

Review

Berries as a Treatment for Obesity-Induced Inflammation: Evidence from Preclinical Models

Hannah Land Lail, Rafaela G. Feresin, Dominique Hicks, Blakely Stone, Emily Price and Desiree Wanders *

Nutrients 2 of 5

Table S1. Summary of Animal Studies Examining Effects of Berries or their Components on Inflammation.

Animal Studies					
Model	Treatment	Effect on Inflammation	Mechanism	Reference	
		Blackberries			
Male C57BL/6 mice	Anthocyanins from blackberry extract (200 mg/kg diet)	Reduced gene expression of NF-κB, TNF-α, and IL-6 in liver	N/A	[32]	
Female SKH-1 hairless mice	Topical application of blackberry extract (10 and 20%)	Reduced expression of iNOS, PGE ₂ , IL-6, and TNF-α in skin	Reduced NF-κB, iNOS, COX-2, PGE ₂ signaling	[40]	
Male C57BL/6J mice	Freeze-dried blackberry in diet (20% of the diet)	Null	N/A	[30]	
Male C57BL/6J mice	Freeze-dried blackberry supplementation (6.3% of diet in weight; 470 mg C3G equivalents/kg diet)	Null	N/A	[31]	
Wistar rats	Freeze-dried blackberry anthocyanin-rich extract (25 mg/kg BW/day)	Attenuated neuroinflammation; Decreased expression of TCK-1 in the hippocampus	Stimulating tryptophan metabolism in the kynurenine pathway	[41]	
Male C57BL/6J mice	Fermented blueberry-blackberry beverage	Null	N/A	[33]	
Female Sprague–Dawley rats	Freeze-dried blackberry powder (10% of the diet)	Reduced ovariectomy-induced increase in body weight Reduced mRNA expression of NF-κB and COX-2 in the liver	N/A	[34]	
		Blueberries			
Male C57BL/6 mice	Blueberry anthocyanins (200 mg/kg diet)	Decreased IL-6 and TNF-α in liver; Increased SOD and GPx antioxidant activity in liver and serum	Decreased NF-κB	[32]	
C57BL/6 mice	HFD supplemented with freeze-dried blueberry powder (5% or 10% of diet)	Reduced expression of IL-1β, IL-2, IL-7 TNF-α, GM-CSF and MCP-1 Reduction of T-helper 1 cells and Tc cells in the spleen	N/A	[50]	
Male C57BL/6 mice	HFD supplemented with freeze-dried blueberry powder (4% of diet)	Reduced TNF-α, MCP-1, and IL-10 expression, and increased GPx3 antioxidant activity in adipose tissue	N/A	[51]	
Obese Zucker rats	2% Blueberry diet	Reduced ROS, superoxide, peroxynitrite, IL-1β, IL-18 in the kidney	Reduced TLR4 expression and MAPK phosphorylation, inhibited NF-κB activity; Increased Nrf2 expression	[52]	
Male albino rats with STZ-in- duced diabetes	Blueberry anthocyanins (20, 40, and 80 mg/kg BW/day) for 12 weeks	Increased GSH, GPx activity Decreased MDA, ROS levels in retinal cells Decreased IL-1β in serum	Increased Nrf2 and HO-1	[55]	
Male Wistar rats	Freeze-dried blueberry powder (10% of HFD)	Decreased TNF-α and IL-6 in adipose tissue; Decreased MDA expression in the liver	Reduced NF-κB	[76]	
Obese male Zucker Rats	Wild blueberry (8% of diet)	Reduced serum IL-6, TNF-α Reduced hepatic NF-κB, IL-6, TNF-α, and CRP Reduced adipose NF-κB, IL-6, and TNF-α	Reduced NF-κB in liver and adipose tissue	[53]	
Male C57BL/6J mice	Freeze-dried blueberry supplementation (5% w/w, 470 mg CGE/kg diet)	Null	N/A	[31]	

Nutrients 3 of 5

Male C57BL/6J mice	Freeze-dried whole SB powder (2.35% of diet by weight)	Reduced expression of IκKβ, NOX2, IκBα, NOX4, monocyte binding, blood pressure, and inflammation in CA endothelial cells	Reduced NF-κB	[88]
Male CD-1 mice	Freeze-dried whole SB powder (2.5 or 5% of diet by weight)	Reduced TNF-α, IL-1β, IFN-γ; IL-17, decreased iNOS, p-53; Increased GSH/GSSG ratio Suppressed expressions of cleaved caspase-3 and c-JUN	Reduced NF-κB and COX-2	[89]
Male Wistar rats	P3G-enriched strawberry powder (8 mg P3G/kg/day) for 8 weeks	Reduced inflammatory cell infiltration in liver and left ventricle	N/A	[29]
Male Wistar rats	Freeze-dried SB/BB powder (5:1) (6% of diet by weight) for 6 weeks	Reduced circulating MCP-1	N/A	[81]
C57BL/6J mice	2.6% SB powder (equivalent to 1 human serving)	Reduced circulating CRP	N/A	[82]
		Raspberries		
Wild-type (WT) and AMPKα1 ^{-/-} mice	HFD plus raspberry (5% HFD dry weight)	Reduced TNF- α , IL-1 β , IL-6, IL-8 in skeletal muscle	Reduced of NF-κB/p65; dependent on AMPKα1	[90]
Male C57BL/6 mice	HFD or HFD supplemented with a polyphenolic fraction from whole fruit, pulp, or seed.	Decreased the recruitment of macrophages and adipocyte hypertrophy in adipose tissue	Inhibited NLRP3 inflammasome activation	[91]
Male C57BL/6 mice	HFHS diet supplemented with ellagic acid from raspberry seed flour	Reduced IL-6, IL-8, F4/80, TNF α , and MCP-1 expression	N/A	[93]
C57BL/6 mice	HFD supplemented with raspberry anthocyanins (200 mg/kg diet/day) for 12 weeks	Reduced MDA, TNF-α, and IL-6 in the liver	Elevated SOD, GSH activities; down-regulated NF-κΒ	[92]

Nutrients 4 of 5

Table S2. Summary of cell culture studies examining effects of berries or their components on inflammation.

Cell Culture Studies					
Model	Treatment	Effect on Inflammation	Mechanism	Reference	
		Blackberries			
RAW 264.7 Macrophages	Anthocyanin- and proanthocyanin- enriched fractions from blueberry-blackberry wine blends (50 and 100 μM)	Reduced expression of iNOS, NO, and COX-2	Reduced NF-κB signaling	[28]	
RAW 264.7 Macrophages	Anthocyanin-enriched fractions of blueberry-blackberry wine blends	Reduced secretion of NO and TNF- $\!\alpha$	Reduced NF-κB signaling	[39]	
RAW 264.7 Macrophages	Blackberry anthocyanins (0-20 μg/mL)	Reduced IL-1β and TNFα mRNA expression	Inhibition of NF-κB translocation	[38]	
		Blueberries			
Human Retinal Capillary Endothelial cells (HRCECs)	Blueberry anthocyanin extract (BAE) (Malvidin Malvidin-3-glucoside Malvidin-3-galactoside)	Decreased ROS	Increased catalase, superoxide dismutase Downregulated Nox4 Decreased VEGF Inhibited Akt pathway	[56]	
Human Retinal Pigment Epithelial cells	Blueberry anthocyanin extract (BAE) (Malvidin Malvidin-3-glucoside Malvidin-3-galactoside)	Inhibited apoptosis Decreased VEGF Altered Akt pathway	N/A	[57]	
Human Aortic Endothelial cells (HAECs)	Blueberry metabolites (700nM benzoic acid-4-sulfate, 5µM hippuric acid, 3µM hydroxyhippuric acid, 75nM isovanillic acid-3-sulfate, and 75nM vanillic acid-4-sulfate)	Reduced monocyte adhesion Reduced inflammatory markers IL-8, MCP1, and VCAM-1	N/A	[69]	
Human Umbilical Vein Endothelial cells (HU- VECs)	Anthocyanin-rich- fraction from blueberries (from 0.01 to 10 µg/mL)	Reduced THP-1 adhesion	Reduced monocyte adhesion of THP-1 to HUVECs by decreasing E-selectin concen- trations	[70]	
Human Aortic Endothelial cells (HAECs)	Blueberry metabolites (700nM benzoic acid-4-sulfate, 5µM hippuric acid, 3µM hydroxyhippuric acid, 75nM isovanillic acid-3-sulfate, and 75nM vanillic acid-4-sulfate Or anthocyanins: malvidin-3-glucoside and cyanidin-3-glucoside)	Reversed the effects of palmitate by decreasing ROS, Nox4, chemokines, ICAM-1, $I\kappa B\alpha$, monocyte adhesion, and NO production	N/A	[71]	
Human Umbilical Vein Endothelial cells	Blueberry anthocyanin extract (BAE) (Malvidin Malvidin-3-glucoside Malvidin-3-galactoside at 1, 10, 50, and 100μM)	Decreased MCP1, ICAM-1, and VCAM-1 expression Decreased IkB α degradation and altered nuclear translocation of P65	Inhibited NF-κB pathway	[72]	
		Strawberries			
RAW 264.7 Macrophages	Sheolhyang strawberry fraction	Reduced TNF-a, IL-1β, and iNOS expressions	Blocked degradation of IκBα Inhibited NF-κB and MAPK signaling	[86]	
Human Dermal Fibroblasts (HDF)	Alba strawberry methanolic extracts (25–1000 µg/mL)	Reduced ROS/NO	N/A	[85]	

Nutrients 5 of 5

RAW 264.7 Macrophages	SB extract (100 µg/mL)	Reduced LPS-induced ROS, TNF- α , IL-1 β , and IL-6, pI $\kappa\beta a$	Increased Nrf2; reduced NF-κB; increased AMPK-activation	[87]	
Raspberries					
RAW 264.7 Macrophages	Red raspberry extract (100, 150 and 200 $\mu g/mL$)	Attenuated LPS/IFN-γ-induced inflammatory responses in RAW 264.7 cells	Blocked activation of NF-κB and MAPK/JNK	[95]	
Murine Macrophages	Black raspberry fractions	Suppressed mRNA and protein expressions of TNF- α , IL-6, and IL-1 β	Inhibited MAPKs and STAT3	[96]	
Microglia cells	Raspberries subjected to in vitro digestion	Inhibited microglial proinflammatory activation by LPS; decreased Iba1 expression, TNF-α release, and NO production	/ N/A	[94]	