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Abstract: This study applied linear programming using a Dutch “model diet” to simulate the dietary
shifts needed in order to optimize the intake of vitamin D and to minimize the carbon footprint,
considering the popularity of the diet. Scenarios were modelled without and with additional fortified
bread, milk, and oil as options in the diets. The baseline diet provided about one fifth of the adequate
intake of vitamin D from natural food sources and voluntary vitamin D-fortified foods. Nevertheless,
when optimizing this diet for vitamin D, these food sources together were insufficient to meet the
adequate intake required, unless the carbon emission and calorie intake were increased almost 3-fold
and 2-fold, respectively. When vitamin D-fortified bread, milk, and oil were added as options to the
diet, along with increases in fish consumption, and decreases in sugar, snack, and cake consumption,
adequate intakes for vitamin D and other nutrients could be met within the 2000 kcal limits, along
with a relatively unchanged carbon footprint. Achieving vitamin D goals while reducing the carbon
footprint by 10% was only possible when compromising on the popularity of the diet. Adding
vitamin D to foods did not contribute to the total carbon emissions. The modelling study shows
that it is impossible to obtain adequate vitamin D through realistic dietary shifts alone, unless more
vitamin D-fortified foods are a necessary part of the diet.

Keywords: dietary modelling; sustainable diet; vitamin D intake; fortification; carbon emission

1. Introduction

Food production has a considerable impact on greenhouse gas emissions [1]. The
planet cannot sustain a continuation of the current dietary habits, especially when it comes
to feeding the 10 billion people living on the planet by 2050. There is a growing understand-
ing of the types of diets and food patterns that can be part of the solution in order to reduce
environmental impact, while optimizing health in terms of nutrient adequacies when shift-
ing dietary patterns [2]. Some governments have already incorporated sustainability into
their national dietary guidelines [3]. Even though sustainability and health considerations
are increasingly driving consumer purchasing decisions, consumers still face challenges
when changing dietary habits in order to improve their nutrition and sustainability [4,5].

Vitamin D deficiency is among the most neglected major public health problems
worldwide [6]. Surveys show that vitamin D deficiency is highly prevalent among all
population groups, with severe deficiency (<25 nmol/L) and deficiency (<50 nmol/L) rates
estimated to be 7% and 37% globally, respectively [6], and the vitamin D requirements
are largely unmet in most populations [7,8]. In the Netherlands, one study found that no
adults met the estimated average requirement for vitamin D [8]. Food provides a relatively
small proportion of the vitamin D supply, while vitamin D produced in the skin from UVB
light makes the greatest contribution [9]. An adequate intake of vitamin D-rich food is not
the only difficulty, as adequate sunlight exposure can be a challenge with sun avoidance
and less time spent outdoors. The high prevalence (83%) of low serum 25(OH)D levels
<50 nmol/L in Dutch adults suggests that vitamin D from diet and UVB exposure combined
are not adequate [10]. To ensure that individuals consume adequate vitamin D, irrespective
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of their exposure to sunlight, the Institute of Medicine (IOM) and the European Food
Safety Authority (EFSA) set the adequate intake for vitamin D based on assumed low sun
exposure and the intake needed in order to achieve a serum 25(OH)D of ≥50 nmol/L, a
level unlikely to pose adverse musculoskeletal health outcomes [11,12]. Moreover, experts
have highlighted the potential immunomodulant, anti-inflammatory, and anti-infective
roles of vitamin D beyond bone and muscle health [9,13].

However, obtaining an adequate intake of vitamin D from the diet alone is difficult, as
only few foods naturally contain significant amounts of vitamin D [14]. As vitamin D food
sources include mainly oily fish, meat, dairy, and eggs, shifting to more plant-based diets is
likely to further aggravate the risk of vitamin D deficiency. It remains controversial among
professionals whether sufficient vitamin D can be obtained from a healthy diet. This study
simulated the shifts needed within a Dutch “model diet” to overcome vitamin D shortfalls,
as well as the consequences for calorie intake and carbon emissions. In addition, dietary
shifts were modelled by extending the diet with fortified milk, bread, and vegetable oils
optimizing for vitamin D, as well as the vitamin D and carbon footprint combined.

2. Materials and Methods
2.1. Linear Modelling Methods

The linear modelling program Optimeal® 2.0 (Blonk Consultants, Gouda, the Nether-
lands) was used to model scenarios of dietary shifts in the Netherlands. The program can
propose dietary shifts from the current diet based on nutritional or environmental dietary
goals, optimizing for popularity, by searching for scenarios of foods that resemble current
diets as closely as possible. The program can set boundaries (constraints) for 36 nutrients,
and for energy to be fulfilled or limited through the upper boundaries. In all scenarios,
the recommended nutrient intake (RNI) and adequate intake (AI) were set as the lower
boundaries, and tolerable upper intake level (UL) and maximum reference value (MRV)
were set as the upper boundaries. We combined the data from the Dutch National Food
Survey and Food Composition Database and the Life Cycle Assessment databases, result-
ing in a consolidated dataset with daily amounts consumed, nutritional value, popularity
estimates, and carbon footprint estimates for 251 food items. The intake frequency of food
items were used as a proxy for food popularity. This Dutch model diet was optimized for
vitamin D (and carbon footprint) through linear modelling using the following scenarios.

2.2. Scenario 1: Optimizing the Current Diet for Vitamin D without Energy Constraints

In the first scenario, the baseline diet was optimized for an adequate intake of vitamin
D. The baseline diet included some voluntary vitamin D-fortified foods, such as juices, fat
spreads, soy-drinks, and breakfast cereals. The recommendations for nutrients had to be
fulfilled, while the upper limits for calories were removed to allow the optimized diet to
reach the adequate intake of vitamin D (13.4 µg/d).

2.3. Scenario 2: Optimizing the Current Diet for Vitamin D within Energy Constraints

In the second scenario, the diet was optimized for vitamin D, limiting energy intake
to 2000 kcal and fulfilling nutrient recommendations. The diet was optimized to reach
9.6 µg/d, the maximum achievable amount of vitamin D, within a 2000 kcal constraint.

2.4. Scenario 3: Optimizing the Current Diet with Additional Fortified Foods for Vitamin D

In this scenario, vitamin D-fortified whole grain breads, semi-skimmed milk, and
oil (soy, arachidic, and sunflower) were added to the food repertoire. These diets were
optimized for a vitamin D intake of 13.4 µg/d, meeting nutrient recommendations, within
a 2000 kcal limit. Combinations of two or three vitamin D-fortified foods were modelled.
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2.5. Scenario 4: Optimizing the Current Diet with Additional Fortified Foods for Vitamin D
and CO2

Like the previous scenario, vitamin D-fortified bread, milk, and oil were added to
the diet. Both an adequate vitamin D intake and carbon footprint were set as the goals,
while fulfilling nutrient references within a 2000 kcal limit. Either a capped (limit at 3.9 kg
CO2 eq) or a 10% reduced footprint (limit at 3.5 kg CO2 eq) was simulated.

2.6. Food and Nutrition Data Used in the Model

Chronic food consumption (food records taking into account different survey periods)
from the 24-h dietary recall Dutch National Food Consumption Survey (DNFCS) of 2003
was retrieved from the EFSA Comprehensive European Food Consumption Database [15]
at food classification system “FoodEx” level 3, i.e., food category sub-items, such as
type of cheese. The nutritional composition of foods was defined using the Dutch Food
Composition Database (NEVO) food composition tables of 2016 [16]. If the food item
was not available in the NEVO database, the nutritional profile was selected from the
United States Department of Agriculture (USDA) food composition database. After adding
hypothetical fortified foods (see Section 2.8), this resulted in a set of 251 food items.

The nutrition goals were based on the RNI’s and AI’s for vitamins and minerals, as
recommended by the EFSA for adults [17]. The adequate intake for vitamin D is based
on minimal exposure to sunlight [11]. For modelling purposes, reference values were
averaged for men and women. Assuming an average 2243 kcal consumption for adult
women and men at a moderate physical activity level [18], the dietary reference values
were also adjusted to 2000 kcal. For instance, the vitamin D reference value of 15 µg/d was
adjusted to 13.4 µg/d per 2000 kcal (Table A1). The upper bounds or maximum reference
values (MRVs) for carbohydrates, free sugars, total fat, saturated fatty acids, trans-fatty
acids, cholesterol, and sodium were based on reference values from the World Health
Organization and the Food and Agriculture Organization [19] (Table A1).

2.7. Nutrient Density of the Diet

The baseline and modelled diets were standardized to 2000 kcal in order to calculate
the nutrient density per 2000 kcal diet, which allowed for comparisons between countries
or genders, irrespective of calorie intake or reporting, providing a good reflection of the diet
quality. We calculated the mean adequacy ratio (MAR) as an overall measure of the nutrient
adequacy of the diet. The MAR was calculated as desired nutrients in a 2000 kcal diet as a
percent of the RNI or AI, truncated at 100%, and averaged for 26 qualifying nutrients [20].
The mean excess ratio (MER) was calculated as percent of the MRV, and was averaged for
6 undesired nutrients (total fats, saturated fatty acids, trans fatty acids, cholesterol, added
sugars, and sodium) [20]. The added sugars were estimated from the sum of the food
categories, in which mono- and di-saccharides almost exclusively represented the added
sugars, and by subtracting the estimated lactose content in dairy foods from the total mono-
and di-saccharides.

2.8. Fortified Foods Used in the Model

The current diet in the Netherlands already includes some vitamin D-fortified prod-
ucts, such as breakfast and porridge cereals, on average fortified at 4.2 µg/100 g and
16.5 µg/100 g, respectively, as well as fat spreads, fortified on average at 7.5 µg/100 g of
vitamin D. Bread and vegetable oil offer a suitable opportunity for improving vitamin D
intake through fortification, as they are consumed by a large proportion of the popula-
tion in fairly constant amounts [21], are among the categories considered acceptable by
consumers in Nordic countries [22], and their fortification with vitamin D is technically
feasible. Fortified milk offers another option to voluntary fortify food, but this may reach
less people, as some population groups do not consume milk. Vitamin D levels of 2, 6, and
15 µg/100 g in semi-skimmed milk, whole grain bread, and vegetable oil, respectively, were
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selected. Fortified bread and milk were constrained to two servings daily, so as to avoid
proposing an unrealistically high consumption of these food items in the simulated diet.

2.9. Carbon Footprint Data Used in the Model

Optimeal® 2.0 contains the environmental impact data of more than 200 food products,
including carbon footprints. If the carbon footprint data were not available, they were
obtained from the Agri-footprint® 3.0 Life Cycle Inventory food database (SimaPro Life
Cycle Analysis software 8, Amersfoort, the Netherlands). The implementation of the
impact assessment methods in SimaPro were used without modification. The carbon
footprint was calculated using the IPCC 2013 GWP 100a assessment method and the results
were expressed as kg CO2 equivalents, using the associated characterization factors for the
relevant greenhouse gases. This modelling study uses an attributional life cycle assessment
estimating what share of the global environmental burdens belongs to a product. It was
estimated that one kilogram of vitamin D3 can have a carbon footprint of less than 200 kg
CO2 equivalent based on primary data for the production of vitamin D3 (internal data).
The carbon footprints of the whole grain bread, semi-skimmed milk, and oil were about
0.09, 0.12 kg, and 0.2–0.4 CO2 equivalent per 100 g, respectively. Adding 2, 6, and 15 µg of
vitamin D per 100 g of bread, milk, and oil, respectively, added ~0.001% CO2 to the total
CO2 footprint of the food product.

3. Results
3.1. Scenario 1: Optimizing the Current Diet for Vitamin D without Energy Constraints

Fish; meat products; dairy; eggs; and some voluntary fortified foods such as juice,
fat spreads, and breakfast cereals, are the main sources of vitamin D in the Dutch diet
(Figure 1A). The baseline diet provided about 3 µg/d of vitamin D per 2000 kcal, con-
tributing 21% of the adequate intake of vitamin D per 2000 kcal. Animal-source products
provided 2 µg/d of vitamin D, fortified foods provided 1 µg/d, and mushrooms provided
0.01 µg/d. Achieving 13.4 µg/d of vitamin D was not possible with the current diet within
the 2000 kcal intake limit. Therefore, the upper constraints for energy intake were removed.
An adequate vitamin D intake could be reached when increasing the carbon footprint
2.8-fold (Figure 1B) and increasing the calorie consumption two-fold (Figure 1C). The
increase in the carbon footprint of the optimized diet compared with the baseline diet was
mainly attributable to an increase in the carbon footprints of meat products (3-fold); dairy
(4-fold); oils, fat, and fat spreads (7-fold); egg products (11-fold); fish (15-fold); and legumes
(17-fold), respectively (Figure 1B).

3.2. Scenario 2: Optimizing the Current Diet for Vitamin D within Energy Constraints

Despite the inclusion of voluntary vitamin D-fortified foods in the Dutch baseline
diet, only 9.6 µg/d instead of the adequate 13.4 µg/d vitamin D could be achieved within
the energy constraints of 2000 kcal (Figure 2A). To achieve 9.6 µg/d of vitamin D, fish
(smoked herring and eel, and fish fingers), egg products (fried and boiled eggs), meat
products (minced meat balls, meat soup, pate, and lean sausages), fortified breakfast
cereals (cornflakes), fortified margarine, butter cakes, and vegetables (fried mushrooms)
provided most of the vitamin D in the vitamin D-optimized diet (Figure 2B). Optimizing
the diet for vitamin D within the 2000 kcal boundary increased the carbon footprint 1.7-fold
compared with the baseline diet (Figure 2B). The carbon footprint increased 11-fold for
egg products, 7-fold for fish, 6-fold for vegetables, and 2-fold for meat products, relative to
the baseline. To achieve the vitamin D goals while meeting the nutrient recommendations,
calorie consumption from egg products, fish, vegetables, and meat products would need to
increase 11-, 10-, 6-, and 2-fold, respectively, while reducing calories from most other food
categories (Figure 2C).
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Figure 1. Daily contributions to (A) vitamin D intake, (B) carbon footprint, and (C) energy intake from the baseline diet and
the diet optimized for vitamin D assuming no energy intake restrictions.

3.3. Scenario 3: Optimizing the Current Diet with Additional Fortified Foods for Vitamin D

When adding vitamin D-fortified bread, milk, and oil to the Dutch baseline diet, it was
possible to optimize the diet with an adequate vitamin D intake of 13.4 µg/d, meeting the
other nutrient requirements while remaining within the 2000 kcal consumption constraint
(Figure 3A). Vitamin D from fish increased 22-fold from baseline, and from fortified bread
and breakfast cereals it increased 170-fold from baseline (Figure 3A). Fortified bread
was proposed over fortified milk or oil as source of vitamin D. When fortified bread was
excluded as a dietary option, fortified oil was proposed over fortified milk (data not shown).
When fortified oil was also excluded, fortified milk could fulfill the vitamin D requirements
adequately (data not shown). Optimizing the baseline diet to meet the adequate intake of
vitamin D involved an 8% increase in the total diet carbon footprint, coming mostly from
fish and vegetables, of which the carbon footprints increased 6- and 2-fold compared with
baseline, respectively (Figure 3B). To achieve vitamin D goals while also meeting the other
nutrient recommendations, calorie consumption from fish and vegetables would need to
increase 8- and 2-fold, respectively (Figure 3C). In exchange, calories from cakes, sugar,
snacks, potatoes, and tubers would need to decrease.

3.4. Scenario 4: Optimizing the Current Diet with Additional Fortified Foods for Vitamin D
and CO2

Optimizing the diet for an adequate vitamin D intake and capped CO2 emission,
while satisfying nutrient recommendations, was feasible through a small shift from animal-
source foods to fortified cereals (data not shown). A 10% CO2 footprint reduction could
only be achieved when removing the minimum nutrient recommendations or significantly
shifting to less popular food items. In the latter scenario, vitamin D was obtained from
an increased consumption of fish and fortified bread and breakfast cereals (Figure 4A),
and from a shift from unfortified to fortified foods. The net 10% reduction in CO2 was a
result of less CO2 (−33%) from meat, dairy, non-alcoholic drinks, cakes, sugar, and snacks,
and a smaller increase in CO2 from the total of legumes, fruits, nuts, seeds, fish, and
vegetables (Figure 4B). Meeting the vitamin D and CO2 goals while the satisfying nutrient
recommendations required a significant shift in calorie intake (−33%), moving from meat,
dairy, non-alcoholic drinks, cakes, sugar, and snacks, towards eggs (2-fold), vegetables
(3-fold), and fish (8-fold; Figure 4C).
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Figure 2. Daily contributions to (A) vitamin D intake, (B) carbon footprint, and (C) energy intake from the baseline diet and
the diet optimized for vitamin D within a 2000 kcal boundary.
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Figure 3. Daily contributions to (A) vitamin D intake; (B) carbon footprint; and (C) energy intake from the baseline diet and
diet with additional fortified bread, milk, and oil optimized for vitamin D within a 2000 kcal boundary.

3.5. Nutrient Density of the Current Diet and the Optimized Diets

The calculated MAR and MER of the usual and optimized diet are shown in Table 1.
The MAR of the desired nutrients in the Dutch baseline diet was 86%, with vitamin D being
the first limiting nutrient (followed by seafood omega-3 fatty acids and fiber). The MER of
the nutrients overconsumed relative to the maximum reference values was 120% (20% ex-
cess). Optimizing the diet for vitamin D and satisfying the nutrient recommendations
without energy constraints increased the MAR to 100%, but increased the MER 2.4-fold.
After adding vitamin D-fortified whole grain bread, milk, and oil, the MAR increased to
100% and the MER decreased to 112%. Setting additional goals to reduce CO2 by 10% by
compromising on popularity reduced the MER to 100%
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Figure 4. Daily contributions to (A) vitamin D intake; (B) carbon footprint; and (C) energy intake from the baseline diet and
the diet with additional fortified bread, milk, and oil optimized for vitamin D and CO2 within a 2000 kcal boundary.

Table 1. The mean adequacy ratio (MAR) and mean excess ratio (MER) of the Dutch diet: (1) baseline, (2) after the inclusion
of fortified milk and bread, and (3) optimizing for vitamin D and (4) vitamin D and CO2.

Current

Scenario 1
Usual Diet

Vitamin D Goals
No Energy Limits

Scenario 2
Usual Diet

Maximum Vitamin D
2000 kcal Limits

Scenario 3
Extra Fortified Foods

Vitamin D Goals
2000 kcal Limits

Scenario 4
Extra Fortified Foods

Vitamin D Goals
CO2 Goals

2000 kcal Limits

Mean adequacy ratio
(MAR) 86% 100% 100% 100% 100%

Mean excess ratio
(MER) 120% 242% 154% 112% 100%

4. Discussion

This simulation study demonstrates that even with a diet that is relatively abundant in
vitamin D-rich foods, it is not possible to achieve an adequate intake of vitamin D without
greatly increasing the carbon emission and calorie intake. Adding vitamin D-fortified
options to the diet allowed for achieving the adequate intake of vitamin D and nutrient
recommendations without sacrificing the carbon footprint and popularity of the diet.

The adequate vitamin D intake of 15 µg/d set by the EFSA and IOM represents the
average adequate intake to achieve a serum 25(OH)D of ≥50 nmol/L [11,12]. The assumed
low average year-round sun exposure in these dietary guidelines is realistic for the northern
latitude of the Netherlands, with a high prevalence of vitamin D deficiency [10]. The Dutch
model diet contributed approximately 3 µg/d per 2000 kcal (i.e., 20% of the adequate intake
for vitamin D). This is comparable to the average vitamin D intake of 4.1 µg/d reported for
European countries [23]. Two-thirds of the vitamin D in the Dutch model diet came from
animal-source foods, one-third from voluntary vitamin D-fortified foods, and mushrooms
contributed marginally.

In this study, the Dutch model diet was optimized to meet the adequate intake for
vitamin D. This was only achievable when the calorie intake increased 2-fold and the
carbon footprint increased almost 3-fold. However, the inclusion of additional vitamin
D-fortified bread, milk, and oil in the diet, along with shifts in energy consumption towards
fish and more plant-based nutrient-dense food sources, allowed for achieving an adequate
vitamin D intake with minor compromises on the carbon emission and popularity of the
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diet within 2000 kcal limits. Clearly, the improvement in vitamin D adequacy (from 21% to
100%) and average nutrient adequacy (from 86% to 100%) was larger than the 8% increase
in the carbon footprint. As only µg amounts of vitamin D are added to foods, vitamin D
contributes only 1 permille to the carbon footprint of a food product and not to the total
diet. A 10% reduction in carbon emissions while meeting the nutrient recommendations
was feasible when shifting the intake of popular products such as meat, dairy, sugar,
snacks, cakes, and non-alcoholic drinks more towards fish, fruits, nuts, vegetables, and
eggs. However, these dietary changes may be less acceptable. Large reductions in meat,
fish, eggs, and dairy products are not an option, as they provide essential or important
sources of calcium; iodine; zinc; iron; and vitamins B2, B3, B5, B6, B12, and D [24–26].

Our study has various limitations; first, the food survey used in the model was from
2003, whereas food patterns likely changed over recent years. Second, the study focused
solely on vitamin D intake relative to dietary references. Future work could consider
integrating sun exposure as a source of vitamin D status in the model. Third, only the
carbon footprint was selected as indicator of environmental impact, but other aspects such
as land occupation and water use were not considered. The main strength of the study
was the integral consideration of the popularity, nutrition, and climate aspects of the diets.
Additional drivers of dietary choices, such as price, could be addressed in future research.

Previous studies concluded that without the universal fortification of staple foods or a
dramatic increase in fish consumption, the current vitamin D intakes are too low to meet
the recommendations or to sustain a healthy vitamin D status in the population [27–30].
This is substantiated by our findings, showing that an unrealistic increase in animal-
source foods and the consequent carbon footprint is needed in order to meet the adequate
vitamin D intake. Fortified whole grain bread was proposed over other fortified foods as a
source of vitamin D, probably because it contributes to filling the fiber intake gap in the
Netherlands, is popular, and has a relatively favorable carbon footprint. When fortifying
foods, acceptable foods with a low carbon footprint addressing a nutrient gap should
be considered.

Achieving sufficient vitamin D from the sun has become an increasing challenge, with
more sun avoidance, time spent indoors, and a narrowing gap between beneficial and
harmful UV exposure time to obtain desirable vitamin D. Various simulation studies show
that the inclusion of vitamin D-fortified foods in the diet can be a viable and safe approach
to improve intakes or reduce the prevalence of inadequate intakes [30,31]. Vitamin D-
fortified bread and milk were able to reduce low vitamin D status in the winter season [32].
Food fortification with vitamin D in order to improve public health has been shown to be a
cost-effective approach [33]. In voluntary fortification approaches, it is important that it is
well-accepted by the population itself [33]. Consumers’ perceived health benefits and the
appropriateness of the product are important drivers of purchasing and consumption [22].
In Finland, voluntary vitamin D fortification of milk products and fat spreads has been well-
accepted since 2003, and helped the Finnish population reach vitamin D levels ≥50 nmol/L
in 2011 [34]. Enriching the vitamin D content of eggs, milk, and meat by adding vitamin D to
feed represents another potential complementary approach to address inadequate vitamin
D intake at a population level [35]. Animal-source foods continue to be an important part
of diets, as they provide micronutrients that are difficult to obtain in adequate quantities
from plant-source foods alone. Vitamin D supplement intakes and recommendations have
also shown to contribute significantly to achieving sufficient vitamin D status [34,36].

The present study shows that adequate intakes for vitamin D cannot be achieved with
the current diet alone within realistic calorie and carbon emission limits, and additional
vitamin D sources are needed to overcome the shortfalls. Universal fortification along with
small dietary shifts represents an approach to improve the vitamin D status of the general
population, at a high acceptability without affecting the carbon footprint.
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Appendix A

Table A1. Dietary reference values averaged for men and women adjusted for 2000 kcal energy
consumption applied in the dietary modelling.

RNI 1 or AI 2 UL 3 or MRV 4

Energy kcal 2000 2000

Protein 5 g 58.1 125

Polyunsaturated fatty acids g 13.3 26.6

Linoleic acid g 8.9 19.4

α-Linolenic acid g 0.9 4.8

Fiber g 25

Water g 2300 3800

Alcohol g 0 10

DHA+EPA 6 mg 250 1000

Vitamin A µg RAE 624 3000

Thiamin (B1) mg 0.84

Riboflavin (B2) mg 1.43

Niacin (B3) mg NE 13.4

Vitamin B6 mg 1.52 25

Folate (B9) µg FE 294 1000

Vitamin B12 µg 3.57

Vitamin C mg 91

Vitamin D µg 13.4 100

Vitamin E mg 10.7 300

Vitamin K µg 62

Calcium mg 847 2500

Copper mg 1.3 5

Iodine µg 156 600

Iron mg 10.9 70
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Table A1. Cont.

RNI 1 or AI 2 UL 3 or MRV 4

Magnesium mg 290 530

Phosphorus mg 490 3000

Potassium mg 3121

Selenium µg 62 300

Zinc mg 10.2 25

Tryptophan g 0.3

Threonine g 1.1

Isoleucine g 1.5

Leucine g 3.0

Lysine g 2.3

Methionine g 0.8

Valine g 2.0

Histidine g 0.8

Carbohydrates g 300

Added sugar g 50

Total fat g 78

Saturated fatty acids g 22

Trans-fatty acids g 2.2

Cholesterol mg 300

Sodium mg 2000
1 Recommended nutrient intake (RNI); 2 adequate intake (AI); 3 tolerable upper intake level (UL); 4 maximum
reference value (MRV); 5 at body weight of 70 kg; 6 DHA—docosahexaenoic acid; EPA—eicosapentaenoic acid.
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