is associated
with obesity [14]. This was subsequently confirmed by Kasai et al., who analyzed the gut
microbiota of obese and non-obese Japanese subjects [12]. Their results showed a significant
reduction of the number of Bacteroidetes and a higher Firmicutes to Bacteroidetes ratio in
subjects with obesity compared to subjects with normal body weight. On the contrary,
Schwiertz et al. reported a lower ratio of Firmicutes to Bacteroidetes in adults affected
by overweight or obesity compared with individuals without weight problems, while
Duncan et al. found no differences between Firmicutes and Bacteroidetes in subjects with
different BMI [8,15]. Other studies showed a different pattern, characterized by a reduction
of Bacteroidetes in individuals with obesity without differences in Firmicutes [10,16].

Angelakis et al. analyzed the duodenal microbial population in obese and non-obese
subjects. They found that the phylum taxonomic profile was similar when subjects with
obesity and the control group were compared, with small differences for Firmicutes (62%
in the control group vs. 67% in the group with obesity) and Proteobacteria (9.5% in the
control group vs. 4% in the obesity group) [17]. Unlike what is observed in the distal gut
microbiota, Bacteroidetes were almost completely absent in the duodenum: This is probably
due to a limited availability of mucin as a carbon source for Bacteroidetes [17].

In a study investigating the correlation between bacterial concentration and BMI, it
was observed that the fecal concentration of Lactobacillus reuteri was positively correlated
with BMI, while Bifidobacterium animalis and Methanobrevibacter smithii were negatively
associated with BMI [18]. The gut microbiota associated with human obesity is depleted in
M. smithii [19].

Since the discovery of the link between gut microbiota and metabolic health, attention
was focused on the possible use of ingredients like probiotics as a therapeutically active or
preventive strategy in the management of metabolic disease. According to the definition
of the Food and Agriculture Organization (FAO) and World Health Organization (WHO),
probiotics are live microorganism which, when administered in adequate amounts, confer
a health benefit on the host [20]. Gram-positive bacteria, Lactobacillus and Bifidobacterium,
are the two most common genera. Probiotics seem to have beneficial effects on obesity
and related metabolic disorders [21]. A meta-analysis reported that Lactobacillus gasseri
and Lactobacillus plantarum have positive effects on weight loss, while other species (L.
acidophilus, L. ingluviei and L. fermentum) are associated with weight gain [22].

The present review focuses on the effectiveness of the probiotics in the reduction of
body weight in overweight and obese subjects with metabolic diseases—previous reviews
done by Aoun, Darwish and Hamod 2020 [23], and by Ballini et al., 2020 [24] indicated
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that probiotics modify the secretion of hormones, neurotransmitters, and inflammatory
factors, thus preventing food intake triggers that lead to weight gain. The novelty of
this review as compared to others is that the outcomes are related to the changes of
anthropometric measures (weight, body mass Index (BMI), waist circumference (WC), and
hip circumference (HC) after administration of various probiotics in overweight or obese
subjects with metabolic diseases.

Given this background, the aim of this systematic review and meta-analysis is to
evaluate the efficacy of probiotics as a potential treatment option to reduce body weight
and ameliorate other anthropometric measures in overweight and obese patients with
metabolic related diseases.

2. Materials and Methods

The present systematic review was conducted in accordance with the Preferred Re-
porting Items for Systematic Review and Meta-Analysis (PRISMA) statement. The process
of reporting was carried out as follows: (1) Formulation of working of research question
stating that “is probiotic supplementation useful for the management of body weight
and other anthropometric measures in adults affected by overweight and obesity with
metabolic related diseases?”, (2) definition of participants: Adult women and men affected
by overweight and obesity, (3) search strategy for identification of relevant intervention
studies that include the effect of probiotic supplements on metabolic disease, and (4)
analysis of data through the systematic review and meta-analysis.

2.1. Search Strategy

Articles that were written in the English language and published over the course of
the last 10 years (2009–2019) were identified by searching PubMed and Scopus [25,26].
The search strategy was based on the following search terms: “probiotics” AND “obesity”
AND “weight loss” AND “microbiota” OR “gut microbiota” AND “weight” AND “BMI”
OR “WC” AND “HC”.

2.2. Study Eligibility

Eligible studies were required to report baseline and follow-up values, the mean
change (∆-change) and relative standard deviation from baseline, and/or the mean differ-
ence among intervention groups vs. control group, concerning body weight or BMI and
in addition other anthropometric measures, such as waist circumference (WC) and hip
circumference (HC).

2.3. Data analysis and Presentation of Results

Randomized clinical trials investigating the effectiveness of the administration of
different probiotic strains on body composition outcomes (especially weight loss) were
included. For each study, the following data were specified: First author and the year of
publication, the study design, the setting, the inclusion criteria, the number, and age of
participants enrolled in the study, the intervention of the control and experimental group/s,
the duration of the intervention and change of body measures observed in each group.

3. Results

A synthesis of the 20 published studies with 1411 patients is presented in Table 1.
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Table 1. Intervention studies on the effect of different probiotics on anthropometric parameters.

First Author,
Year Study Design Participants

(Age) Intervention Group(s) Placebo Group(s) Duration
Changes in

Intervention
Group(s) a

Changes in Control
Group(s) a

Gomes, 2017
Randomized

controlled trial
(RCT)

43
(20–59 years)

n = 21
Diet and

4 sachets/day: 1 × 109 CFU of
Lactobacillus acidophilus LA-14, L.

casei LC-11, L. lactis LL-23,
Bifidobacterium bifidum BB-06, and B.

lactis BL-4

n = 22
diet 8 weeks

BW (kg): −0.98
BMI (kg/m2): −0.45

WC (cm): −5.14

BW (kg): −0.95
BMI (kg/m2): −0.72

WC: (cm) −3.32

Lee, 2014 RCT 50
(19–65 years)

n = 25
Twice/day Bofutsushosan, containing
18 components, 3 g per admnistration

and priobiotic capsules (Duolac 7
included 5 billion viable of

Streptococcus thermophiles, L.
Plantarum, L. acidophilus,

L. rhamnosus, B. Lactis, B. longum, and
B. breve

n = 25
Twice/dayBTS (3 g
per admnistration)

and placebo
capsules

8 weeks

BW (kg): 1.02 ± 1.69
BMI (kg/m2): 0.38 ±

0.67
WC (cm): 1.56 ± 1.53

BW (kg): 1.87 ± 1.28
BMI: 0.75 ± 0.52

WC (cm): 1.21 ± 2.00

Sanchez, 2014 RCT 125
(18–55 years)

n = 62
two capsules daily (6 × 108cfu of L.
rhamnosus CGMCC1.3724 (LPR))

n = 63
Two capsules daily 24 weeks BW (kg): −5.3 ± 4.3 BW (kg): −3.9 ± 4.2

Zarrati, 2013 RCT 75
(20–50 years)

Group 1, -, n = 25:
diet and 200 g/day of probiotic yogurt
(PLCD), containing S. thermophiles and

L. bulgaricus - enriched with the L.
acidophilus LA5, L. casei DN001 and, B.
lactis Bb12 (1 × 108 cfu/g each strain)

Group 2, n = 25:
diet and 200 g/die
of regular yogurt

(RLCD)-
Group 3, n = 25:

200 g/day of
probiotic yogurt
without any diet

(PWLCD)

8 weeks

PLCD:
BW (kg): −4.23

BMI (kg/m2): −1.3
WC (cm): −2.78

HC (cm): −2

RLCD:
BW (kg): −4.87

BMI (kg/m2): −1.9
WC (cm): −2.3
HC (cm): −3.18

PWLCD:
BW (kg): −0.04
HC (cm): −0.03
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Table 1. Cont.

First Author,
Year Study Design Participants

(Age) Intervention Group(s) Placebo Group(s) Duration
Changes in

Intervention
Group(s) a

Changes in Control
Group(s) a

Jung, 2013 RCT 62
(19–60 years)

n = 31
6 capsules/day composed of 1010 cfu of

L. gasseri BNR17

n = 31
6 placebo

capsules/day
12 weeks

BW (kg): (−1.1 ± 2.2)
BMI (kg/m2): (−0.5

± 0.9)
WC (cm): (−2 ± 4.4)

HC (cm): (−2.8 ±
3.5)

BW (cm): (0.2 ± 2.4)
BMI (kg/m2): (0.3 ±

1.0)
WC (cm): (1.1 ± 4.2)

HC (cm): (−1.1 ±
2.3)

Sharafedtinov,
2013 RCT 40

(30–69 years)

n = 25
50 g/day of probiotic product

(semi-hard cheese) containing L.
plantarum TENSIA, added in amounts

of 1.5 × 1011

n = 15
50 g/day of cheese
without probiotics

3 weeks
BW (kg): −5.7

BMI (kg/m2): −2
BW (kg): −4.4

BMI (kg/m2): −2.3

Kadooka, 2013 RCT 210
(35–60 years)

n = 69
Fermented milk (FM) containing 107 cfu

LG2055/g
n = 71 FM containing 106 cfu LG2055/g

n = 70
Control FM

containing 0 cfu
LG2055/g

12 weeks

107 dose
BMI (kg/m2): (−0.3)

WC (cm): (−1.3)
HC (cm): (−1.2)

106 dose
BMI (kg/m2): (−0.4)

WC (cm): (−1.1)
HC (cm): (−0.9)

BMI (kg/m2): (0.1)
WC (cm): (−0.1)
HC (cm): (−0.2)

Kadooka, 2010 RCT 87
(33–63 years)

n = 43
200 g daily of FM with L. gasseri

SBT2055 (LG2055),
5 × 1010 cfu/100 g of FM

n = 44
200 g (2 portions of
100 g each) daily of

FM without
LG2055

12 weeks

BW (kg): −1.1
BMI (kg/m2): −0.4

WC (cm): −1.7
HC (cm): −1.5

BW (kg): 0.3
BMI (kg/m2): 0.1

HC (kg): −0.3

Woodard, 2009 RCT

44 (median age of
treated group

was 48.6 years, of
placebo group

was 41.2)

n = 22
1 pill/day of Puritan’s Pride®, probiotic
supplement containing 2.4 billion live

cells of Lactobacillus species.

n = 22
placebo 24 weeks

Weight loss % (6
weeks postoperative):

29.90

Weight loss % (6
weeks

postoperative):25.50
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Table 1. Cont.

First Author,
Year Study Design Participants

(Age) Intervention Group(s) Placebo Group(s) Duration
Changes in

Intervention
Group(s) a

Changes in Control
Group(s) a

Asemi, 2014 RCT 70
(35–70 years)

n = 35
3 times/day of synbiotic food with L

sporogenes (1 × 107 cfu) and 0.04 inulin
as prebiotic. Then they received 27 ×

107 cfu L. sporogenes and 1.08 g of
inulin each day

n = 35
Control food: the
same substance

without probiotic
bacteria and

prebiotic inulin

6 weeks

BW (kg): (−0.12 ±
1.57)

BMI (kg/m2): (−0.05
± 0.62)

BW (kg): (−0.03 ±
2.44)

BMI (kg/m2): (−0.02
± 1)

Asemi, 2013 RCT 54 (35–70 years)

n = 27
The probiotic supplement has L.

acidophilus (2 × 109 cfu), L. casei (7 ×
109 cfu), L.rhamnosus (1.5 × 109 cfu),

L.bulgaricus (2 × 108 cfu), B. breve (2 ×
1010 cfu), B.longum (7 × 109 cfu), S.

thermophilus (1.5 × 109 cfu) and 100
mg fructo-oligosaccharides

n = 27
Placebo: the same
substance without

bacteria

8 weeks BMI (kg/m2): −0.65
BW (kg): −0.61

BMI (kg/m2): −0.26

Shakeri, 2014 RCT 78 (35–70 years)

n = 26
The synbiotic bread contained probiotic
L. sporogenes (1 × 108 cfu) and 0.07 g

inulin as prebiotic per 1 g.
n = 26

The probiotic bread contained L.
sporogenes (1 × 108 cfu) per 1 g.

n = 26
Control bread: the

same substance
without probiotic

bacteria and
prebiotic inulin

8 weeks

Synbiotic bread:
BW (kg): (0.03 ± 1.9)
BMI (kg/m2): (0.02

± 0.8)
Probiotic bread:

BW (kg): (-0.2 ± 1.4)
BMI (kg/m2): (−0.04

± 0.6)

Control bread:
BW (kg): (−0.05 ±

1.6)
BMI (kg/m2): (−0.02

± 0.6)

Mohamadshahi,
2014 RCT 44

(18–70 years)

n = 22
300 g/day of probiotic yogurt

(L. delbrueckii subsp. bulgaricus and S.
thermophilus + 3.7×106 cfu/g of both B.

animalis subsp. lactis Bb12 and L.
acidophilus strain La5

n = 22
300 g/day of
conventional

yogurt

8 weeks

BW (kg): −0.33
BMI (kg/m2): −0.12

WC (cm): 0.5
HC (cm): −0.15

BW (kg): −0.72
BMI (kg/m2): −0.04

WC (cm): 0.34
HC (cm): 0.19
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Table 1. Cont.

First Author,
Year Study Design Participants

(Age) Intervention Group(s) Placebo Group(s) Duration
Changes in

Intervention
Group(s) a

Changes in Control
Group(s) a

Nabavi, 2014 RCT 72
(23–63 years)

n = 36
300 g/day of probiotic yogurt

containing L. acidophilus La5 (4.42 ×
106 cfu/g) and B. lactis Bb12 (3.85 × 106

cfu/g)

n = 36
300 g/day of
conventional

yogurt

8 weeks BW (kg): −1.74
BMI (kg/m2): −0.68

BW (kg): −0.25
BMI (kg/m2): −0.11

Alisi, 2014 RCT

48
(median age of
treated group

was 11 years, of
placebo group
was 10 years)

n = 24
Probiotic VLS#3, 1 sachet/day <10

years old or 2 sachet/day >10 years old

n = 24
Placebo, 1

sachet/day <10
years old or 2

sachet/day >10
years old

16 weeks BMI (kg/m2): −2.2 BMI (kg/m2): 0.1

Shavakhi, 2013 RCT 70
(18–75 years)

n = 34
Two tablets/day of metformin 500 mg +

two tablets/day of Protexin (L.
acidophilus 1 × 108 CFU, L. casei 5 ×
108 CFU, L. rhamnosus 7.5 × 107 CFU,
L. bulgaricus 1.5 × 108 CFU, B. breve 5
× 107 CFU, B. longum 2.5 × 107 CFU, S.

thermophilus 5 × 107 CFU,
fructooligosaccharides 350 mg)

n = 36
Two tablets/die of
metformin 500 mg

+ two placebo
tablets (120 mg of

starch)/day

24 weeks BMI (kg/m2): −5.2 BMI (kg/m2): −0.44

Leber, 2012 RT 28 (24–66 years)

n = 13
3 bottles/day (65 ml) containing L. casei

Shirota at a concentration of 108/ml
(3 × 6.5 × 109 cfu L. casei Shirota)

n = 15
not received the

product and served
as a control group

(standard).

12 weeks
BW (kg): (−0.58 ±

2.54)
BMI (kg/m2): (−0.18

± 0.78)

BW (kg): (−0.13 ±
1.68)

BMI (kg/m2): (−0.05
± 0.60)
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Table 1. Cont.

First Author,
Year Study Design Participants

(Age) Intervention Group(s) Placebo Group(s) Duration
Changes in

Intervention
Group(s) a

Changes in Control
Group(s) a

Chang, 2011 RCT 101
(20–65 years)

n = 53
Functional yogurt containing S.

thermophilus ≥3 × 109c.f.u./g, L.
acidophilus ≥3 × 109c.f.u./g, B.

infantis ≥1 × 1010c.f.u./g
and functional ingredients

n = 48
The control yogurts
contained the same

ingredients
of S. thermophilus,
L. acidophilus, B.

infantis except
functional
ingredients

8 weeks

BW (kg): (−0.24 ±
1.50)

BMI (kg/m2): (−0.10
± 0.58)

WC (cm): (−0.45 ±
2.78)

BW (kg): ( + 0.64 ±
1.39)

BMI (kg/m2): ( +
0.24 ± 0.50)

WC (cm): ( + 0.42 ±
2.78)

Ogawa, 2014 Single-blind, CT 30
(27–69 years)

n = 15
200 g (2 portions of 100 g each) daily of
FM with L. gasseri SBT2055 (LG2055)

The viable cell count of LG2055
waproximately 5 × 1010 cfu/100g of FM

on the initial day

n = 15
200 g (2 portions of
100 g each) daily of
control FM without
LG2055 L. gasseri
SBT2055 (LG2055)

Control FM for
4 weeks; 4
weeks of

washout period,
active FM for 4

weeks

BW (kg): (−0.04 ±
0.12)

BMI (kg/m2): (−0.01
± 0.04)

WC (cm): (−0.75 ±
0.35)

BW (kg): (−0.23 ±
0.26)

BMI (kg/m2): (−0.09
± 0.09)

WC (cm): (−1.78 ±
0.53)

Sadrzadeh-
Yaganeh,

2010
RCT 90

(19–49 years)

Group 1: n = 30
consumed daily 300 g probiotic yogurt

containing L acidophilus La5 and B.
lactis Bb12 (3.9 × 107 of both Bb12 and

La5)
Group 2: n = 30 consumed daily 300 g

conventional yogurt

Group 3: n = 30
did not consume

any fermented and
probiotic products

6 weeks

Group 1
BW (kg): 0.2

Group 2
BW (kg): 0.4

BMI (kg/m2): 0.2

Group 3
No changes

as Changes expressed as: (∆ change) ± SD where data are available. Abbreviations: CFU, colony forming unit; BW, body weight; BMI, body mass index; WC, waist circumference; HC, hip circumference; PLCD,
probiotic yogurt with low calorie diet; RLCD, regular yogurt with low calorie diet; PWLCD, probiotic yogurt without low calorie diet; FM, fermented milk.
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The table summarizes the studies that have evaluated as outcomes the changes of one
or more anthropometric parameters (body weight, BMI, WC, and HC), after the adminis-
tration of probiotics as supplements or food with a comparison between intervention and
placebo treatment. In our analysis, we considered different study populations, including
individuals with diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), non-alcoholic
steatohepatitis (NASH) metabolic syndrome, or altered lipid profile.

3.1. Overweight and Obesity

Kadooka et al. were the first who evaluated the effect of the probiotic L. gasseri
(LG2055) in overweight adults. They reported that subjects who had consumed fermented
milk containing L. gasseri 2055 at a total dose of 1011 cfu/day showed a 4.6% reduction
in visceral fat area after 12 weeks of treatment, which was significantly different from the
placebo group [27]. Furthermore, the intervention group showed significant decreases in
body weight, BMI, WC, HC, and waist-to-hip ratio at both weeks 8 and 12 of treatment, as
compared with the control group. Three years later, the same study group confirmed these
results, using a fermented milk containing a lower dose of LG2055. BMI, WC, HC, body
fat mass, and visceral fat areas, in both 107 and 106 dose groups decreased significantly at
weeks 8 and 12 from baseline [28].

On the other hand, another study showed no statistically significant changes of anthro-
pometric parameters between subjects with hypertriaciglycerolemia, after taking fermented
milk with or without LG2055. However, the active fermented milk appeared able to reduce
postprandial and fasting serum non-esterified fatty acid levels, two important components
of the risk for obesity and type 2 diabetes mellitus [29]. Jung et al. examined the efficacy of
a treatment with L. gasseri BNR17 in adults affected by obesity and overweight [30]. The
12-week intervention revealed a slight reduction in body weight, WC, and HC.

In contrast, no significant change in body composition was observed by Lee et al. in
obese patients when the probiotics and placebo groups were compared [31]. In addition,
Sanchez et al., showed that the administration of L. rhamnosus during the energy-restriction
period (from week 1 to 12) did not significantly decrease the body weight or fat mass in
a population of male and female obese patients [32]. The probiotic-treated group did,
however, lose more fat mass than the placebo group at the end of the maintenance phase
(from week 12 to 24). The analysis of the sex-specific results revealed significantly higher
body weight and fat mass losses in women but not in men.

Another study investigated the changes in anthropometric parameters, in subjects
affected by obesity or overweight, after the administration of probiotic yogurt (containing
L. acidophilus La5, Bifidobacterium BB12, and L. casei DN001) combined or not with a
low-calorie diet. The results showed a reduction in WC when probiotics were associated
with a dietary restriction [33]. A recent study reported that the supplementation of a
probiotic mix reduced abdominal adiposity and increased antioxidant enzyme activity in
a more effective way when compared with an isolated dietary intervention. Participants
taking the probiotic mix had a greater decrease in WC (−5.47% vs. −3.40%, p = 0.03),
waist–height ratio (−5.00% vs. −3.27%, p = 0.02), and conicity index (−4.09% vs. −2.43%,
p = 0.03) than the group receiving only the dietary intervention [34].

In addition, probiotics may improve weight loss after bariatric surgery. The results
from the study of Woodard et al. suggested the use of a daily probiotic for all patients
undergoing roux-en-Y gastric bypass, in order to reduce postoperative morbidity and
maximize the weight loss [35].

3.2. Type 2 Diabetes Mellitus

Various studies have evaluated the effects of probiotics in overweight and obese
patients affected by diabetes. They considered different kinds of probiotic supplemen-
tation, from multispecies probiotic supplements (with various strains of Lactobacillus,
Bifidobacterium, and Streptococcus), to symbiotic food with Lactobacillus sporogenes and inulin.
Comparing the anthropometric measures at baseline and after intervention, these studies
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failed to find a significant difference in weight and BMI between the two groups [36–39]. At
the moment, other ongoing studies are evaluating the effects of probiotic supplementation
in overweight and obese patients with prediabetes and diabetes [40,41].

3.3. NASH

A significant reduction (p < 0.001) of BMI was observed by Shavakhi et al. in over-
weight and obese patients affected by NASH with excess body weight, when treated with
a combination of metformin and probiotics (different strains of Lactobacillus and Bifidobac-
terium) instead of metformin alone [42]. Also in children with NASH the administration
of VLS#3 (a mixture of eight probiotic strains: S. thermophilus, bifidobacteria [B. breve, B.
infantis, B. longum], L. acidophilus, L. plantarum, L. paracasei, and L. delbrueckii subsp. bul-
garicus) significantly decreased (p < 0.001) the BMI during a four-month supplementation
period, with respect to the placebo group [43]. Moreover, Nabavi et al. showed that
body weight and BMI decreased in a significant manner in patients affected by obesity
or overweight and NAFLD receiving a probiotic yogurt (4.42 × 106 of L. acidophilus La5
and 3.85 × 106 cfu/g of B. lactis Bb12), when compared with conventional yogurt, after an
eight-week intervention [44].

The same bacterial strains, La5 and Bb12, were administered in a female population to
assess their effects on the lipid profile. The participants were divided into three groups and
were instructed to consume a daily dose of 300 g of probiotic yogurt, containing 3.9 × 107

of both Bb12 and La5 or 300 g of conventional yogurt or consume any fermented and
probiotic products. The authors reported mainly neutral effects of yogurt consumption on
the lipid profile [45].

3.4. Metabolic Syndrome

Chang et al. reported benefits after the daily consumption of 300 mL of functional
yogurt NY-YP901 consisting of several probiotics for eight weeks, on metabolic syndrome
traits [46]. In particular, this kind of yogurt was associated with decreased low-density
lipoprotein (LDL) cholesterol, body weight, and BMI following a daily consumption for
eight weeks. Although there was no significant effect on the parameters of metabolic
syndrome such as blood pressure, fasting blood glucose, triglycerides, and high-density
lipoprotein (HDL), the decreases in LDL-cholesterol and body weight were expected to
favor the decrease of cardiovascular risk [46]. In contrast, a study that aimed to investigate
the effect of L. casei Shirota on gut permeability in patients with metabolic syndrome did
not find any effect of this probiotic administration on BMI and WC [47].

The administration of 50 g/day of cheese containing L. plantarum TENSIA®, in subjects
with hypertension, showed a reduction of BMI and blood pressure, that is, symptoms
involved in metabolic syndrome. In these patients, a significant decrease in body weight
was also observed when the intervention group was compared with controls (−5.7 vs.
−4.4 kg, p = 0.083) [48].

3.5. Meta-Analyzed Data

The meta-analyzed mean differences for random effects (MD) showed no significant
decrease in body weight after probiotic supplementation in patients with type 2 diabetes
mellitus (Figure 1).
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Figure 1. Forest plot for randomized controlled trials of probiotic supplementation included in body weight (kg) subgroup
meta-analysis (n = 1057). The studies are listed by first author and year. IV = equation that can be estimated by inverse
variance (linear, exponential). The square represents the measures of effect (i.e., an odd ratio) for each study; the area of
each square is proportional to the study’s weight in the meta-analysis. Horizontal line represents the confidence interval
(CI) at the 95% level. The diamond represents the meta-analyzed measure of effect; the lateral points of diamond indicate
CIs for this estimate. The vertical line represents no effects; if the CI for an individual study overlaps with this line, the
given level of confidence for the effect size does not differ from no effect for that study. Risk of bias indicates the level of
high and low risk associated with the article. With green signal for low risk and red for high risk of bias.

In the 17 studies [27–48], with a total of 1057 subjects (536 in the intervention group
and 521 in the control group), the overall effects showed that the treatment with probiotics
did not significantly change the body weight (−0.26[−0.75, 0.23], p = 0.30) in the considered
studies. τ2 (estimate of the between-studies variance in random-effect meta-analysis) =
0.94, χ2 = 556.40, df = 16 (p < 0.00001). I2 (statistically describing the percentage of variation
across studies that is due to heterogeneity) = 100%.

Figure 2 describes the meta-analyzed mean difference for random effects showing
a significant decrease in BMI for the consumption of probiotic supplements. In a total
of 18 studies, with a total of 1123 subjects (579 in the intervention group and 544 in the
control group), the test of overall effects indicates that the treatment effect was significantly
different (−0.73[−1.31, −0.16], p = 0.01) between the considered studies. τ2 (estimate of
the between-studies variance in random-effect meta-analysis) = 1.36, χ2 = 3431.35, df = 15
(p < 0.00001).
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Figure 2. Forest plot for randomized controlled trials of probiotic supplementation included in body mass index (kg/m2)
subgroup meta-analysis (n = 1123). The studies are listed by first author and year. IV = equation that can be estimated by
inverse variance (linear, exponential). The square represents the measures of effect (i.e., an odd ratios) for each study; the
area of each square is proportional to the study’s weight in the meta-analysis. Horizontal line represents the confidence
interval (CI) at the 95% level. The diamond represents the meta-analyzed measure of effect; the lateral points of diamond
indicate CIs for this estimate. The vertical line represents no effects; if the CI for an individual study overlaps with this line,
the given level of confidence for the effect size does not differ from no effect for that study. Risk of bias indicates the level of
high and low risk associated with the article, with green signal for low risk and red for high risk of bias.

For WC (Figure 3) and HC (Figure 4), the meta-analyzed difference for random effects
(MD) showed a significant decrease. For WC, 9 studies were included [27–36], with a total
of 641 subjects (299 n the intervention group and 322 in the control group). Only 5 studies
on HC were included [27–30,33], with a total of 407 subjects (190 in the intervention group
and 217 in the control group). The test of overall effects for WC indicates that the treatment
effect was significantly different (−0.71[−1.24, −0.19], p = 0.008) between the considered
studies. τ2 (estimate of the between-studies variance in random-effect meta-analysis) =
0.53, χ2 = 221.93, df = 8 (p < 0.00001). I2 (statistically describing the percentage of variation
across studies that is due to heterogeneity) = 100%. Similarly, the test of overall effects
for HC indicates that the treatment effect was significantly different (−0.73[−1.16, −0.30],
p = 0.00008) between the considered studies. τ2 (estimate of the between-studies variance
in random-effect meta-analysis) = 0.19, χ2 = 80.46, df = 4 (p < 0.00001).
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subgroup meta-analysis (n = 621). The studies are listed by first author and year. IV = equation that can be estimated by
inverse variance (linear, exponential). The square represents the measures of effect (i.e., an odd ratios) for each study; the
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subgroup meta-analysis (n = 621). The studies are listed by first author and year. IV = equation that can be estimated by
inverse variance (linear, exponential). The square represents the measures of effect (i.e., an odd ratios) for each study; the
area of each square is proportional to the study’s weight in the meta-analysis. The horizontal line represents the confidence
interval CI) at the 95% level. The diamond represents the meta-analyzed measure of effect; the lateral points of diamond
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high and low risk associated with the article, with green signal for low risk and red for high risk of bias.
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The risk of bias was also evaluated for the 20 studies: It was considered as high and
low risk according to seven different criteria. Green indicates the risk of bias to be low,
while red indicates the risk of bias to be high.

4. Discussion

The results of this meta-analysis show that probiotic supplementation significantly
decreases the BMI (−0.73 kg/m2 [−1.31, −0.16], p = 0.01), WC (−0.71 cm [−1.24, −0.19],
p = 0.008), and HC (−0.73 cm [−1.16, −0.30], p = 0.0008), but not the body weight (−0.26 kg
[−0.75, 0.23], p = 0.30) of adults of both sexes affected by overweight and obesity with
metabolic related diseases. Probiotics seem to be mostly effective in NASH and metabolic
syndrome patients.

According to this meta-analysis, the Lactobacillus (e.g., L. Casei strain Shirota (LAB13),
L. Gasseri, L. Rhamnosus, L. Plantarum) and Bifidobacterium (e.g., B. Infantis, B. Longum,
and B. Breve B3) show the most promising effects against obesity. A recent review shows
promising in vivo and vitro effects of the same strains [49].

The definition of obesity was based on BMI and the intake of probiotics was followed
by a significant decrease of this outcome. The decrease of WC and HC may also be linked to
the decrease of BMI. The difference between the results obtained for BMI and body weight
may be due to the lack of homogeneity among the studies included in this meta-analysis
because some studies considered only BMI while other studies evaluated only body weight
or both of them. Very important is the observed significant reduction of WC and HC
because these parameters, particularly WC, are strictly related to cardiovascular risk [50].
One of the mechanisms involved in the reduction of BMI after probiotic intake is the
regulation of gut microbiota. Obesity favors a change of the gut microbiota composition,
which can affect the energy harvest from food, the secretory functions and the composition
of adipose tissue, the metabolism of carbohydrates and lipids in the liver and could also
influence the activity of specific centers in the brain [51]. The regulation of gut microbiota
by means of probiotics is attained by enhancing the epithelial barrier integrity, increasing
adhesion to intestinal mucosa (e.g., by increasing the amount of Akkermansia muciniphila),
producing health-promoting and antimicrobial substances, excluding pathogenic microbes,
and regulating the host immune system [51,52]. An increase in the amount of Firmicutes to
Bacteroidetes leads to methylation of the obesity- and CVD-related genes and influences
the activity of hormones affecting the metabolic function by increasing the ability to harvest
energy [53].

Probiotics can play a significant role against obesity through species- and strain-
specific mechanisms [49] Lactobacillus reuteri has shown that it can prevent the intestinal
colonization of pathogenic microbes, by remodeling the commensal microbiota composi-
tion, by decreasing the production of pro-inflammatory cytokines, and by increasing the
strength of the intestinal barrier [52]. Lactobacullus paracasei has shown in an animal model
that it can decrease the fat storage by increasing the levels of angiopoietin-like 4 protein
(ANGPTL4) [54]. Lactobacillus gasseri SBT2055 (LG2055) has shown that it can reduce lipid
absorption and promote fecal fat excretion in humans [55].

Probiotics can influence effective on obese and diabetic patients, through positively
influencing the lipid profile and insulin sensitivity—both mechanisms can have an ultimate
positive effect on the body weight, BMI, WC, and HC [53]. Probiotics have shown that they
decrease the total cholesterol, total triglycerides, and LDL levels, while they increase the
level of HDL [53]. An increasing number of studies suggests that the oral and the intestinal
microbiota may indirectly or directly influence cardiovascular risk. Besides diet, the other
therapeutic and preventive route that could be traveled is that of microbiota modification,
via the use of appropriate pro- and prebiotics [56].

In addition, probiotics also increase the production of short-chain fatty acids that
eventually influence the appetite and energy homeostasis [51]. The enhanced production
of short-chain fatty acids can affect inflammation resolution pathways in the mucosa [57].
A study done by Peng, Luying et al. concluded that butyrate enhances the intestinal barrier
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by regulating the assembly of tight junctions, mediated by the activation of AMPK [58].
An indirect mechanism of the anti-obesity activity of probiotics is through reversing the
source of pro-inflammatory stimuli linked with low-grade endotoxemia and thus affecting
the inflammatory response [57].

The administration of probiotics for the management of obesity may represent an
attractive therapeutic strategy but, even though encouraging results emerged from experi-
ments on rodents, the efficacy of probiotics in obese humans remains highly debatable [59].

The major limitations of this meta-analysis are due to the heterogeneity of the included
studies. In particular, the age of patients showed a wide difference in the different studies
and the same was for the duration on the intervention. The age of the participants ranged
from 18 up to 75 years. The treatment duration also widely varied among the included
studies, starting from 3 weeks up to 24 weeks. Both of these aspects negatively influence
the data analysis and limit the understanding of the anti-obesity potential of probiotics.

Thus, in future research, it is essential to define several smaller age ranges while
conducting clinical trials so that the effect of age becomes clearer. The treatment duration
also widely varied between the studies, starting from 3 weeks up to 24 weeks. This wide
range of duration contributes to limit the understanding of the anti-obesity potential of
probiotics with respect to treatment duration.

This meta-analysis has various limitations based on the available scientific research,
which is characterized by contradictory evidence. Part of the controversy is due to a lack
of precise cost-effectiveness data and the lack of data on the correct dosage and type of
probiotic that has to be supplemented. In addition, data on the correlation between specific
claims and specific probiotics in obesity management are missing.

A second point of weakness of this meta-analysis is due to the absence of RCT in
which the population sample is normalized for colonic content of bacteria.

Conceivably, the obese patients have an increased Firmicutes/Bacteroidetes (F/B) ratio
and might require different probiotic doses. In overweight/obese humans, in addition,
the low fecal bacterial diversity is associated with more marked overall adiposity and
dyslipidemia, impaired glucose homeostasis and higher low-grade inflammation [11].

Moreover, what constitutes a healthy microbiota is far from being established. For
example, determining what constitutes a healthy microbiota and the variability found
across populations is another important question mark. Recent studies raise questions
about the widespread use of probiotics to impart general wellness [60].

There is huge variability of fermentable substrates that have bulk effects on bowel
functions. day-by-day and within a day, since many studies have revealed only minor
effects on overall microbiome composition and usually show only few species changing in
population size [61].

Last, but not least, there is also no validated method to evaluate microbiota, most of
which escapes current techniques, and in order to advance microbiome research to a more
standardized and routine medical diagnostic procedure, it is essential to establish uniform
standard operating procedures throughout laboratories and to initiate regular proficiency
testing [62].

The “energy extraction” hypothesis should be interpreted with extreme caution. Daily
energy output in feces is about 500 KJ and the microbiota produces SCFA, hence con-
tributing to energy production rather than extraction. Note that rodents, especially the
gnotobiotic models, are poor models of human microbiota behavior [61].

5. Conclusions

The results of this meta-analysis highlight a positive trend of probiotics supplementa-
tion on anthropometric measures of overweight and obese patients with related metabolic
diseases. However, further research is needed before recommending the use of probiotics
as a therapeutic strategy for these patients. The focus of the future research should be to
evaluate the efficacy of different probiotic strains, the quantities to be administered, and
the duration of the intervention.
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