

Supplementary Materials

Table S1. The effect of zinc (Zn) on the concentration of cadmium (Cd) in the liver and kidney of rats 1.2.3.

Constant.		5 mg Cd/L + 3	80 mg Zn/L	5 mg Cd/L + 60 mg Zn/L				
Control	Effect of	Effect of	Effect of	Effect of	Effect of Zn			
(mean ± standard error)	Cd alone	Cd + Zn	Zn	Cd + Zn				
		Liver						
0.0369 ± 0.0049 µg/g	↑ 37-fold ª‡	↑ 27-fold ª‡	✓ 28% ^{d*}	↑ 25-fold ª‡	∠ 33% ^{d*}			
		Kidney						
0.0694 ± 0.0040 μg/g	↑ 114-fold ª‡	↑93-fold ª‡	✓ 18% d*	↑ 89-fold ª‡	✓ 22% ^{d*}			

¹ The rats received 5 mg Cd/L of drinking water and 30 or 60 mg Zn/L of drinking water for 6 months. ² Table presents changes in Cd concentration (Kruskal-Wallis post hoc test; * p < 0.05, ‡p < 0.001): a vs. Control group (\uparrow , fold of increase), d vs. Cd group (\checkmark , percentage decrease). ³ Detailed data on the impact of Zn on the concentration of Cd in the organism of rats exposed to this xenobiotic have already been published [11,12].

Table S2. Interactive and main effects of cadmium (Cd) and zinc (Zn) on the concentration of Cd in the brain tissue of male rats ¹.

	5 mg	; Cd/L + 30 mg	Zn/L	5 mg Cd/L + 60 mg Zn/L					
Main Effect of Cd	Main Effect of Zn	in Interactive ect Effect of Zn Cd + Zn Effect Character of Cd - Zn Interaction		Main Effect of Cd	Main Effect of Zn	Interactive Effect of Cd + Zn	Interactive Effect of Cd + Zn Effect Cd + Zn Effect Cd + Zn Cd Effect Character of Cd - Zn Interaction		
22.42 ‡	NS	NS	No interaction	17.71 ‡	NS	NS	No interaction		

¹ The outcomes of the ANOVA/MANOVA statistical test are expressed as *F* values and the level of statistical significance (*p*). *F* values having p < 0.05 are recognized statistically significant (‡ p < 0.001). NS – not statistically significant (p > 0.05).

Table S3. Mutual dependencies between the indices of oxidative/antioxidative status of the brain tissue of male rats ¹.

Devenuetor	600	CAT	CDv	CP	тен	DCII	CEIL	CSSC	GSH/	тас	ILO.	MBO	TOP	OSI		MDA	9 Icomposterio
I afaiitetef	500	CAI	Grx	GK	15H	rsH	GSH	6336	GSSG	IAS	H2O2	MrO	105	051	LPO	101D11	8-1soprostane
SOD	-																
CAT	0.388 +	-															
GPx	0.414 +	0.294 *	-														
GR	-0.448 +	NS	-0.308 *	-													
TSH	NS	NS	NS	-0.333 *	-												
PSH	NS	NS	NS	NS	NS	-											
GSH	NS	NS	NS	NS	NS	NS	-										
GSSG	NS	NS	NS	$0.478 \ddagger$	NS	NS	NS	-									
GSH/GSSG	NS	NS	NS	NS	NS	NS	0.608 ‡	-0.658‡	-								
TAS	0.472 ‡	NS	NS	NS	0.429 +	NS	0.430 +	NS	NS	-							
H2O2	NS	-0.371 +	NS	0.391 +	-0.315 *	NS	-0.392 +	0.429 +	-0.618‡	NS	-						
MPO	-0.398 +	NS	-0.411 +	0.651 ‡	-0.316 *	NS	NS	0.633 ‡	-0.369 +	NS	NS	-					
TOS	NS	-0.386 +	-0.428 [‡]	0.348 *	-0.422 +	NS	-0.278 #	NS	-0.282 #	-0.288 *	0.422 +	0.336 *	-				
OSI	-0.360 *	-0.470 ‡	$0.475 \ddagger$	0.337 *	-0.517‡	NS	-0.447 *	NS	-0.278 #	-0.579‡	0.426 +	0.318 *	0.901 ‡	-			
LPO	-0.461 ‡	-0.392 +	-0.327 *	0.496 ‡	-0.245 #	NS	-0.357 +	NS	-0.386 +	-0.280 #	0.485‡	0.285 *	NS	0.352 +	-		
MDA	-0.294 *	NS	-0.385 +	0.494 ‡	NS	NS	NS	0.462 ‡	-0.475 ‡	NS	NS	0.707 ‡	0.368 *	0.328 *	0.430 +	-	
8-Isoprostane	NS	-0.366 +	NS	0.419 +	-0.361 *	NS	-0.367 +	0.403 +	-0.563 ‡	NS	0.595 ‡	0.452 +	0.537 ‡	0.502 ‡	0.285 *	0.516 ‡	-
РС	-0.470‡	NS	-0.375 +	0.476‡	-0.197 #	NS	-0.311 *	0.365 +	-0.391 +	-0.429 +	0.312 *	0.593 ‡	0.324 *	0.406 +	0.307 *	0.501 ‡	NS

¹ Data are expressed as *r* values and the level of statistical significance (*p*). The values of *r* with p < 0.05 were considered statistically significant (* p < 0.05, * p < 0.01, * p < 0.001, * p = 0.05). NS – not statistically significant (p > 0.05). SOD, superoxide dismutase CAT, catalase; GPx, glutathione peroxidase; GR, glutathione reductase; TSH, total thiol groups; PSH, protein thiol groups; GSH, reduced glutathione; GSSG, oxidized glutathione; GSH/GSSG, the ratio of reduced glutathione to oxidized glutathione; TAS, total antioxidative status; H₂O₂, hydrogen peroxide; MPO, myeloperoxidase; TOS, total oxidative status; OSI, oxidative stress index; LPO, lipid peroxides; MDA, malondialdehyde; PC, protein carbonyls.