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Abstract: This study applied linear programming using a Dutch “model diet” to simulate the die-

tary shifts needed in order to optimize the intake of vitamin D and to minimize the carbon footprint, 

considering the popularity of the diet. Scenarios were modelled without and with additional forti-

fied bread, milk, and oil as options in the diets. The baseline diet provided about one fifth of the 

adequate intake of vitamin D from natural food sources and voluntary vitamin D-fortified foods. 

Nevertheless, when optimizing this diet for vitamin D, these food sources together were insufficient 

to meet the adequate intake required, unless the carbon emission and calorie intake were increased 

almost 3-fold and 2-fold, respectively. When vitamin D-fortified bread, milk, and oil were added as 

options to the diet, along with increases in fish consumption, and decreases in sugar, snack, and 

cake consumption, adequate intakes for vitamin D and other nutrients could be met within the 2000 

kcal limits, along with a relatively unchanged carbon footprint. Achieving vitamin D goals while 

reducing the carbon footprint by 10% was only possible when compromising on the popularity of 

the diet. Adding vitamin D to foods did not contribute to the total carbon emissions. The modelling 

study shows that it is impossible to obtain adequate vitamin D through realistic dietary shifts alone, 

unless more vitamin D-fortified foods are a necessary part of the diet. 
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1. Introduction 

Food production has a considerable impact on greenhouse gas emissions [1]. The 

planet cannot sustain a continuation of the current dietary habits, especially when it 

comes to feeding the 10 billion people living on the planet by 2050. There is a growing 

understanding of the types of diets and food patterns that can be part of the solution in 

order to reduce environmental impact, while optimizing health in terms of nutrient ade-

quacies when shifting dietary patterns [2]. Some governments have already incorporated 

sustainability into their national dietary guidelines [3]. Even though sustainability and 

health considerations are increasingly driving consumer purchasing decisions, consum-

ers still face challenges when changing dietary habits in order to improve their nutrition 

and sustainability [4,5]. 

Vitamin D deficiency is among the most neglected major public health problems 

worldwide [6]. Surveys show that vitamin D deficiency is highly prevalent among all 

population groups, with severe deficiency (<25 nmol/L) and deficiency (<50 nmol/L) rates 

estimated to be 7% and 37% globally, respectively [6], and the vitamin D requirements are 

largely unmet in most populations [7,8]. In the Netherlands, one study found that no 

adults met the estimated average requirement for vitamin D [8]. Food provides a rela-

tively small proportion of the vitamin D supply, while vitamin D produced in the skin 

from UVB light makes the greatest contribution [9]. An adequate intake of vitamin D-rich 
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food is not the only difficulty, as adequate sunlight exposure can be a challenge with sun 

avoidance and less time spent outdoors. The high prevalence (83%) of low serum 

25(OH)D levels <50 nmol/L in Dutch adults suggests that vitamin D from diet and UVB 

exposure combined are not adequate [10]. To ensure that individuals consume adequate 

vitamin D, irrespective of their exposure to sunlight, the Institute of Medicine (IOM) and 

the European Food Safety Authority (EFSA) set the adequate intake for vitamin D based 

on assumed low sun exposure and the intake needed in order to achieve a serum 25(OH)D 

of ≥50 nmol/L, a level unlikely to pose adverse musculoskeletal health outcomes [11,12]. 

Moreover, experts have highlighted the potential immunomodulant, anti-inflammatory, 

and anti-infective roles of vitamin D beyond bone and muscle health [9,13]. 

However, obtaining an adequate intake of vitamin D from the diet alone is difficult, 

as only few foods naturally contain significant amounts of vitamin D [14]. As vitamin D 

food sources include mainly oily fish, meat, dairy, and eggs, shifting to more plant-based 

diets is likely to further aggravate the risk of vitamin D deficiency. It remains controversial 

among professionals whether sufficient vitamin D can be obtained from a healthy diet. 

This study simulated the shifts needed within a Dutch “model diet” to overcome vitamin 

D shortfalls, as well as the consequences for calorie intake and carbon emissions. In addi-

tion, dietary shifts were modelled by extending the diet with fortified milk, bread, and 

vegetable oils optimizing for vitamin D, as well as the vitamin D and carbon footprint 

combined. 

2. Materials and Methods 

2.1. Linear Modelling Methods 

The linear modelling program Optimeal® 2.0 (Blonk Consultants, Gouda, the Neth-

erlands) was used to model scenarios of dietary shifts in the Netherlands. The program 

can propose dietary shifts from the current diet based on nutritional or environmental 

dietary goals, optimizing for popularity, by searching for scenarios of foods that resemble 

current diets as closely as possible. The program can set boundaries (constraints) for 36 

nutrients, and for energy to be fulfilled or limited through the upper boundaries. In all 

scenarios, the recommended nutrient intake (RNI) and adequate intake (AI) were set as 

the lower boundaries, and tolerable upper intake level (UL) and maximum reference 

value (MRV) were set as the upper boundaries. We combined the data from the Dutch 

National Food Survey and Food Composition Database and the Life Cycle Assessment 

databases, resulting in a consolidated dataset with daily amounts consumed, nutritional 

value, popularity estimates, and carbon footprint estimates for 251 food items. The intake 

frequency of food items were used as a proxy for food popularity. This Dutch model diet 

was optimized for vitamin D (and carbon footprint) through linear modelling using the 

following scenarios. 

2.2. Scenario 1: Optimizing the Current Diet for Vitamin D without Energy Constraints 

In the first scenario, the baseline diet was optimized for an adequate intake of vitamin 

D. The baseline diet included some voluntary vitamin D-fortified foods, such as juices, fat 

spreads, soy-drinks, and breakfast cereals. The recommendations for nutrients had to be 

fulfilled, while the upper limits for calories were removed to allow the optimized diet to 

reach the adequate intake of vitamin D (13.4 µg/d). 

2.3. Scenario 2: Optimizing the Current Diet for Vitamin D within Energy Constraints 

In the second scenario, the diet was optimized for vitamin D, limiting energy intake 

to 2000 kcal and fulfilling nutrient recommendations. The diet was optimized to reach 9.6 

µg/d, the maximum achievable amount of vitamin D, within a 2000 kcal constraint. 
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2.4. Scenario 3: Optimizing the Current Diet with Additional Fortified Foods for Vitamin D 

In this scenario, vitamin D-fortified whole grain breads, semi-skimmed milk, and oil 

(soy, arachidic, and sunflower) were added to the food repertoire. These diets were opti-

mized for a vitamin D intake of 13.4 µg/d, meeting nutrient recommendations, within a 

2000 kcal limit. Combinations of two or three vitamin D-fortified foods were modelled. 

2.5. Scenario 4: Optimizing the Current Diet with Additional Fortified Foods for Vitamin D  

and CO2 

Like the previous scenario, vitamin D-fortified bread, milk, and oil were added to the 

diet. Both an adequate vitamin D intake and carbon footprint were set as the goals, while 

fulfilling nutrient references within a 2000 kcal limit. Either a capped (limit at 3.9 kg CO2 

eq) or a 10% reduced footprint (limit at 3.5 kg CO2 eq) was simulated. 

2.6. Food and Nutrition Data Used in the Model 

Chronic food consumption (food records taking into account different survey peri-

ods) from the 24- h dietary recall Dutch National Food Consumption Survey (DNFCS) of 

2003 was retrieved from the EFSA Comprehensive European Food Consumption Data-

base [15] at food classification system “FoodEx” level 3, i.e., food category sub-items, such 

as type of cheese. The nutritional composition of foods was defined using the Dutch Food 

Composition Database (NEVO) food composition tables of 2016 [16]. If the food item was not 

available in the NEVO database, the nutritional profile was selected from the United States 

Department of Agriculture (USDA) food composition database. After adding hypothetical for-

tified foods (see Section 2.8), this resulted in a set of 251 food items. 

The nutrition goals were based on the RNI’s and AI’s for vitamins and minerals, as 

recommended by the EFSA for adults [17]. The adequate intake for vitamin D is based on 

minimal exposure to sunlight [11]. For modelling purposes, reference values were aver-

aged for men and women. Assuming an average 2243 kcal consumption for adult women 

and men at a moderate physical activity level [18], the dietary reference values were also 

adjusted to 2000 kcal. For instance, the vitamin D reference value of 15 µg/d was adjusted 

to 13.4 µg/d per 2000 kcal (Table A1). The upper bounds or maximum reference values 

(MRVs) for carbohydrates, free sugars, total fat, saturated fatty acids, trans-fatty acids, 

cholesterol, and sodium were based on reference values from the World Health Organi-

zation and the Food and Agriculture Organization [19] (Table A1). 

2.7. Nutrient Density of the Diet 

The baseline and modelled diets were standardized to 2000 kcal in order to calculate 

the nutrient density per 2000 kcal diet, which allowed for comparisons between countries 

or genders, irrespective of calorie intake or reporting, providing a good reflection of the 

diet quality. We calculated the mean adequacy ratio (MAR) as an overall measure of the 

nutrient adequacy of the diet. The MAR was calculated as desired nutrients in a 2000 kcal 

diet as a percent of the RNI or AI, truncated at 100%, and averaged for 26 qualifying nu-

trients [20]. The mean excess ratio (MER) was calculated as percent of the MRV, and was 

averaged for 6 undesired nutrients (total fats, saturated fatty acids, trans fatty acids, cho-

lesterol, added sugars, and sodium) [20]. The added sugars were estimated from the sum 

of the food categories, in which mono- and di-saccharides almost exclusively represented 

the added sugars, and by subtracting the estimated lactose content in dairy foods from 

the total mono- and di-saccharides. 

2.8. Fortified Foods Used in the Model 

The current diet in the Netherlands already includes some vitamin D-fortified prod-

ucts, such as breakfast and porridge cereals, on average fortified at 4.2 µg/100 g and 16.5 

µg/100 g, respectively, as well as fat spreads, fortified on average at 7.5 µg/100 g of vitamin 

D. Bread and vegetable oil offer a suitable opportunity for improving vitamin D intake 
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through fortification, as they are consumed by a large proportion of the population in 

fairly constant amounts [21], are among the categories considered acceptable by consum-

ers in Nordic countries [22], and their fortification with vitamin D is technically feasible. 

Fortified milk offers another option to voluntary fortify food, but this may reach less peo-

ple, as some population groups do not consume milk. Vitamin D levels of 2, 6, and 15 

µg/100 g in semi-skimmed milk, whole grain bread, and vegetable oil, respectively, were 

selected. Fortified bread and milk were constrained to two servings daily, so as to avoid 

proposing an unrealistically high consumption of these food items in the simulated diet. 

2.9. Carbon Footprint Data Used in the Model 

Optimeal® 2.0 contains the environmental impact data of more than 200 food prod-

ucts, including carbon footprints. If the carbon footprint data were not available, they 

were obtained from the Agri-footprint® 3.0 Life Cycle Inventory food database (SimaPro 

Life Cycle Analysis software 8, Amersfoort, the Netherlands). The implementation of the 

impact assessment methods in SimaPro were used without modification. The carbon foot-

print was calculated using the IPCC 2013 GWP 100a assessment method and the results 

were expressed as kg CO2 equivalents, using the associated characterization factors for 

the relevant greenhouse gases. This modelling study uses an attributional life cycle as-

sessment estimating what share of the global environmental burdens belongs to a prod-

uct. It was estimated that one kilogram of vitamin D3 can have a carbon footprint of less 

than 200 kg CO2 equivalent based on primary data for the production of vitamin D3 (in-

ternal data). The carbon footprints of the whole grain bread, semi-skimmed milk, and oil 

were about 0.09, 0.12 kg, and 0.2–0.4 CO2 equivalent per 100 g, respectively. Adding 2, 6, 

and 15 µg of vitamin D per 100 g of bread, milk, and oil, respectively, added ~0.001% CO2 

to the total CO2 footprint of the food product. 

3. Results 

3.1. Scenario 1: Optimizing the Current Diet for Vitamin D without Energy Constraints 

Fish; meat products; dairy; eggs; and some voluntary fortified foods such as juice, fat 

spreads, and breakfast cereals, are the main sources of vitamin D in the Dutch diet (Figure 

1A). The baseline diet provided about 3 µg/d of vitamin D per 2000 kcal, contributing 21% 

of the adequate intake of vitamin D per 2000 kcal. Animal-source products provided 2 

µg/d of vitamin D, fortified foods provided 1 µg/d, and mushrooms provided 0.01 µg/d. 

Achieving 13.4 µg/d of vitamin D was not possible with the current diet within the 2000 

kcal intake limit. Therefore, the upper constraints for energy intake were removed. An 

adequate vitamin D intake could be reached when increasing the carbon footprint 2.8-fold 

(Figure 1B) and increasing the calorie consumption two-fold (Figure 1C). The increase in 

the carbon footprint of the optimized diet compared with the baseline diet was mainly 

attributable to an increase in the carbon footprints of meat products (3-fold); dairy (4-fold); 

oils, fat, and fat spreads (7-fold); egg products (11-fold); fish (15-fold); and legumes (17-

fold), respectively (Figure 1B). 



Nutrients 2021, 13, 592 5 of 12 
 

 

 

Figure 1. Daily contributions to (A) vitamin D intake, (B) carbon footprint, and (C) energy intake from the baseline diet 

and the diet optimized for vitamin D assuming no energy intake restrictions. 

3.2. Scenario 2: Optimizing the Current Diet for Vitamin D within Energy Constraints 

Despite the inclusion of voluntary vitamin D-fortified foods in the Dutch baseline 

diet, only 9.6 µg/d instead of the adequate 13.4 µg/d vitamin D could be achieved within 

the energy constraints of 2000 kcal (Figure 2A). To achieve 9.6 µg/d of vitamin D, fish 

(smoked herring and eel, and fish fingers), egg products (fried and boiled eggs), meat 

products (minced meat balls, meat soup, pate, and lean sausages), fortified breakfast ce-

reals (cornflakes), fortified margarine, butter cakes, and vegetables (fried mushrooms) 

provided most of the vitamin D in the vitamin D-optimized diet (Figure 2B). Optimizing 

the diet for vitamin D within the 2000 kcal boundary increased the carbon footprint 1.7-

fold compared with the baseline diet (Figure 2B). The carbon footprint increased 11-fold 

for egg products, 7-fold for fish, 6-fold for vegetables, and 2-fold for meat products, rela-

tive to the baseline. To achieve the vitamin D goals while meeting the nutrient recommen-

dations, calorie consumption from egg products, fish, vegetables, and meat products 

would need to increase 11-, 10-, 6-, and 2-fold, respectively, while reducing calories from 

most other food categories (Figure 2C). 
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Figure 2. Daily contributions to (A) vitamin D intake, (B) carbon footprint, and (C) energy intake from the baseline diet 

and the diet optimized for vitamin D within a 2000 kcal boundary. 

3.3. Scenario 3: Optimizing the Current Diet with Additional Fortified Foods for Vitamin D 

When adding vitamin D-fortified bread, milk, and oil to the Dutch baseline diet, it 

was possible to optimize the diet with an adequate vitamin D intake of 13.4 µg/d, meeting 

the other nutrient requirements while remaining within the 2000 kcal consumption con-

straint (Figure 3A). Vitamin D from fish increased 22-fold from baseline, and from forti-

fied bread and breakfast cereals it increased 170-fold from baseline (Figure 3A). Fortified 

bread was proposed over fortified milk or oil as source of vitamin D. When fortified bread 

was excluded as a dietary option, fortified oil was proposed over fortified milk (data not 

shown). When fortified oil was also excluded, fortified milk could fulfill the vitamin D 

requirements adequately (data not shown). Optimizing the baseline diet to meet the ade-

quate intake of vitamin D involved an 8% increase in the total diet carbon footprint, com-

ing mostly from fish and vegetables, of which the carbon footprints increased 6- and 2-

fold compared with baseline, respectively (Figure 3B). To achieve vitamin D goals while 

also meeting the other nutrient recommendations, calorie consumption from fish and veg-

etables would need to increase 8- and 2-fold, respectively (Figure 3C). In exchange, calo-

ries from cakes, sugar, snacks, potatoes, and tubers would need to decrease. 
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Figure 3. Daily contributions to (A) vitamin D intake; (B) carbon footprint; and (C) energy intake from the baseline diet 

and diet with additional fortified bread, milk, and oil optimized for vitamin D within a 2000 kcal boundary. 

3.4. Scenario 4: Optimizing the Current Diet with Additional Fortified Foods for Vitamin D  

and CO2 

Optimizing the diet for an adequate vitamin D intake and capped CO2 emission, 

while satisfying nutrient recommendations, was feasible through a small shift from ani-

mal-source foods to fortified cereals (data not shown). A 10% CO2 footprint reduction 

could only be achieved when removing the minimum nutrient recommendations or sig-

nificantly shifting to less popular food items. In the latter scenario, vitamin D was ob-

tained from an increased consumption of fish and fortified bread and breakfast cereals 

(Figure 4A), and from a shift from unfortified to fortified foods. The net 10% reduction in 

CO2 was a result of less CO2 (−33%) from meat, dairy, non-alcoholic drinks, cakes, sugar, 

and snacks, and a smaller increase in CO2 from the total of legumes, fruits, nuts, seeds, 

fish, and vegetables (Figure 4B). Meeting the vitamin D and CO2 goals while the satisfying 

nutrient recommendations required a significant shift in calorie intake (−33%), moving 

from meat, dairy, non-alcoholic drinks, cakes, sugar, and snacks, towards eggs (2-fold), 

vegetables (3-fold), and fish (8-fold; Figure 4C). 
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Figure 4. Daily contributions to (A) vitamin D intake; (B) carbon footprint; and (C) energy intake from the baseline diet 

and the diet with additional fortified bread, milk, and oil optimized for vitamin D and CO2 within a 2000 kcal boundary. 

3.5. Nutrient Density of the Current Diet and the Optimized Diets 

The calculated MAR and MER of the usual and optimized diet are shown in Table 1. 

The MAR of the desired nutrients in the Dutch baseline diet was 86%, with vitamin D 

being the first limiting nutrient (followed by seafood omega-3 fatty acids and fiber). The 

MER of the nutrients overconsumed relative to the maximum reference values was 120% 

(20% excess). Optimizing the diet for vitamin D and satisfying the nutrient recommenda-

tions without energy constraints increased the MAR to 100%, but increased the MER 2.4-

fold. After adding vitamin D-fortified whole grain bread, milk, and oil, the MAR increased 

to 100% and the MER decreased to 112%. Setting additional goals to reduce CO2 by 10% 

by compromising on popularity reduced the MER to 100% 

Table 1. The mean adequacy ratio (MAR) and mean excess ratio (MER) of the Dutch diet: (1) baseline, (2) after the inclusion 

of fortified milk and bread, and (3) optimizing for vitamin D and (4) vitamin D and CO2. 

 Current 

Scenario 1 

Usual Diet 

Vitamin D Goals 

No Energy Limits 

Scenario 2 

Usual Diet 

Maximum Vitamin D 

2000 kcal Limits 

Scenario 3 

Extra Fortified Foods 

Vitamin D Goals 

2000 kcal Limits 

 

Scenario 4 

Extra Fortified Foods 

Vitamin D Goals 

CO2 Goals 

2000 kcal Limits 

Mean adequacy 

ratio (MAR) 
86% 100% 100% 100% 100% 

Mean excess ratio 

(MER) 
120% 242% 154% 112% 100% 

4. Discussion 

This simulation study demonstrates that even with a diet that is relatively abundant 

in vitamin D-rich foods, it is not possible to achieve an adequate intake of vitamin D with-

out greatly increasing the carbon emission and calorie intake. Adding vitamin D-fortified 

options to the diet allowed for achieving the adequate intake of vitamin D and nutrient 

recommendations without sacrificing the carbon footprint and popularity of the diet. 

The adequate vitamin D intake of 15 µg/d set by the EFSA and IOM represents the 

average adequate intake to achieve a serum 25(OH)D of ≥50 nmol/L [11,12]. The assumed 
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low average year-round sun exposure in these dietary guidelines is realistic for the north-

ern latitude of the Netherlands, with a high prevalence of vitamin D deficiency [10]. The 

Dutch model diet contributed approximately 3 µg/d per 2000 kcal (i.e., 20% of the ade-

quate intake for vitamin D). This is comparable to the average vitamin D intake of 4.1 µg/d 

reported for European countries [23]. Two-thirds of the vitamin D in the Dutch model diet 

came from animal-source foods, one-third from voluntary vitamin D-fortified foods, and 

mushrooms contributed marginally. 

In this study, the Dutch model diet was optimized to meet the adequate intake for 

vitamin D. This was only achievable when the calorie intake increased 2-fold and the car-

bon footprint increased almost 3-fold. However, the inclusion of additional vitamin D-

fortified bread, milk, and oil in the diet, along with shifts in energy consumption towards 

fish and more plant-based nutrient-dense food sources, allowed for achieving an adequate 

vitamin D intake with minor compromises on the carbon emission and popularity of the 

diet within 2000 kcal limits. Clearly, the improvement in vitamin D adequacy (from 21% 

to 100%) and average nutrient adequacy (from 86% to 100%) was larger than the 8% in-

crease in the carbon footprint. As only µg amounts of vitamin D are added to foods, vita-

min D contributes only 1 permille to the carbon footprint of a food product and not to the 

total diet. A 10% reduction in carbon emissions while meeting the nutrient recommenda-

tions was feasible when shifting the intake of popular products such as meat, dairy, sugar, 

snacks, cakes, and non-alcoholic drinks more towards fish, fruits, nuts, vegetables, and 

eggs. However, these dietary changes may be less acceptable. Large reductions in meat, 

fish, eggs, and dairy products are not an option, as they provide essential or important 

sources of calcium; iodine; zinc; iron; and vitamins B2, B3, B5, B6, B12, and D [24–26]. 

 Our study has various limitations; first, the food survey used in the model was from 

2003, whereas food patterns likely changed over recent years. Second, the study focused 

solely on vitamin D intake relative to dietary references. Future work could consider in-

tegrating sun exposure as a source of vitamin D status in the model. Third, only the carbon 

footprint was selected as indicator of environmental impact, but other aspects such as land 

occupation and water use were not considered. The main strength of the study was the 

integral consideration of the popularity, nutrition, and climate aspects of the diets. Addi-

tional drivers of dietary choices, such as price, could be addressed in future research. 

Previous studies concluded that without the universal fortification of staple foods or 

a dramatic increase in fish consumption, the current vitamin D intakes are too low to meet 

the recommendations or to sustain a healthy vitamin D status in the population [27–30]. 

This is substantiated by our findings, showing that an unrealistic increase in animal-

source foods and the consequent carbon footprint is needed in order to meet the adequate 

vitamin D intake. Fortified whole grain bread was proposed over other fortified foods as 

a source of vitamin D, probably because it contributes to filling the fiber intake gap in the 

Netherlands, is popular, and has a relatively favorable carbon footprint. When fortifying 

foods, acceptable foods with a low carbon footprint addressing a nutrient gap should be 

considered. 

Achieving sufficient vitamin D from the sun has become an increasing challenge, 

with more sun avoidance, time spent indoors, and a narrowing gap between beneficial 

and harmful UV exposure time to obtain desirable vitamin D. Various simulation studies 

show that the inclusion of vitamin D-fortified foods in the diet can be a viable and safe 

approach to improve intakes or reduce the prevalence of inadequate intakes [30,31]. Vita-

min D-fortified bread and milk were able to reduce low vitamin D status in the winter 

season [32]. Food fortification with vitamin D in order to improve public health has been 

shown to be a cost-effective approach [33]. In voluntary fortification approaches, it is im-

portant that it is well-accepted by the population itself [33]. Consumers’ perceived health 

benefits and the appropriateness of the product are important drivers of purchasing and 

consumption [22]. In Finland, voluntary vitamin D fortification of milk products and fat 

spreads has been well-accepted since 2003, and helped the Finnish population reach vita-

min D levels ≥50 nmol/L in 2011 [34]. Enriching the vitamin D content of eggs, milk, and 
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meat by adding vitamin D to feed represents another potential complementary approach 

to address inadequate vitamin D intake at a population level [35]. Animal-source foods 

continue to be an important part of diets, as they provide micronutrients that are difficult 

to obtain in adequate quantities from plant-source foods alone. Vitamin D supplement 

intakes and recommendations have also shown to contribute significantly to achieving 

sufficient vitamin D status [34,36]. 

The present study shows that adequate intakes for vitamin D cannot be achieved 

with the current diet alone within realistic calorie and carbon emission limits, and addi-

tional vitamin D sources are needed to overcome the shortfalls. Universal fortification 

along with small dietary shifts represents an approach to improve the vitamin D status of 

the general population, at a high acceptability without affecting the carbon footprint. 
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Appendix A 

Table A1. Dietary reference values averaged for men and women adjusted for 2000 kcal energy 

consumption applied in the dietary modelling. 

  RNI 1 or AI 2 UL 3 or MRV 4 

Energy kcal 2000 2000 

Protein 5 g 58.1 125 

Polyunsaturated fatty acids g 13.3 26.6 

Linoleic acid g 8.9 19.4 

α-Linolenic acid g 0.9 4.8 

Fiber g 25  

Water g 2300 3800 

Alcohol g 0 10 

DHA+EPA 6 mg 250 1000 

Vitamin A µg RAE 624 3000 

Thiamin (B1) mg 0.84  

Riboflavin (B2) mg 1.43  

Niacin (B3) mg NE 13.4  

Vitamin B6 mg 1.52 25 

Folate (B9) µg FE 294 1000 

Vitamin B12 µg 3.57  

Vitamin C mg 91  

Vitamin D µg 13.4 100 

Vitamin E mg 10.7 300 

Vitamin K µg 62  

Calcium mg 847 2500 

Copper mg 1.3 5 

Iodine µg 156 600 

Iron mg 10.9 70 

Magnesium mg 290 530 

Phosphorus mg 490 3000 

Potassium mg 3121  
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Selenium µg 62 300 

Zinc mg 10.2 25 

Tryptophan g 0.3  

Threonine g 1.1  

Isoleucine g 1.5  

Leucine g 3.0  

Lysine g 2.3  

Methionine g 0.8  

Valine g 2.0  

Histidine g 0.8  

Carbohydrates g  300 

Added sugar g  50 

Total fat g  78 

Saturated fatty acids g  22 

Trans-fatty acids g  2.2 

Cholesterol mg  300 

Sodium mg  2000 
1 Recommended nutrient intake (RNI); 2 adequate intake (AI); 3 tolerable upper intake level (UL); 4 

maximum reference value (MRV); 5 at body weight of 70 kg; 6 DHA—docosahexaenoic acid; 

EPA—eicosapentaenoic acid. 
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