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Abstract: Gastrointestinal dysfunction is one of the most prevalent physiological symptoms of autism
spectrum disorder (ASD). A growing body of largely preclinical research suggests that dysbiotic gut
microbiota may modulate brain function and social behavior, yet little is known about the mechanisms
that underlie these relationships and how they may influence the pathogenesis or severity of ASD.
While various genetic and environmental risk factors have been implicated in ASD, this review aims
to provide an overview of studies elucidating the mechanisms by which gut microbiota, associated
metabolites, and the brain interact to influence behavior and ASD development, in at least a subgroup
of individuals with gastrointestinal problems. Specifically, we review the brain-gut-microbiome
system and discuss findings from current animal and human studies as they relate to social-behavioral
and neurological impairments in ASD, microbiota-targeted therapies (i.e., probiotics, fecal microbiota
transplantation) in ASD, and how microbiota may influence the brain at molecular, structural, and
functional levels, with a particular interest in social and emotion-related brain networks. A deeper
understanding of microbiome-brain-behavior interactions has the potential to inform new therapies
aimed at modulating this system and alleviating both behavioral and physiological symptomatology
in individuals with ASD.

Keywords: autism spectrum disorder; brain-gut-microbiome system; gut-brain axis; microbiome;
probiotics; tryptophan pathway

1. Introduction

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder charac-
terized by two core deficits: persistent difficulties in social communication and interaction,
and restricted, repetitive patterns of behavior [1]. A growing body of research suggests
that gut microbiota may serve an important role in modulating brain function, social
behavior, and ASD symptomatology; for a review, see [2]. While various genetic and
environmental risk factors have been implicated in ASD, this review aims to analyze
the putative mechanisms underlying how gut microbiota, associated metabolites, and
the brain interact to influence behavior and ASD development. In particular, we review:
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(1) the brain-gut-microbiome (BGM) system; (2) findings from current animal and human
studies as they relate to behavioral and neurological impairments in ASD; (3) the potential
for microbiota-targeted therapies in ASD; and (4) how alterations to the microbiome may
influence the development of neural networks involved in social and emotional skills.

2. Strategies for Article Search

Articles were obtained from PubMed, SCOPUS, PsycInfo, and Google Scholar databases,
using the following keywords: gut microbiome, gut-brain-microbiome axis, autism, autism
spectrum disorder, ASD, social behavior, social cognition, emotion processing, probiotics,
fecal microbial transplantation, tryptophan metabolism, or neuroimaging. Additional
articles were found using the reference lists of already retrieved studies. Our search was
limited to studies written in English and published up to January 2022. Both original
research and review articles were included.

3. The Brain-Gut-Microbiome (BGM) System

Over the past decade, a surge of research has emerged that investigates the bidi-
rectional relationship between the brain and the human gut microbiome, known as the
brain-gut-microbiome (BGM) system. Gut microbiota play a crucial role in the modulation
of cross-talk between the gut and nervous system [3] and promote gastrointestinal (GI)
homeostasis, in addition to impacting higher cognitive functions [2]. The BGM system
includes the central and enteric nervous systems (CNS; ENS) and various neural, metabolic,
endocrine, and immune mediators [2]. Some microbiota, as well as their molecular by-
products, neuroactive metabolites, and related inflammatory mediators, can cross both the
gut and blood-brain barriers, allowing transmission along the BGM system [4].

The BGM system closely interacts with several other biological systems that regulate
the body, including the immune system, hypothalamic-pituitary-adrenal axis, and the
two branches of the autonomic nervous system (Figure 1) [5,6]. The afferent vagus nerve
transmits information from visceral organs to brain regions, such as the hypothalamus,
amygdala, and the insular cortex [7], as well as brainstem nuclei, which in turn are critical
for the bidirectional communication between the gut and the brain [8]. These multiple
lines of communication work in conjunction, allowing the brain and gut to influence each
other [6]. Research on how the BGM system influences cognition and behavior, in particular,
has been explored over the last decade; however, it is still largely in its nascent stages.
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Figure 1. Bidirectional interactions within the Brain-Gut-Microbiome (BGM) System taken from 
Mayer et al. [6]. The BGM system comprises a complicated network with multiple feedback loops 
that allow signaling between microbiota and the brain and gut connectomes. The microbiome can 
modulate sensory processing, social behavior, affect, and the two arms of the stress response, in 
addition to abdominal pain, directly via various neuroactive and inflammatory signaling molecules, 
or indirectly via the vagus nerve. In turn, the brain can modulate gut microbial composition and 
function directly by the release of neuroactive compounds into the gut lumen acting on receptors of 
certain gut microbes, or via the regulation of intestinal motility and secretion activities, indirectly 
affecting the composition and functions of the gut microbiome. Both prenatal and postnatal pertur-
bations to the BGM system, including but not limited to diet, infection, inflammation, and psycho-
social stress, can influence the stability of these neural, neuroendocrine and immunoregulatory com-
munication channels to create fundamental changes in brain structure and function. ANS = auto-
nomic nervous system; HPA = hypothalamic-pituitary-adrenal; SMC = smooth muscle cells; ICC = 
interstitial cells of Cajal; ECC = enterochromaffin cells; SCFAs = short-chain fatty acids; FMT = fecal 
microbial transplant. Copyright © 2021, American Society for Clinical Investigation. The request has 
been put in and we are waiting for documentation.  

3.1. Gut Microbiota and Development 
Gut microbiota development during the first 1000 days of life (including prenatal life) 

is critical for establishing a healthy and protective microbiome (Figure 2) [9]. Data indicate 
that one’s microbiome begins to develop rapidly following birth, with influencing factors 
such as the delivery method, infant feeding practices, antibiotics, and the environment 
[10]. Early life dysbiosis may be especially impactful in early neurodevelopment with the 
potential to alter the integrity of the blood-brain barrier and alter brain-gut signaling, both 
of which can lead to adverse health outcomes later in life [11,12]. In addition, prenatal 
maternal factors, including psychosocial stress, infections, obesity, and metabolic syn-
drome, can result in maternal dysbiosis and dysregulated maternal immune activation, 
posing significant risks to offspring neurodevelopment [13]. Throughout early life and 
childhood, microbiota continue to play major roles in modulating immune system func-
tioning, as well as the maturation of the brain and body of the host [11,14–16].  

Figure 1. Bidirectional interactions within the Brain-Gut-Microbiome (BGM) System taken from
Mayer et al. [6]. The BGM system comprises a complicated network with multiple feedback loops
that allow signaling between microbiota and the brain and gut connectomes. The microbiome can
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modulate sensory processing, social behavior, affect, and the two arms of the stress response, in
addition to abdominal pain, directly via various neuroactive and inflammatory signaling molecules,
or indirectly via the vagus nerve. In turn, the brain can modulate gut microbial composition and
function directly by the release of neuroactive compounds into the gut lumen acting on receptors
of certain gut microbes, or via the regulation of intestinal motility and secretion activities, indi-
rectly affecting the composition and functions of the gut microbiome. Both prenatal and postnatal
perturbations to the BGM system, including but not limited to diet, infection, inflammation, and
psychosocial stress, can influence the stability of these neural, neuroendocrine and immunoreg-
ulatory communication channels to create fundamental changes in brain structure and function.
ANS = autonomic nervous system; HPA = hypothalamic-pituitary-adrenal; SMC = smooth muscle
cells; ICC = interstitial cells of Cajal; ECC = enterochromaffin cells; SCFAs = short-chain fatty acids;
FMT = fecal microbial transplant. Copyright © 2021, American Society for Clinical Investigation. The
request has been put in and we are waiting for documentation.

3.1. Gut Microbiota and Development

Gut microbiota development during the first 1000 days of life (including prenatal life)
is critical for establishing a healthy and protective microbiome (Figure 2) [9]. Data indicate
that one’s microbiome begins to develop rapidly following birth, with influencing factors
such as the delivery method, infant feeding practices, antibiotics, and the environment [10].
Early life dysbiosis may be especially impactful in early neurodevelopment with the
potential to alter the integrity of the blood-brain barrier and alter brain-gut signaling, both
of which can lead to adverse health outcomes later in life [11,12]. In addition, prenatal
maternal factors, including psychosocial stress, infections, obesity, and metabolic syndrome,
can result in maternal dysbiosis and dysregulated maternal immune activation, posing
significant risks to offspring neurodevelopment [13]. Throughout early life and childhood,
microbiota continue to play major roles in modulating immune system functioning, as well
as the maturation of the brain and body of the host [11,14–16].
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Figure 2. Figure modified from Mayer [9] depicting diversity and abundance of gut mi-
crobes across the lifespan of a human. Early and late periods of low diversity coincide with
vulnerability to neurodevelopmental disorders and neurodegenerative disorders, respectively.
IBS = Irritable Bowel Syndrome.

Similarly, in early neural development, the developing microbiome appears to be
particularly sensitive during early life and its profile can be altered by external stimuli,
including stress, adversity, diet, environmental microbes, and antibiotics, with both imme-
diate and long-term negative effects on the integrity of the immune system, metabolism,
and overall health [17–19]. Such perturbations during sensitive periods of development
have also been linked to negative cognitive outcomes [20–22], socioemotional function-
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ing [23–26], and internalizing and externalizing problem behaviors [21,22], all of which
have serious implications for various neurodevelopmental disorders.

3.2. Gut Microbiota and Clinical Symptomatology in ASD

Previous research has shown an association between gut microbiota and various
neuropsychiatric disorders, including attention deficit hyperactivity disorder (ADHD),
depression, and obsessive-compulsive disorder [27], which often co-occur with ASD [28].
ASD symptomatology has also been directly associated with gut microbiota [29]. Based on
these reported associations and the multitude of potential therapeutic targets, new thera-
peutic interventions targeting the BGM system have been proposed and evaluated [30,31].
Below, we focus on current research that informs our understanding of gut microbiota and
ASD, including GI disorders, social deficits, disruptions in neurochemical mechanisms,
and abnormal brain structure and function.

4. Gut Microbiota and ASD Symptomatology
4.1. Gut Microbiota and GI Impairment in ASD

GI symptoms—abdominal pain, constipation, and diarrhea, in particular—have been
reported in 46–84% of individuals with ASD [32], which has led to the hypothesis that gut
dysbiosis may be especially relevant to ASD patients with GI distress. Studies investigating
the gut microbiome of children with ASD have found abnormal gut-derived metabolite
patterns as well as certain taxa that significantly differ in relative abundance from healthy
controls (e.g., Clostridia, Desulfovibrio, Bifidobacteria, Bacteroides) and are strongly associated
with GI symptoms [33–39]. To date, the exact microbial composition associated with
ASD has yet to be determined, with contradictory findings existing at the phylum, genus,
and species levels, as well as in alpha and beta diversity; for a review, see [34]. It is
important to note that this lack of consensus may be due to several factors, including
study-wide differences in collection methods, preprocessing, statistical analysis, age, sex,
participant diet, specimen type, ASD heterogeneity, and presence of GI disorders, all of
which demonstrate a need for more homogenous samples and standardized collection and
analysis procedures [40].

4.2. Gut Microbiota and ASD-Related Behavior

It has been theorized that a long history of coevolution has closely linked social
behavior and gut microbiota across the animal kingdom [41]. A bidirectional relationship
has been observed in animal models in which the gut microbiome influences social behavior,
while social interactions and social structures also shape the composition and function of
the microbiome [41–43]. Much of the work tying gut microbiota to social behavior has
been conducted in rodent models [44], including germ-free rodents [45–47] and mouse
models known for their phenotypic similarities to humans with ASD (e.g., repetitive
movements, low reciprocal social interactions) [48,49]. These studies have utilized both
bottom-up (e.g., manipulating the presence of bacteria by colonizing germ-free mice) [47]
and top-down (e.g., starting with a genetic mouse model and investigating their gut
microbiome) [48] approaches.

In experiments conducted by Desbonnet et al. [47], male mice under germ-free rearing
conditions engaged in social avoidant and repetitive behaviors and displayed a lack of
interest in social novelty and social motivation, all of which are considered ASD-like
behaviors. When the microbiome of a second set of germ-free mice was colonized with fecal
bacteria from neurotypical, normally behaving mice, many of these behavioral deficits were
reversed, demonstrating the significance of healthy microbiota for typical social functioning
in mouse models. These data support the notion that gut bacteria modulate ASD-like
symptoms. Using a top-down approach, Golubeva and colleagues [48] investigated the
interaction between GI physiology, microbiota composition, and social behavior in BTBR
T+Itpr3tf/J (BTBR) mice, which are well-validated models known to exhibit ASD-like
behaviors. They found that BTBR mice displayed altered relative abundance levels in
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18 out of 44 identified gut bacterial genera, which have been linked to physiological and
behavioral impairments. Specifically, the mice showed significantly reduced amounts of
Bifidobacteria and Blautia species, both of which play vital roles in optimal GI and metabolic
functioning and social interactions within the BTBR mouse strain. This finding is consistent
with those of Wang et al. [50], who compared the fecal samples of children with ASD and
neurotypical controls and observed reduced abundances of Bifidobacterium in the ASD
group. Additional bacterial taxa, including Akkermansia, Bacteroides, Desulfovibrio, and
Lactobacillus, were found to have abnormal abundances in the gut of BTBR mice [48]. These
taxa have also been associated with ASD symptomatology, including social, repetitive, and
anxious behaviors in both animal and human studies [29,35,50–53].

In both human subjects and mouse models of ASD, gut microbiota-associated metabo-
lites have been linked to ASD symptoms and co-occurring GI abnormalities [33–36].
Needham et al. [36], however, reported significant differences between the fecal and plasma
metabolomes of typically developing (TD) and ASD children regardless of the presence of
GI symptoms in the ASD group, demonstrating that microbial abnormalities and their in-
fluence on behavior may not be unique to ASD patients with GI dysfunction. Interestingly,
metabolite levels were correlated with clinical behaviors, as measured by two clinical ASD
assessments (Autism Diagnostic Observation Schedule [ADOS] and Autism Diagnostic
Interview-Revised [ADI-R]), demonstrating significant relationships between metabolites,
GI function, and behavior [36]. In another notable human-mouse microbiome study, Sharon
and colleagues [54] transferred gut microbiota from ASD and TD hosts into germ-free
wild-type mice. After the colonization of ASD microbiota, the mice displayed various hall-
mark ASD-like behaviors, such as increased repetitive behavior and decreased locomotion
and communication, as well as different metabolome profiles compared to offspring mice
colonized with microbiota from TD controls [54]. In addition to these behaviors, more
recent studies have found decreased sociability, decreased sensitivity to social odors, and
dysregulated metabolic pathways and metabolites in germ-free mice colonized with ASD
bacteria [36,55]. Taken together, the studies above suggest that altered gut microbiota
and some of their metabolites influence ASD-like behaviors in rodent models and ASD
symptoms in patients.

4.3. Gut Microbiota Therapy and the Reduction of ASD Symptomatology
4.3.1. Probiotic Therapy

Given the prior findings on microbiota and behavioral symptoms in ASD, a number of
studies have investigated the use of probiotics (“live microorganisms which when adminis-
tered in adequate amounts confer a health benefit on the host” [56]) as a potential treatment.
Indeed, probiotics can alleviate GI symptoms in both ASD and TD populations [57–60].
Thus, the question of whether probiotics can also be used to treat behavioral symptoms of
ASD has been explored, particularly in rodent models. Hsiao et al. [49] used a maternal
immune activation (MIA) mouse model whose offspring display many core phenotypes of
ASD (e.g., altered communication, abnormalities in social behavior, stereotyped behaviors)
following prenatal maternal treatment with the viral polyinosinic-polycytidylic acid (poly
I:C) during specific points of their neurodevelopment [61]. It was observed that MIA
offspring displayed ASD-related behavioral abnormalities while also having increased
intestinal permeability, microbiome changes, and metabolomic alterations [49]. Oral admin-
istration of the gut commensal Bacteroides fragilis corrected gut permeability, improved gut
microbiota and blood metabolite profiles, and ameliorated atypical anxiety, communicative
(i.e., ultrasonic vocalizations), repetitive, and sensorimotor behavioral symptoms, but not
sociability or social preference, in the MIA offspring (Figure 3) [49].
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Although the amelioration of all social symptoms was not observed in the aforemen-
tioned study, preclinical evidence suggests that other strains or types of microbes may
improve social behavior [49]. In fact, several studies have demonstrated that various strains
of Lactobacillus reduce social impairments in animal models [44]. Buffington et al. [45], for
example, found that introducing L. reuteri reduced social deficits in maternal high-fat-diet
rodent offspring, which are born with gut-microbial alterations detrimental to their social
functioning. In support of using Lactobacillus strains as a means for treating ASD symp-
toms, a more recent study demonstrated that a L. plantarum PS128 intervention for children
with ASD reduced aberrant behaviors commonly seen in individuals with ASD and may
ameliorate social communicative impairments [62].

4.3.2. Fecal Microbiota Transplantation Therapy

Fecal microbial transplantation (FMT) has been shown to alleviate the behavioral
symptoms of various neuropsychiatric disorders, including ASD [63]. A recent exploratory,
unblinded, and non-randomized clinical trial, involving 18 children diagnosed with ASD
(with moderate to severe GI issues) and 20 TD children matched by age and gender
without GI disorders, evaluated the effect of repeated Microbiota Transfer Therapy (MTT),
a modified FMT, on gut microbiota composition and GI and ASD-related symptoms [64].
MTT, which combined antibiotic treatment, a bowel cleanse, a stomach-acid suppressant,
and an extended fecal microbiota transplant, led to significant improvements in both
GI and ASD symptoms, including improvements in social skill deficits [64]. A majority
of these changes were sustained and even improved two years after completion of the
treatment [65]. Additionally, it was shown that both the plasma and fecal metabolite
profiles of the ASD group became more similar to those of their TD counterparts following
MTT [66,67]. The effects of FMT have also been evaluated in adult pathogen-free mice using
donor and in vitro-cultured human gut microbiota. Chen et al. [68], for example, reported
significant improvements in behavioral impairments associated with ASD, particularly
for anxiety-related and repetitive behaviors, as well as moderate improvements in social
behavior, with the findings in alignment with previous literature. Taken together, data
from rodent models and preliminary clinical studies suggest that interventions involving
both probiotics and FMT may offer promising lines of research for understanding ASD and
may help in the development of novel therapies.

https://doi.org/10.1016/j.cell.2013.11.024
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5. Putative Mechanisms of the BGM System Related to ASD

Several models have been put forth hypothesizing biological mechanisms associated
with abnormal gut microbiota and symptoms in ASD. One mechanism relevant to modulat-
ing the clinical symptoms of ASD is the metabolism of the essential amino acid tryptophan
along the BGM system. Here, we discuss the influence of gut microbiota on the tryptophan
metabolic pathways in both animals and humans, as well as how disruptions to these
pathways influence ASD social and behavioral deficits (Figure 4).
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on behavior, CNS, and GI dysfunction. BBB = blood brain barrier; TPH = tryptophan hydroxylase;
IDO = indolamine 2,3-dioxygenase; TDO = tryptophan 2,3-dioxygenase; TnaA = tryptophanase;
5-HTP = 5-hydroxytryptophan; 5-HT = 5-hydroxytryptamine, or serotonin; ACh = acetylcholine;
NMDA = N-methyl-D-aspartate; CNS = central nervous system; GI = gastrointestinal; arrow thickness
represents strength of pathway.

5.1. Tryptophan Pathways

Dietary tryptophan is metabolized through three main pathways: the serotonin,
kynurenine (KYN), and indole metabolic pathways. Over 95% of tryptophan is oxidized
and degraded to yield metabolites along the KYN pathway [69]. Importantly, tryptophan
is also the sole precursor to the neurotransmitter serotonin (5-HT) in the brain and gut
(synthesized by action of enzyme tryptophan hydroxylase [TPH]) [69]. Whereas gut micro-
biota play a modulatory role in the balance between serotonin and KYN production, the
biosynthesis of indoles and indole derivatives (e.g., indole-3-aldehyde, indole-3-acetic acid,
indole-3-propionic acid) from tryptophan is fully dependent on the enzyme tryptophanase,
only found in select microbes [70]. How changes in the relative abundance of certain gut
microbiota contribute to modifications of these pathways, central tryptophan metabolism,
and ultimately brain function and behavior, is a crucial and ongoing area of research [71].
Many of these findings also require analysis of how this relationship modulates clinical
symptoms characteristic of neurodevelopmental disorders, such as ASD.

5.1.1. Indole Pathway and ASD

Indole synthesis is driven by certain bacterial taxa that convert undigested tryp-
tophan from the gut lumen into indole and indole derivatives, constituting an exclu-
sively microbe-dependent pathway [70]. Many of the phyla, genera, and species associ-
ated with the production of indoles and altered indole products involved in tryptophan
metabolism have been linked to the development of ASD and related neuropsychiatric
disorders [33,55,72–75]. Mice from the MIA model have shown abnormally high levels of
key serum metabolites produced by gut microbes, including 4-ethylphenylsulfate, serum in-
dolepyruvate, and indole-3-acryloylglycine, all of which were readjusted by treatment with
B. fragilis [49]. In comparison, a human study also found that urinary metabolites of ASD
and TD children significantly differed along the tryptophan and purine metabolic path-
ways, suggesting that the gut microbiome contributes to abnormal tryptophan metabolism
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in ASD [73]. Specifically, gut bacteria-derived metabolites indolyl-3-acetic acid and indolyl-
lactate were more numerous in the ASD group compared to controls [73], consistent with
the findings from Xiao et al. [55] in the cecal matter of mice that had received FMT from
ASD donors. These altered pathways overlapped with those of rodent models which dis-
played ASD-like behaviors, demonstrating a potential pathophysiological explanation for
many behavioral symptoms of ASD [73]. Similarly, De Angelis et al. [72] found increased
indole and 3-methylindole in the fecal samples of ASD children. After indole is absorbed
in the gut, it is oxidized and sulfated by liver enzymes into indoxyl and indoxyl sulfate
metabolites, respectively. Interestingly, these indole metabolites have been identified as
potential metabolic markers for ASD, as well [76,77].

5.1.2. Kynurenine Pathway and ASD

The KYN pathway, also derived from tryptophan and modulated by gut microbes,
largely depends on indoleamine-2,3-dioxygenase (IDO) and, to a lesser degree, tryptophan-
2, 3-dioxygenase (TDO) for metabolization [78]. IDO, expressed in all body tissues, is
typically activated in the presence of pro-inflammatory cytokines, whereas TDO, ex-
pressed primarily in liver tissues, is activated by glucocorticoids [78,79]. Once transformed
from tryptophan, KYN metabolizes into two downstream metabolites, neuroprotective
kynurenic acid (KA) and neurotoxic quinolinic acid (QA) [78]. Recent evidence suggests
that altered KYN metabolism is indicative of greater tryptophan depletion and an impaired
serotonergic pathway in ASD [80]. In a study investigating the role of the KYN pathway in
ASD, Bryn et al. [81] showed that children with ASD had significantly lower KA serum
levels, higher KYN/KA ratios, and higher QA serum concentrations than TD children.
These findings are consistent with those of Gevi et al. [73], who found that tryptophan
was disproportionately metabolized into QA, with significantly decreased levels of KA, in
children with ASD. Both studies demonstrate an increased potential for neurotoxicity in
children with ASD, which is thought to be involved in the pathophysiology of the disor-
der [73,81]. Interestingly, Xiao et al. [55] found increased KA in mice following FMT from
children with ASD. These levels correlated with specific bacteria (e.g., genera in the orders
Clostridiales and Bacteroidetes), supporting their modulatory role in tryptophan metabolism,
but demonstrating a need for further research on how microbiota alter KYN-pathway
products [55].

Although there is minimal literature associating gut microbiota with the KYN pathway
in human ASD populations, studies in other clinical and normative populations have
provided evidence to support this relationship [78]. Interestingly, Luna et al. [82] found in
their study of ASD microbiome-neuroimmune signatures that along with tryptophan and
serotonin levels, inflammatory cytokine levels correlated with certain bacterial species in
children with ASD and functional GI disorder comorbidities. No direct link was made to the
KYN pathway; however, because IDO is typically activated in response to cytokines [78,79],
there is reason to investigate whether the abnormal microbial profile of individuals with
ASD may be implicated in the dysregulation of the KYN pathway.

5.1.3. Serotonin Pathway and ASD

Serotonin (also referred to as 5-HT) is important for mood regulation, higher order
cognition, and neurodevelopment of both the CNS and ENS [83,84]. Although the majority
(>90%) of serotonin comes from enterochromaffin cells in the GI tract, serotonin is also
synthesized in the neurons of the ENS and CNS, particularly the raphe nuclei in the
brainstem [85]. Gut microbiota and their metabolites can influence central and peripheral
serotonin production and metabolism through a variety of mechanisms [71,86]. Because
only a small percentage of tryptophan is converted into serotonin, any alterations to its
metabolism and availability can pose a significant risk to one’s health [87].

Approximately 30% of ASD patients have hyperserotonemia, or elevated whole-blood
serotonin levels [88], which is believed to be due in part to increased serotonin production
in enterochromaffin cells in the gut [89]. Based on similar and replicated findings, it
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has been postulated that hyperserotonemia may represent a highly heritable biomarker
of ASD and that the serotonin pathway as a whole may be dysfunctional in at least a
subgroup of ASD individuals [89,90]. In preclinical models, hyperserotonemia has been
linked to social-behavioral deficits characteristic of ASD [49,91,92]. Tanaka et al. [92], for
example, found that a tryptophan-depleted diet, which decreases brain serotonin levels
and regulates gene expression inside the serotonin system, improved social impairments
of genetically modified ASD mouse models. Lim et al.’s [91] report of elevated serum
serotonin levels in environmental risk factor mouse models of ASD that were associated
with changes in bacteria known to stimulate serotonin production suggests that alterations
in serotonin and hyperserotonemia itself may have a microbial origin. The connection
between serotonin and the microbiome has been made in humans as well, as demonstrated
by a link between increased GI symptom severity and hyperserotonemia in ASD youth [93].
Other studies investigating serotonin-related dysfunction in children with ASD and co-
occurring GI symptoms have implicated fecal metabolites in the metabolic network of
various neurotransmitters, including serotonin [33], and have found increased levels of
serotonergic metabolites, including 5-HIAA, the main metabolite of serotonin, in the rectal
tissue of ASD youth with co-occurring functional GI disorders [82]. These metabolite
levels correlated with the dysbiosis of several bacterial species, demonstrating a potential
microbiome profile for ASD [82].

SERT Ala56, the most common variant of the serotonin-selective transporter responsi-
ble for serotonin reuptake in both the brain and intestines, has been found to be overex-
pressed in ASD patients and linked to neurobiological and GI symptoms in a genetically
modified murine ASD model [94]. SERT Ala56 mice are also known to exhibit serotonin-
related dysfunction, including excess clearance of central serotonin, augmented serotonin
receptor sensitivity, and hyperserotonemia [95]. Research supporting connections between
an altered serotonin system and ASD pathophysiology has demonstrated a positive re-
lationship of serotonin and SERT levels with autism symptom severity in humans [96].
Furthermore, numerous animal studies have implicated gene polymorphisms of SERT, as
well as genetic and surface transporter expression and function, in the underlying repetitive
behaviors and social behavior deficits of ASD, for a review, see [97].

Contributing to the link between serotonin, gut microbiota, and ASD, the BTBR inbred
strain has been shown to display (1) reduced SERT density and binding throughout the
brain and increased serotonin activity in the hippocampus (a brain region involved in
learning, social, and emotional processing, and found to be abnormal in ASD) [98–100];
(2) changes in intestinal microbiota associated with slowed GI motility and impaired
intestinal serotonin production [48]; and (3) increased sociability following brief exposure
to serotonin reuptake inhibitors [98,101] and tryptophan supplementation [102]. Taken
together, these studies support the hypothesis that altered gut microbiota are involved in
the tryptophan-serotonin metabolic pathway in ASD and provide a framework for future
studies aiming to alleviate the GI and, consequently, behavioral symptoms of ASD patients.

A recent study by Fung et al. [103] showed that the gut bacterium Turicibacter sanguinis
expresses a neurotransmitter sodium symporter-related protein with sequence and struc-
tural homology to mammalian SERT. This microbe imports serotonin through a mechanism
that, like its host homologue, is inhibited by the selective serotonin reuptake inhibitor, flu-
oxetine. Serotonin reduces expression of sporulation factors and membrane transporters in
T. sanguinis, which is reversed by fluoxetine exposure. Treating T. sanguinis with serotonin
or fluoxetine modulates its competitive colonization in the GI tract of antibiotic-treated
mice. In addition, fluoxetine reduces membership of T. sanguinis in the gut microbiota of
conventionally colonized mice. One may speculate that genetic variants exist for the micro-
bial SERT-like mechanism and that alterations in the bidirectional host-microbe interactions
in tryptophan metabolites play a role in ASD pathophysiology, including gut symptoms.
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5.2. Serotonin in the Brain and Relationships with Behavior

Several functional neuroimaging studies indicate that the microbiota-modulated sero-
tonergic system affects neural functioning in ASD. For example, positron emission tomog-
raphy (PET) ligand studies have observed atypical serotonin functioning throughout the
brain that was associated with greater social deficits in individuals with ASD [104,105].
One study found that ASD participants had significantly less binding of thalamic serotonin
receptors than age-matched controls and that binding potential in the ASD group was
negatively associated with social communication impairments [104]. Another PET study
found a global reduction in SERT binding in adults with ASD [103]. Moreover, reduced
SERT binding in the anterior and posterior cingulate cortices (ACC; PCC) was associated
with impaired social cognition and reduced binding in the thalamus was associated with
repetitive behaviors [105]. A more recent PET study found lower serotonin transporter
availability in the total gray matter and brainstem of adults with ASD, relative to matched
controls [106]. Serotonin transporter availability in the nucleus accumbens, ACC, and
putamen was positively correlated with social cognition, indicating that the serotonin
transporter may be a marker that can be targeted in pharmacological interventions [106].

Additionally, a polymorphism of the serotonin transporter gene (serotonin-transporter-
linked-promoter region; 5-HTTLPR) has been shown to affect brain function in ASD.
Short variants of 5-HTTLPR, which reduce serotonin transporter expression [107], are
associated with impairments in social communication and interactions in individuals with
ASD [108,109]. This is in line with other findings that have linked 5-HTTLPR to the default
mode network (DMN), a neural network engaged during passive self-referential cognitive
processing and associated with social cognition [110]. Wiggins et al. [111] found that while
youth with ASD who had low expressing 5-HTTLPR alleles had stronger posterior-anterior
DMN connectivity than those with high expressing genotypes, the opposite was true for
TD controls. Thus, resting-state connectivity was shown to be influenced by 5-HTTLPR
in a different pattern in ASD than typical controls, suggesting that individuals with low
expressing 5-HTTLPR genotypes may comprise a subtype of ASD.

The same researchers showed that ASD youth with low expressing 5-HTTLPR geno-
types also had atypical amygdala functioning while performing social tasks [112,113].
During an observational face-processing task, youth with low expressing 5-HTTLPR geno-
types failed to show amygdala habituation to repeated observation of sad faces compared
to TD controls and ASD youth with high expressing genotypes. Building on these findings,
Velasquez et al. [112] showed that when viewing happy faces, the ASD group with the low
expressing genotypes had abnormally high rates of functional connectivity between the
amygdala and subgenual ACC than ASD individuals with higher expressing genotypes
and TD groups of higher and lower expressing genotypes. ASD participants with greater
amygdala-subgenual ACC connectivity, key regions involved in emotion arousal and regu-
lation, also showed higher expressing genotypes of 5-HTTLPR and less social dysfunction.
Together, these findings indicate that, in ASD, it is possible that some socioemotional
functioning during rest and social processing may be influenced by atypicalities in the sero-
tonergic system [112,113]. These results further support the importance of the 5-HTTLPR
genotype in examining the heterogeneity of social function in ASD. Nevertheless, a recent
meta-analysis found no support for a direct effect of 5-HTTLPR polymorphism on risk of
ASD, indicating that patterns across studies may be difficult to find given the heterogeneity
of the disorder. Further analyses in larger sample sizes with more homogeneous subgroups
of ASD participants may be necessary [114].

Research also suggests that there are group differences between ASD and TD neu-
ral responses to serotonin availability. One fMRI study found that increased serotonin
(via a selective serotonin reuptake inhibitor) was associated with sustained neural acti-
vation in emotion-related brain regions during a negative facial emotion-processing task
in ASD adults compared to neurotypical controls, which exhibited an expected habitua-
tion response [115]. The authors concluded that homoeostatic control of these regions is
altered by serotonin in ASD. Two other fMRI studies found that acute tryptophan deple-
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tion (which lowers serotonin levels) was associated with deficits in facial affect [116] and
inhibitory processing [117] in ASD. These findings may help explain some of the social
and restricted/repetitive behaviors that are hallmarks of the disorder [116,117]. Further,
many of the brain regions found to be modulated by the tryptophan depletion have previ-
ously been reported to have serotonergic abnormalities in people with ASD (e.g., synthesis
differences, lower numbers of receptors and transporters) [116].

Despite the extensive evidence showing alterations in the tryptophan pathway and
the serotonergic system in ASD, there is no consensus in current literature on tryptophan
availability and its influence on behavior in patients with ASD. While studies have sug-
gested that reduced levels of tryptophan [118–120] and decreased tryptophan metabolism
are prominent features of ASD [121], a recent study showed both increased and decreased
levels of tryptophan in ASD youth [122], which, again, may be related to ASD heterogene-
ity and marks the need for ASD sub-grouping. The potential roles of oxytocin and other
upstream markers in ASD have also been discussed [123] and it is likely that interactions
between oxytocin and serotonin may further influence the pathophysiological processes
of ASD [124]. More research is necessary to fully understand the complex neurochemical
processes underlying the relationship between the BGM system, tryptophan metabolism,
and ASD. Below, we discuss specific findings in BGM connections at the structural and
functional levels and how changes in the microbiome impact neural networks.

6. Microbiota and the Social Brain: Structure and Function

Preclinical studies showing an interplay between gut microbiota and social behavior
emphasize the role of microbiota on brain function. Recent studies combining neuroimag-
ing with gut microbial profiling in humans have highlighted the relationship between gut
microbiota and the structure and function of brain regions and networks known to be al-
tered in ASD; for a review, see [125,126]. To our knowledge, no studies to date have looked
at gut microbiota and neural functioning in individuals with ASD. Nevertheless, a growing
range of observations suggests that brain function may be modulated by changes in the gut
microbiome via metabolic and signaling pathways. In particular, the amygdala, cingulate,
and insula—which are important for social cognition and emotional regulation—receive
afferent visceral input and are known to have abnormal processing in ASD [127–138]. These
regions are also a part of larger neural networks involving salience and socioemotional
processing, which are also thought to be altered in ASD [139–144]. How gut microbiota is
related to these regions in ASD is still unknown, but recent research in various populations
suggests there may be a connection.

6.1. Amygdala and Microbiota

The amygdalae are bilateral nuclei primarily involved in high-level information pro-
cessing, emotional processes and behaviors (e.g., fear, aggression), decision making, and
social interaction [145]. Newly emerging research has begun to focus specifically on how
gut microbiota modulate amygdala function and the possible implications for treating
psychiatric disorders associated with amygdala dysregulation, including the reduction
of symptom severity in ASD [146]. Numerous genetic, epigenetic, and environmental
changes in early development have been linked to gut microbial alterations, which may
in turn alter amygdala development and white matter connections to other brain regions;
for a review, see [147]. Rodent studies have found microbial status to influence amygdala
volume, dendritic morphology, and spine density [148], as well as gene expression and
neural development of the amygdala during critical time windows [149,150]. Another
recent study demonstrated that the presence of microbiota is necessary for socially induced
gene expression regulation in the amygdalae [151]. Moreover, Lobzhanidze et al. [152]
recently showed that the microbial metabolite propionic acid, which in excess has been
associated with ASD symptomatology [153,154], significantly reduces social motivation
and alters amygdalae structure in rodents. At the functional level, microbiome diversity
has been negatively associated with functional connectivity of the amygdala during early
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brain development in humans [155]. Since the developmental trajectory of the functional
connectivity of amygdalae during the first two years of life has been shown to be a sig-
nificant predictor of cognitive and emotional outcomes [155,156], the potential impact
of gut microbiota on emotion-related brain region connectivity and growth patterns in
an early critical period may have long-term implications for mental health, including
ASD symptomatology.

Given the strong relationship between the amygdala’s impairments in ASD [157–160]
and current research demonstrating gut microbiota’s relationship to the amygdala, under-
standing how gut microbiota interact with amygdala structure and function in ASD may
elucidate underlying neural correlates of social and emotional processing deficits. Further
research examining sociality and gut microbiota in individuals with ASD may help inform
treatment targeting amygdala-dependent behaviors related to ASD via the BGM system.

6.2. Insula and Microbiota

Subregions of the insular cortex play important roles in the processing of sensory,
autonomic, and interoceptive information from the viscera and are thought to be involved
in socioemotional processing [161]. The anterior insula, specifically, serves as a crucial hub
of a network involved in detecting salient events and integrating internal physiological
signals (including gut signals) [162] and external sensory stimuli to guide behavior [163].
Reduced connectivity in the anterior insula and dysfunction of this network have been
consistently implicated in ASD [138]. It has also been proposed that modulations to this
network may play an important role in regulating immune function and GI symptoms in
IBS [164].

To date, no studies have examined the relationship between the insula and the mi-
crobiome in individuals with ASD; however, there is evidence from healthy individuals
and those with irritable bowel syndrome (IBS) to suggest that insular structure is indeed
modulated by changes in the microbiome, which contribute to the pathophysiology of
IBS [165,166]. Structurally, cortical thickness of the insula has been found to be related
to both IBS [167–169] and microbiota composition. Tillisch et al. [170] found a positive
association between cortical thickness in the insula and Bacteroides abundance in healthy
adult women. The same group investigated the gut microbial composition and structural
brain signatures of individuals with IBS and discovered a greater volume in the mid and
posterior insula in IBS patients, relative to healthy controls [171]. In a subgroup of patients
with a distinct microbial makeup, Labus et al. [171] found that the anterior insula had a
larger surface area and smaller cortical thickness relative to healthy controls. Additionally,
functional alterations of the insula have been reported by several fMRI studies in patients
with IBS [172–176].

In a recent study directly investigating the relationship between gut microbiota and
neuronal activity in the insula, Curtis and colleagues [177] observed that microbiota di-
versity was positively associated with resting-state functional connectivity between the
middle insular cortices and frontal and cerebellar areas. Furthermore, when controlling
for smoking status (previously shown to influence gut microbiota [178]), the connections
between anterior and inferior regions of the insula and various brain regions were also
related to microbiota diversity. Notably, they reported correlations between anterior and
inferior insula connectivity and Bacteroides and Prevotella, two genera with well-established
abnormalities in individuals with ASD [53,179,180]. Moreover, levels of fecal microbiota-
derived indole metabolites (i.e., indole, skatole, indoleacetic acid) have been positively
associated with the anatomical and functional connectivity of the amygdala-anterior insula
circuit in healthy individuals [181]. Taken together, these findings indicate that microbiome
differences in individuals can be observed at the cortical level. Thus, there is a need for
research on how microbiome diversity and regulation may influence brain activity and
help treat neuropsychiatric disorders associated with insular abnormalities, including ASD.
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6.3. Gut Microbiota and Other Emotion-Related Brain Regions

Several neuroimaging studies have reported strong relationships between gut micro-
biota and functioning of emotion-related brain regions, in addition to the amygdala and
insula. For example, in an fMRI study utilizing an emotional faces attention task, consump-
tion of a fermented milk product with probiotic was related to reductions in activity of a
widely distributed functional network containing brain areas that control processing of
emotion, sensation, attention, and interoception in healthy women [182]. In addition to
the insula and amygdala, this network included a range of midbrain regions centered on
the periaqueductal gray [182]. A similar connection was suggested when treatment with
Bifidobacterium was found to be associated with both decreased depression and reduced
activity in the amygdala and fronto-limbic regions in IBS patients [183].

More recently, Gao and colleagues [155] investigated the microbiome’s potential
relationship with emotion-related brain circuits in infants through fecal analyses and
resting-state fMRI data. Strong negative associations were found among alpha diversity
and connectivity between the amygdala and thalamus as well as the right anterior insula
and ACC, suggesting that higher levels of microbiome diversity may be related to less
efficient mechanisms for emotion and threat processing. The researchers also observed
a positive correlation between alpha diversity and sensorimotor-parietal connectivity,
which allows for interactions between auditory, visual, and somatosensory cortices and
has been linked to cognitive ability at two years of age [155]. These results provide
initial evidence for microbiome-associated changes in functional neural circuits during
early human development [155]. Future studies may explore the relationships between
connectivity and ASD-related symptomatology, particularly the emotion and sensory
processing atypicalities common in individuals with ASD [184,185].

Microbiota have also been related to white matter microstructure and cortical thickness
in other emotion- and cognition-related brain regions. One study on obese and non-obese
participants found significant positive associations between fecal microbiota diversity and
fractional anisotropy (FA; a measure of white matter connectivity) of the hypothalamus,
caudate nucleus, and hippocampus [186]. Additionally, abundance of Actinobacteria was
positively associated with executive functioning and structural microstructure, as measured
by FA in the amygdala and thalamus, supporting the link between the microbiome and
emotion processing [186]. Tillisch and colleagues [170] found further evidence that gut
microbiota may impact brain structure in addition to functional connectivity, mood, and
behavior. Specifically, greater Prevotella abundance was related to increased connections
between emotion-, attention-, and sensory-processing brain regions and lower cortical
thickness in the anterior insula, while higher Bacteroides was associated with greater cortical
thickness in the frontal cortex and anterior insula [170].

In summary, evidence from neuroimaging studies indicates that gut microbial param-
eters may be associated with social and emotional brain structure and function across a
variety of populations, especially individuals with IBS. Researchers have also begun to
use the functional brain-gut approach to gain a better understanding of neuropsychiatric
disorders, including ADHD, anxiety, depression, and schizophrenia [183,187–189]. Given
the increased prevalence of IBS and GI-related comorbidities in individuals with ASD,
studies that explicitly investigate how gut microbiota are related to neural functioning in
ASD are warranted.

7. Conclusions and Future Directions

A growing body of evidence has demonstrated associations between gut microbiota
and ASD symptoms, including socioemotional behavior and GI symptoms, through various
pathways within the immune, neuroendocrine, and metabolic systems. The interconnec-
tions within the BGM system are also demonstrated in neuroimaging research, highlighting
the relationships between microbiota and the structure and function of brain regions (e.g.,
the amygdala and insula) implicated in various theories of ASD. When viewed together
with findings from rodent studies, a causal role of microbiota in ASD is plausible, es-
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pecially in a subgroup of patients with GI difficulties. Additional research, however, is
needed to characterize the neural circuitry and mechanisms that underlie this connection.
A more comprehensive understanding of the BGM interactions in ASD can prepare the
way for early biomarkers of ASD and microbe-based therapeutic treatments such as tar-
geted prebiotics, probiotics, and fecal transplants. Given the heterogeneity of ASD, we
acknowledge it is unlikely that all cases of ASD are impacted by alterations to the BGM
system to the same degree; identification of potential subgroups or clinical phenotypes of
ASD with gut-microbial disturbances, however, can contribute to individualized medicine
and therapy.

To better understand the relationship between ASD and the gut microbiome, research
should be prioritized that looks at the prenatal trajectory of BGM interactions in the preg-
nant mother and its influence on the developing fetus. Such studies need to address what
role maternal factors (e.g., inflammatory or microbial neuroactive signals in utero) play in
shaping these interactions, and what consequences these maternal influences have on fetal
brain development. Maternal immune activation has been shown to increase ASD risk,
as seen in the offspring of the MIA mouse model [190,191], as well as in epidemiological
studies [191–193]. Furthermore, both a maternal high-fat diet and metabolic syndrome,
a disorder characterized by systemic immune activation, have been associated with an
increased risk of ASD in offspring [45,194,195].

More human studies directly comparing microbiota in ASD and TD populations and
exploring the causal relationships between the microbiome, behavior, and brain functioning
are also needed. For example, to understand how the gut microbiome is related to social
functioning, a multimodal approach might examine variations of the transcriptome and
metabolome in ASD and their relationship to behavioral and neural functioning. As noted
by Yap et al. [196], is important to test the mediating effects of detailed dietary data in
such work to assess the microbiome’s contributions to ASD development. To understand
longitudinal changes in microbial profiles in ASD, research should track how microbiota
composition and metabolic states vary prenatally in mothers and across early development
in both children at risk for ASD and their TD peers. By tracking microbiota in high-risk
infants, specific biomarkers, such as tryptophan metabolites and inflammatory markers,
may be identified. Back translational approaches using humanized gnotobiotic mouse
models provide a powerful approach to validating findings from human studies in clinically
relevant experimental models [197]. Further, microbiota-based intervention studies are
needed to assess causality of ASD.

To date, most studies have examined the gut microbial composition in isolation using
a single omics approach. A deeper understanding of the role of the gut microbiome in ASD
can be achieved by understanding its interactions with host and environmental factors.
Integrative multi-omics analysis approaches combining longitudinal microbiome, genomic,
transcriptomic, proteomics, and metabolomic profiling with accurate dietary assessment,
deep clinical phenotyping, and brain imaging are necessary to understand the complex
interactions contributing to pathophysiology and symptom generation in ASD.
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