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Abstract: A study was conducted to determine the effects of a diet supplemented with fruits and veg-
etables (FV) on the host whole blood cell (WBC) transcriptome and the composition and function of
the intestinal microbiome. Nine six-week-old pigs were fed a pig grower diet alone or supplemented
with lyophilized FV equivalent to half the daily recommended amount prescribed for humans by the
Dietary Guideline for Americans (DGA) for two weeks. Host transcriptome changes in the WBC were
evaluated by RNA sequencing. Isolated DNA from the fecal microbiome was used for 16S rDNA
taxonomic analysis and prediction of metabolomic function. Feeding an FV-supplemented diet to pigs
induced differential expression of several genes associated with an increase in B-cell development
and differentiation and the regulation of cellular movement, inflammatory response, and cell-to-cell
signaling. Linear discriminant analysis effect size (LEfSe) in fecal microbiome samples showed
differential increases in genera from Lachnospiraceae and Ruminococcaceae families within the order
Clostridiales and Erysipelotrichaceae family with a predicted reduction in rgpE-glucosyltransferase
protein associated with lipopolysaccharide biosynthesis in pigs fed the FV-supplemented diet. These
results suggest that feeding an FV-supplemented diet for two weeks modulated markers of cellular
inflammatory and immune function in the WBC transcriptome and the composition of the intestinal
microbiome by increasing the abundance of bacterial taxa that have been associated with improved
intestinal health.

Keywords: fruit and vegetable; microbiome; immune response; 16S rDNA; RNA sequencing;
WBC transcriptome

1. Introduction

Short-term feeding of diets composed largely of animal-based or plant-based prod-
ucts to humans can rapidly shift the intestinal microbial composition and function [1].
A recent study of >1000 subjects showed that feeding a diverse healthy and plant-based
diet to humans stratified the intestinal microbiome into organisms associated with mark-
ers of improved cardiovascular and postprandial glucose metabolic function [2]. Two
independent cross-sectional data analyses of whole diets fed to American and Finnish
populations, parsing out consumption of FV, showed an association between higher gut
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bacterial diversity and favorable microbiome composition with increasing systemic levels
of total carotenoids and a healthy food choice index, respectively, supporting evidence
that enhanced FV consumption improved host health through changes in the intestinal
microbiome [3,4]. Further evidence has also linked the impact of FV consumption on host–
microbiome composition and function, suggesting the possibility that certain microbial
groups that are modulated by diet can affect human health [5–7]. A higher intake of FV
or derived polyphenols has been associated with improved inflammatory and immune
status in subjects with metabolic diseases [8–11], but further research is needed to elucidate
the mechanisms of immunomodulation. Nutrigenomic studies have shown the impact of
healthy diets on improved metabolic function and redox-associated genes that promote hu-
man health [12–14]. However, little is known about the impact of an FV-supplemented diet
on the blood transcriptome and microbiome of healthy subjects. Therefore, using the pig
as a translational model for testing nutritional interventions, we evaluated the relationship
between an altered intestinal microbiome induced by feeding an FV-supplemented diet
on changes in gene expression in WBC for markers of improved health. The goal of this
study was to evaluate the effect of a two-week intervention diet of FV consumption based
on the Dietary Guidelines for Americans (DGA) on the pig WBC transcriptome and fecal
microbiome as a translational model for similar studies in humans.

2. Materials and Methods
2.1. Animals and Diets

All animal experiments and procedures were conducted in accordance with guidelines
established and approved by Beltsville Area Animal Care and Use Committee under pro-
tocol 13-028. Fresh fruits (grapes, strawberries, red apples, blackberries, and blueberries)
and vegetables (celery, broccoli, spinach, and kale) were purchased from local markets
and cut and separately weighed in labeled cups before lyophilization. A daily volume of
1.25 cups of fruit and 1.75 cups of vegetables were measured to provide approximately 50%
of the DGA recommendation for a healthy-style diet consumed by adults between 19 to
59 years of age with an intake of 2600 kilocalories per day (www.dietaryguidelines.gov,
accessed on 26 November 2021). In addition, two servings of 4.5 ounces of chicken breast
were also lyophilized and included in the FV-supplemented diet to provide approximately
6% of the recommended daily level of protein and fat from an animal source generally
consumed by humans. The nutrient composition of the lyophilized chicken and FV mix-
tures was analyzed by Eurofins (Eurofins Scientific Inc., Des Moines, IA, USA) and used
for diet calculations to provide a similar calorie content to the control-non supplemented
diet (Table S1). Nine Large White X Landrace six-week-old pigs born within the same
week were obtained from two litters weaned and individually housed in pens in a single
nursery barn located at the USDA Swine facility in Beltsville, MD. Pigs were randomized
by weight and gender into two experimental treatment groups at week 6. Group I (n = 4,
2 females, 2 males) was fed a regular pig grower diet with 17% energy (E) from fat, 62% E
from carbohydrates, and 20% E from protein and designated as the control group. Group
II (n = 5, 3 females, 2 males) was fed a similar grower diet supplemented with FV and
chicken. Both diets contributed similar calories from macronutrients but with differences
in carbohydrate, protein, and fiber sources. Pigs were fed ad libitum, and feeder contents
were monitored daily for consumption of expected amount of diet. Pigs were weighed, and
blood and feces were collected at the start and end of the two-week dietary intervention.
All pigs were euthanized by IV injection with Euthasol (50 mg sodium pentobarbital/kg of
body weight) (Virbac Animal Health, Inc., Fort Worth, TX, USA) at the end of the study.

2.2. Transcriptome Response to Dietary Intervention

Whole blood cells (WBC) were collected in Paxgene collection tubes (BD Biosciences,
Franklin Lakes, NJ, USA) and processed for RNA extraction, as previously described [15,16].
Illumina TruSeq RNA Sample Prep v2 kits (Ilumina, San Diego, CA, USA) were used to
prepare RNA sequencing libraries from WBC according to manufacturer protocol. The
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combined library pool was denatured and loaded on a Illumina NextSeq 500 sequencer
(Illumina, San Diego, CA, USA), using a high output flow-cell to generate 150 base pair
single-end reads. Base-call conversion, de-multiplexing, and adapter trimming of the
pooled sequence data were performed using bcl2fastq2 conversion software (v2.20.0.422,
Illumina, Inc.). Unaligned FASTQ files generated from sequencing were imported into
CLC Genomics Workbench version 11.0 (QIAGEN, Bioinformatics, Redwood City, CA,
USA), where they were trimmed to remove low-quality reads and adapter sequences.
Reads were first mapped to a custom, non-redundant (NR) (NR_111919v2) 8959 transcript
library, as previously described [17,18]. The NR library contains the sequences of genes
involved in immunity/inflammation and genes involved in macro and micronutrient
metabolism. The sequences for these genes are found in the Porcine Translational Research
Database maintained by the Beltsville Human Nutrition Research Center, Diet, Genomics,
and Immunology Laboratory (http://tinyurl.com/hxxq3ur, accessed on 26 November
2021) [19]. Inclusion of the NR library is necessary because Ensembl build 11.1 contains
a large number of documented errors [20,21], and the 5′ and 3′ untranslated regions of
genes tend to be underrepresented by the Ensembl algorithm [19]. Unmapped reads were
then mapped to the Ensembl build 11.1 v98 build 11.1 (WG) to account for expressed genes
that were not covered by the NR library. Mapped reads for each sample derived from
both reference libraries were combined into gene-level expression counts that were used
as input for differential gene expression (DGE) analysis. RNA isolated from WBC were
converted to cDNA via the iScript cDNA synthesis Kit (Biorad, Hercules, CA, USA). Briefly,
25 ng/well of cDNA in duplicates from each biological sample were used for real-time
PCR amplification using iTaq Universal Probes Supermix (Biorad, Hercules, CA, USA) and
the ABI PRISM 7500 Sequence detector system (Applied Biosystems, Foster City, CA, USA).
A subset of specific porcine primers and probe sequences against selected inflammatory
or immune response-related genes were synthesized by Biosearch Technologies (Novato,
CA, USA), as described in the Porcine Translational Research Database [19] and used
for validation of DGE associated with dietary treatment after RNA-seq analysis. Gene
expression was normalized to the housekeeping gene RPL32 using the 2−∆∆CT method [22]
and expressed as a fold change compared to baseline or control treatment group. The fold
change was calculated using the mean difference of the treatment group, as previously
described [23].

2.3. Fecal Specimen Collection and Processing for 16S rDNA Amplicon Multi-Tag Sequencing and
Metabolic Prediction

Fresh fecal samples were directly collected from the rectum of pigs using a cotton
swab to stimulate defecation. A 5 g aliquot of each fecal sample was collected in a sterile
50 mL plastic tube before starting the dietary intervention at day 0 (baseline) and two weeks
later. One-gram aliquots were immediately weighed and stored at −80 ◦C until further
processing. DNA was extracted using QIAamp DNA stool kit (Qiagen, Germantown, MD,
USA) with an initial disruption with ceramic beads (Precellys, Krackeler Scientific, NY,
USA) using two 30-s disruption cycles with 5000 rpm and a 95 ◦C heat step [15]. DNA
samples were cleaned and concentrated with ZR Genomic DNA Clean and Concentrator-25
(Zymo Research, Irvine, CA, USA). DNA was quantified with Quantt-iT dsDNA Assay Kit
(Invitrogen, Carlsbad, CA, USA) using a Spectra-Max multimode microplate reader (Molec-
ular Devices, San Jose, CA, USA) and DNA quality determined by Nanodrop (Thermo
Fisher Scientific, Wilmington, DE, USA). 16S rRNA libraries were prepared using the V3-V4
hypervariable regions of 16S rRNA, as described in 16S metagenomic sequencing library
preparation manual (https://www.illumina.com/search.html?filter=support&q=16S%20
metagenomic%20sequencing%20library&p=1, accessed on 26 November 2021). The quality
and size of the libraries were verified using the Agilent DNA 1000 kit and run on the Agilent
2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Library quantification was
completed using the KAPA Library Quantification kit (KAPA Biosystems, Wilmington, MA,
USA). Libraries were normalized to 4 nM before pooling equal volumes. The final library
concentration was 6 pM with PhiX control v3 (15%, v/v) (Illumina San Diego, CA, USA).

http://tinyurl.com/hxxq3ur
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Libraries were sequenced using Illumina Miseq sequencer and a 600-cycle Miseq Reagent
kit v3. Sequences were demultiplexed using the dual-index strategy, the mapping file gen-
erated on the robotic platform, and split_libraries_fastq.py, a QIIME-dependent script [24].
All sequences were dereplicated and the resulting forward and reverse fastq files were
split sample using seqtk (https://github.com/lh3/seqtk, accessed on 26 November 2021),
and primer sequences were removed using TagCleaner (0.16) [25]. Paired-end reads were
further cleaned and scanned for adaptors with bbduk from BBTools software suite. The
paired-end reads were merged with bbmerge from the BBtools software suite to verify that
the paired-end reads overlapped (https://jgi.doe.gov/data-and-tools/bbtools/, accessed
on 26 November 2021). Cleaned paired-end sequences were imported into Quantitative
Insights into Microbial Ecology, QIIME2 (qiime2-2018-4) (https://qiime2.org, accessed on
26 November 2021), and the quality of sequences was visualized using a demux object.
The first 9 nucleotides for each paired read were trimmed and the total length of reads
was truncated to 250 base pairs for the forward and reverse reads to remove low-quality
bases at the end of the reads. Filtered reads were input into DADA2, a denoising pipeline
incorporated in QIIME2, to remove chimeric variants and to identify amplicon sequence
variants (ASV) which have been shown to have a better taxonomic resolution [26]. Non-
chimeric sequences were used for taxonomic classification of marker gene sequences using
the q2-feature-classifier [27] with Silva v138 for all taxonomic identification and prediction
of bacterial metabolic functions using a pairwise identity threshold of 97%. ASV-16S rRNA
gene sequencing data were also used to generate metagenome predictions for Enzyme
Commission number (EC number), relative Kyoto Encyclopedia of Genes and Genomes
(KEGG) orthologs (KO), or metabolic pathways using the Phylogenetic Investigation of
Communities by Reconstruction of Unobserved States (PICRUSt2) [28]. Pathways were
calculated based on the abundance of gene families linked to reactions within pathways
based on predicted EC numbers regrouped to MetaCyc reactions [29].

2.4. Statistical Analysis

Whole blood cell gene counts derived from pigs in each dietary treatment group were
used to identify DGE. Sequences below quality score (Q30)dsaXZ or reads containing
more than two ambiguous nucleotides were removed before sequence alignments were
performed using the CLC Genomics Workbench version 12 (Qiagen Bioinformatics, Red-
wood City, CA, USA). Gene expression was normalized using the “reads per kilobase
of exon model per million mapped reads” model (RPKM) [30]. Only genes with RPKM
values above 1.5 were included in the downstream analysis. Differentially expressed gene
lists obtained from the WG and NR libraries were compared with an online two lists
tool (http://barc.wi.mit.edu/tools/compare, accessed on 26 November 2021). Principle
component analysis (PCA) and hierarchical clustering were performed with JMP Genomics
10 (SAS, Cary, NC, USA). The differential expression analyses were carried out with the
Bioconductor package DeSeq2 v 3.14 [31] as recommended for datasets with low number of
replicates [32]. Genes were considered differentially expressed with the threshold of a false
discovery rate (FDR) ≤0.05 and an absolute fold change ≥1.5. Biological network analysis
was performed using Ingenuity Pathway Analysis (IPA) (v9.0 Ingenuity Systems, Mountain
View, CA, USA) to predict potential biological processes, pathways and molecules affected
by DGE. Networks of these focus genes were algorithmically generated based on their
connectivity and the number of focus genes. To identify the networks that were highly
expressed, IPA computes a score per the fit of the genes in the data set. This score was
generated using a p-value calculation determined by a right-tailed Fisher’s exact test and
indicates the likelihood that the fit of the focus genes in the network could be explained by
chance alone. Z-score serves as both a significance measure and a predictor of the activation
state of the gene: activated (Z value > 2) or inhibited (Z value < 2) [32,33]. The goal was
to identify biological processes and functions that were likely to be casually affected by
up- and downregulated genes from the data generated. To further interpret the biological
meaning of DGE in WBC after dietary interventions, the overlap between our gene dataset
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was compared with previously deposited gene sets from the Molecular Signature database
(MsigDB) [34] so that common genes with other datasets could be related.

Bioinformatic analysis of Amplicon Sequence Variants (ASV) in fecal samples was
done using Quantitative Insights into Microbial Ecology, QIIME2 (qiime2-2018-4) [27,35].
After removal of low ASV counts (less than 0.01%), ASV counts were normalized by
cumulative-sum scaling (CSS), and log2 transformation to account for the non-normal
distribution of taxonomic counts data [36]. Alpha (within samples) diversity was calculated
to reflect the influence of treatment on the structure of fecal microbiome through Shannon
alpha diversity index at the genus level. Several tools such as Principal coordinates
Analysis (PCoA), and Analysis of Similarities (ANOSIM) to compare the mean of ranked
dissimilarities between groups to the mean of ranked dissimilarities within groups were
used for beta diversity analysis based on Bray–Curtis distance matrix [37]. Multivariate
analysis using Canonical Correspondence Analysis (CCA) was also implemented to assess
if variations in the data matrix can be explained by grouping variables: diet, time, and
their interactions in one coherent graphical model. The linear discriminant analysis effect
size (LEfSe), an algorithm for biomarker discovery that identifies enrichment of abundant
taxa or function between two or more groups, was used to compare all taxa at different
taxonomic levels simultaneously (i.e., phylum, class, order, family, and genus). This
method uses a linear discriminant analysis (LDA) model with continuous independent
variables to predict one dependent variable and provides an effect size for the significantly
different taxa or metabolic function based on relative differences between variability
and discriminatory power [38]. Finally, ASV data table was imported into PICRUSt2
(Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) and
ran through the picrust2_pipeline.py script for sequence placement, hidden-state prediction
of genomes, metagenome prediction, and pathway-level predictions (https://github.com/
picrust/picrust2, accessed on 26 November 2021). After a center log-ratio transformation
of the data, as previously described [39], an analysis of variance (ANOVA) was used for
multiple-group statistical analysis with Tukey–Kramer post-hoc test to determine which
means were significant, followed by Benjamini-Hochberg FDR for multiple test correction.
Two group statistical analysis was also done with a two-sided Welch’s t-test with confidence
intervals and Benjamini-Holchberg FDR multiple test correction using Statistical Analysis of
Metagenomic Profiles (STAMP) software v2.1.3 to identify significant differences in relative
abundance of predicted metagenomic pathways between dietary treatment groups [40].

3. Results
3.1. Clinical Signs

All pigs gained weight over the two-week dietary intervention, with no differences in
growth rate and no clinical signs of disease in response to dietary treatment (Figure S1).

3.2. Fruit and Vegetable Supplemented Diet Effect on Blood Transcriptome

RNA derived from paired WBC collections at baseline and two weeks post-intervention
were processed for pigs from the control (n = 4) and FV (n = 3)-supplemented dietary
groups as independent replicates for mapping reads [41]. Principal component analysis
(PCA) using the NR or WG dataset showed the complete separation of pigs from the
FV-supplemented dietary group and partial separation of pigs from the control group
when paired samples collected at two weeks post-intervention and baseline were com-
pared. No separation between dietary groups was visualized at baseline or two weeks
post-intervention (Figure 1).

Differential gene expression analysis was determined using the DeSeq2 v 3.14 Biocon-
ductor package. Volcano plots illustrating DGE in WBC of pigs fed the supplemented FV
diet relative to the control diet illustrate a similar number, with some differences in function
for DGE depending on the reference library used with 31 DGE in NR (19 upregulated,
12 downregulated) (Figure 2A) or 37 DGE in WG (18 upregulated, 19 downregulated)
databases (Figure 2B) (Table S2).

https://github.com/picrust/picrust2
https://github.com/picrust/picrust2


Nutrients 2021, 13, 4350 6 of 18

Nutrients 2021, 13, x FOR PEER REVIEW 6 of 19 
 

 

paired samples collected at two weeks post-intervention and baseline were compared. No 
separation between dietary groups was visualized at baseline or two weeks post-interven-
tion (Figure 1).  

 
Figure 1. Principal component analysis of pigs fed a fruit and vegetable (FV)-supplemented or control diet (C) for two 
weeks. Separation of pigs with collection times within each diet as specified in the figure legend showed more clustering 
in FV dietary group than in control group with 14.1%, 12.6%, and 11.0% variation with the first three components for NR 
(A) and 29.0%, 16.5%, and 14.2% for WG (B) databases, respectively. PCOA with separate paired sample clustering by 
time in pigs from FV diet group (C). No clustering by time in pigs from control diet group (D). 

Differential gene expression analysis was determined using the DeSeq2 v 3.14 Bio-
conductor package. Volcano plots illustrating DGE in WBC of pigs fed the supplemented 
FV diet relative to the control diet illustrate a similar number, with some differences in 
function for DGE depending on the reference library used with 31 DGE in NR (19 upreg-
ulated, 12 downregulated) (Figure 2A) or 37 DGE in WG (18 upregulated, 19 downregu-
lated) databases (Figure 2B) (Table S2).  

(A) 

(D) (C) 

(B) 

Figure 1. Principal component analysis of pigs fed a fruit and vegetable (FV)-supplemented or control diet (C) for two
weeks. Separation of pigs with collection times within each diet as specified in the figure legend showed more clustering in
FV dietary group than in control group with 14.1%, 12.6%, and 11.0% variation with the first three components for NR (A)
and 29.0%, 16.5%, and 14.2% for WG (B) databases, respectively. PCOA with separate paired sample clustering by time in
pigs from FV diet group (C). No clustering by time in pigs from control diet group (D).

Top common upregulated DGE found in two genome reference libraries (Table S2)
included: transmembrane proteins coded by Fc receptor-like 5 (FCRL5), CD1a molecule
(CD1), CD79B molecule (CD79B), lymphocyte antigen 86 (LY86), TNF receptor superfamily
member 13C (TNFRSF13C); transcriptional regulator zinc finger and BTB domain con-
taining 32 (ZBTB32), and downregulated DGE included plasma transmembrane molecule
interleukin 1 receptor type 2 (IL1R2); plasma enzymes: ADAM metallopeptidase domain
19 (ADAM19), transglutaminase 3 (TGM3), diacylglycerol O-acyltransferase 2 (DGAT2)
and transcriptional regulator: CCAAT enhancer-binding protein beta (CEBPB). Many more
DGE were identified when annotated genes in WBC from pigs fed the FV supplemented
diet were compared to their paired baseline sample taken at the start of the intervention.
Volcano plots comparing the outputs with both genome mapping libraries indicated 49
DGE (31 upregulated, 18 downregulated) (Figure 3A) and 111 DGE (46 upregulated and 65
downregulated) (Figure 3B) when the NR and WG genome references were used, respec-
tively. Among the top common upregulated DGE (Table S3), there were transcriptional
regulators: POU class 2 homeobox associating factor 1 (POU2AF1), inhibitor of DNA bind-
ing 3 HLH protein (ID3), NFKB inhibitor beta (NFKBIB); plasma membrane: eukaryotic
translation initiation factor 4E binding protein 1 (EIF4EBP1); enzyme: NADH dehydroge-
nase subunit 1 (ND1); plasma membrane molecules: CD79a (CD79A), immunoglobulin
lambda-like polypeptide 5 (IGLL5L) in addition to DGEs also detected in WBC of pigs fed
the FV-supplemented diet relative to controls (i.e., FCRL5, CD1, LY86, TNFRSF13C, and
ZBTB32). Downregulated DGE included transcriptional regulators E1A binding protein
p300 (EP300), notch receptor 2 (NOTCH2) plasma membrane: erythrocyte membrane pro-
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tein band 4.1 (EPB41), enzymes: pellino E3 ubiquitin-protein ligase 1 (PELI1), acyl-CoA
synthetase long-chain family member 4 (ACSL4) and transporter: sortilin related receptor 1
(SORL1) in addition to DGE also downregulated in WBC of pigs fed FV-supplemented diet
relative to controls (IL1R2, FOXO3, ADAM19). Real-time PCR validation was confirmed for
selected genes (Table S4). No DGE was found between paired samples from the control diet
group. Four DGE non-related with immune function were not corrected by randomization
in baseline samples among treatment groups (Table S5).
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3.3. Biological Interpretation of Differential Gene Expression

Differential gene expression derived from both reference libraries were combined into
a single list of DGE and used as input for predicting the impact of the FV-supplemented
diet on modulating WBC biological function after two weeks (Table S3). The Ingenuity
pathway analysis (IPA) platform was used to identify the affected top biological networks.
The highest associated network function, with a score of 56, identified by IPA corresponded
to Hematological system development and Function, Tissue Morphology, Lymphoid Tis-
sue Structure and Development with 35 affected focus molecules that included many
transcriptional regulators and repressors (i.e., ID3, FOXO3, NOTCH2, EP300, POU2AF1,
SATB homeobox 1 (SATB1), BCL6 transcription repressor (BCL6) (Figure 4) which induce
downstream effects on expression of genes coding for transmembrane receptors: inter-
leukin 7 receptor (IL7R) and interleukin 1 receptor type 2 (IL1R2), colony-stimulating factor
2 receptor subunit beta (CSF2RB), TNFRSF13C, interleukin 13 receptor subunit alpha 1
(IL13RA1), transporters: low-density lipoprotein receptor (LDLR), phosphatidylinositol
transfer protein membrane-associated 1 (PITPNM1), cytokines: lymphotoxin beta (LTB),
macrophage migration inhibitory factor (MIF) and lectins: galectin 1 (LGALS1) contributing
to differentiate the transcriptome after FV dietary intervention.
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These genes are known to exert a transcriptional control of several downstream effects
affecting immune functions, including T-cell development, migration of follicular helper T-
cells [42], shaping Th1/Th2 differentiation [43,44], regulation of dendritic cell activity [45],
function as a coactivator of transcription factors that regulate immunoglobulin expression,
and other host defense-related responses [46]. A heat map generated by the Diseases
and Functions option tool within IPA illustrated the top biological categories (ranked by
highest absolute Z-activation score and number of molecules) related to cellular movement,
inflammatory response, cell-to-cell signaling, and hematological system development
that were predicted to be casually affected by the transcriptomic changes encounter in
WBC of pigs fed a supplemented FVdiet (Figure 5). Specific functions associated with
migration of cells, immune cell response, binding of mononuclear cells, and lymphocytes
and adhesion (Z-score < 2.5) were predicted to be downregulated (Table S6). To relate gene
expression changes to previously described functional profiles, DGE in WBC of pigs fed
FV-supplemented diet were overlapped with gene sets within the MSigDB database (https:
//www.gsea-msigdb.org/gsea/msigdb/, accessed on 26 November 2021) that represent
cell states and perturbations within the immune system [34]. Our dataset showed overlap,
with 10 out of 5219 data sets related to the induction of memory cell response and B-cell
stimulation (Table S7).
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Figure 5. Downstream effect analysis on whole blood cells (WBC) from pigs fed an FV-supplemented diet. Hierarchical
heatmap generated from DeSeq2 analysis, where the major boxes represent a category of related functions. Each individual
colored rectangle is a particular biological function or disease, and the color indicates its predicted state: (increase: orange,
decrease: blue). Darker colors indicate higher absolute Z scores. In this view, the size of the rectangle is correlated with
increasing number of genes. The original image has been cropped for better readability of top affected functions. Specific
functions with associated Z-score < 2.5 are summarized in Table S6.

3.4. Fruit and Vegetable-Supplemented Diet Affected Composition of Fecal Microbiome

Sequencing of the V3-V4-region of bacterial 16S rRNA gene derived from samples
of the pig fecal microbiome (FM) collected at the start (day 0) and two weeks after di-
etary intervention (day 14) with FV-supplemented diet or control diets produced a total
of 1,245,477 reads after quality filtering and removal of one low-count sequence from
baseline for a group sequence mean ± SD of 73,263 ± 38,994 reads per sample used for
taxonomic analysis (n = 17) (Table S8). To compare FM composition among treatment
groups, distance matrices were calculated by weighted unifrac and visualized using Prin-
cipal coordinate analysis (PCoA) with 33% and 20% of the variation from the first two
components (Figure 6A). No changes in alpha diversity were detected by Shannon diver-
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sity index between treatment groups (Figure 6B). Beta diversity (distance between FM
groups) was significantly higher than the within-group distances (ANOSIM R value =
0.32, p = 0.009) (Figure 6C). FM data ordination by multivariate Canonical Correspondence
Analysis (CCA) showed FM communities clustering by time (p < 0.05) but not diet (p = 0.19)
indicating that a two-week intervention significantly affected FM composition independent
of diet (Figure 6D) with no changes in alpha diversity as has been previously described in
established FM of healthy pigs after weaning [47].
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Figure 6. Fecal Microbiota (FM) Diversity. Principal coordinate analysis with each unique symbol described in the legend
representing FM from pigs from the fruit and vegetables (FV) dietary group at day 0 (FVd0) and day 14 (FVd14) or control
(C) diet groups at day 0 (Cd0) and day 14 (Cd14) (A). Bacterial alpha diversity (Shannon index) distribution is summarized
with a line in the median (B). Analysis of similarity among treatment groups based on Bray-Curtis dissimilarity index (C)
and supervised Canonical Correspondence Analysis (D) displaying the composition distribution of the FM for both diets at
d0 and d14.

Among bacterial and Archaea phylum, Firmicutes (53.8%), Bacteroidetes (29.6%), Pro-
teobacteria (6.1%), Actinobacteria (2.7%), Spirochaetes (0.9%), and Euryarchaeota (0.5%) were
the most abundant phylum within the FM. At the family level, Prevotellaceae (23.9%), Veil-
lonellaceae (13.8%), Ruminococcaceae (12.6%), Lachnospiraceae (12.0%), and Lactobacillaceae
(9.5%) had the highest relative abundance with genus Prevotella 9 (12.2%), Lactobacillus
(10.40%), Succinivibrio (6.2%), Megasphaera (4.7%), Subdoligranulum (3.0%) and genus
Ruminococcaceae UCG-014 group (2.5%) as the top dominant genus across all samples.

Differentially abundant taxa between dietary treatments were examined using LEfSe
for biomarker (i.e., bacterial taxa) discovery applying effect size estimation. Relative to the
FM of the control-diet group, FM from FV-supplemented pigs showed an increase in genus
Fournierella from Ruminococcaceae, Anaerorhabdus fucosa group from Erysipelotrichaceae,
and a single genus from the dgA_11 group within Rikenellaceae family with an increased
abundance in ASVs within order Lentisphaeria and phylum Lentisphaerae (Figure 7A),
while pigs in the control group maintained an increased abundance of Muribaculaceae and
Rikenellaceae families within Order Bacteroidales, Bifidobacteriaceae within phylum Acti-
nobacteria and several genera from Lachnospiraceae and Ruminococcaceae within Clostridiales
(Figure 7B). Differential increase in genera within Class Erysipelotrichia (Erysipelotrichaceae
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spp., Catenibacterium) and Lentisphaeria was also detected in FV-supplemented pigs rela-
tive to their paired baseline sample (Figure 7C). In addition, there was also an increase in the
abundance of several genera within order Bacteroidales, including ASVs from Bacteroidaceae
(Bacteroides), Muribaculaceae and Rikenellaceae (Rickenellaceae RC9 gut group) families
and order Clostridiales, including ASVs from Ruminococcaceae (Ruminococcaceae UCG010),
Eubacteriaceae (E. coprostanoligenes), Lachnospiraceae (Lachnospiraceae NK3A20 group), and
Family XIII (Figure 7C) while Streptococcaceae and some genera within Lachnospiraceae fam-
ily were not affected by FV intervention (Figure 7C,D. On the other hand, pigs maintained
with the control diet showed an overall shift relative to baseline levels with increased
abundance in Bifidobacteriaceae, Atopobiaceae and Coriobacteriaceae within Actinobacteria,
Prevotellaceae, Rikenellaceae and Muribaculaceae within Bacteroidales, Acidaminococcaceae,
and Veillonellaceae within Negativicutes and Erysipelotrichales concomitant with the diet
induced dynamic shift post-weaning [47] and the appearance of some potential pathogens
within phylum Gammaproteobacteria and Campylobacteria (Figure 7E,F). No changes at
the phylum level were detected between assigned treatment groups at week 0; however,
at a lower phylogenetic level, the order Clostridiales was more abundant (~2%) in pigs
assigned to the FV-supplemented group, mainly driven by one pig with a higher abun-
dance. Genus Collinsella (~1.5% relative abundance) and Christensenellacea R7 group
(~7% relative abundance) also showed an increased abundance relative to the assigned
control group, suggesting a bias in the abundance of these genera that was not corrected by
the process of randomization (Figure S2). Predictive Functional Analysis with Phylogenetic
Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was
used to predict metagenomic functional content from the bacterial phylogenetic profiles
observed using a curated collection [48]. The comparison of imputed relative abundances
for KEGG metabolic pathways derived from FM bacterial taxa of FV and control diet-fed
pigs showed a reduced abundance of K12998_rgpE; glucosyltransferase [E.C: 2.4.1.] and
K01446_PGRP; peptidoglycan recognition protein in FV-fed pigs after a two-week feeding
(FDR < 0.05) (Figure S3).
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Figure 7. Linear discriminant analysis effect size (LEfSe) analysis representing differentially abundant taxa in pig fecal
microbiome (FM). (A). Horizontal bars representing individual enriched ASVs in the FM of pigs fed fruit and vegetable
supplemented (FV) or control (C) diet after 2 weeks. (B). Cladogram generated by the LEfSe method indicating phylogenetic
distribution of FM associated with FV or C-fed pigs after two weeks integrating differential ASV at all taxonomy levels (C).
Horizontal bars representing individual enriched ASVs in FM of pigs fed FV-supplemented diet at baseline (FV_0) or two
weeks after intervention (FV_14) with (D). Cladograms integrating changes at all taxonomic levels in FV treated group.
(E). Individual enriched ASVs in FM of pigs fed Control diet for 2 weeks with (F). Cladogram integrating changes at all
taxonomic levels. Only taxa with linear discriminant analysis (LDA) scores > 2 are presented.
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4. Discussion

This study showed that daily consumption of a diet containing 1.25 cups of fruit
and 1.75 cups of vegetables for two weeks positively affected the composition of the
fecal microbiome (FM) of pigs by promoting the abundance of several genera within
the Erysipelotrichaceae family, which have been previously correlated with dietary fiber
consumption [49,50], adherence to the Mediterranean diet (MD) [51], higher systemic
tocopherol concentrations as a marker of FV consumption in humans) [3], and negatively
correlated with inflammatory markers in weaned pigs [52]. Other genera from Rikenellaceae
and Muribaculaceae families previously associated with complex metabolism of carbohy-
drates [53] and responsive to dietary polyphenolic compounds [54] were also increased in
FV-supplemented pigs. The relative abundance of other major contributors to carbohydrate
metabolism, such as genera within phylum Lentisphaerae, family Ruminococcaceae [55],
and genus Bacteroides, was also increased in pigs fed the FV-supplemented diet relative
to paired baseline samples, with fewer differentially abundant taxa when compared to
pigs fed the control diet. Other environmental factors such as litter genetics, differences
in FM at baseline, or dietary source of protein and fat used to balance the calorie content
in the FV-supplemented diet may have contributed to enhanced response relative to its
baseline level. However, the FV-induced abundance of health-promoting bacteria detected
was likely due to more complex non-digestible plant fiber (also known as non-digestible
polysaccharides) and polyphenols that are abundant in fruits and vegetables [56,57] and
have compelling evidence from preclinical studies to modulate gut dysbiosis in metabolic
disorders and reduce associated immune system dysregulation [8] or modulate the abun-
dance of short-chain fatty acid-producing bacteria after a high adherence to enriched fruit
and vegetable diets [6,51]. In humans, Ruminococcus degrade plant fibers and produce
acetate and succinate as major end products [58]. Ruminococcaceae have been consistently
described in the gut of healthy humans, with a significant reduction in abundance in
patients with Crohn’s disease, suggesting a possible role in maintaining a healthy gut
microbiome in these patients [59]. Moreover, in our intervention, the inferred micro-
biome metabolic data, derived from taxonomical analysis of the microbiota, indicated a
significant reduction in rgpE-glucosyltransferase protein associated with the O-antigen
lipopolysaccharide biosynthesis and a peptidoglycan recognition protein from the Toll
and Imd signaling pathway (https://www.genome.jp/kegg/, accessed on 26 November
2021) in pigs fed the FV-supplemented diet relative to baseline levels, suggesting a diet
induced modulation of the inflammatory response possibly by modulating the abundance
of pro-inflammatory bacteria, as seen with the FV-supplemented group, where there was
a significant reduction of potential pathogens associated with inflammatory disease (i.e.,
Campylobacteria and Gammaproteobacteria), suggesting an added benefit of FV diets
that can be incorporated as a prophylactic approach for health maintenance. In addition,
our FV-supplemented diet provided more fiber than the control diet for additional pro-
duction of SCFA, which are linked to induced changes in immune activation. Therefore,
taken together, our microbiome data indicated that a short-term two-week feeding with
FV modulated the abundance and activity of specific butyrate-producing bacteria from
Erysipelotrichaceae, Ruminococcaceae and Bacteroidaceae and fiber-degrading bacteria from
Lentisphaerae that may contribute to the enrichment of more substrates for carbohydrate
metabolism and the delivery of butyrate to the mucosa. Inflammation is a normal response
of the host defense that can become chronic if the provoking insult is not cleared [60].
Changes in the composition of the gut microbiome have been linked to the induction of
chronic inflammation where there is migration of lymphocytes into inflamed non-lymphoid
tissues that under normal conditions will not recruit these lymphocytes [61]. However, a
reduction in inflammation [62] and diet-induced metabolic dysfunction [63] may result
from the consumption of a healthy plant-based diet. A higher intake of vegetables has
been linked to a lower WBC inflammatory profile through an altered gut microbiome,
suggesting that a vegetable-rich diet is linked to a lower inflammation [64]. Our study
provides broad molecular evidence that a combination of nine fruits and vegetables supple-
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mented in the daily diet affects host genes related to the regulation of cellular movement,
the inflammatory response, cell-to-cell signaling, and hematological system development
that were predicted to be causally affected by the transcriptomic changes observed in
WBC of pigs fed a supplemented FV diet. Specific functions associated with migration of
cells, immune cell response, binding of mononuclear cells and lymphocytes, and adhesion
were predicted to be downregulated (Z-score < 2.5). However, a stimulatory effect of the
FV-supplemented diet on the development and differentiation of B cells was also detected.
There was an upregulation of genes, associated with B-cell function, including two B
cell restricted immunoglobulin heavy-chain constant regions, (IGHA1, IGHG1) and a B
cell restricted immunoglobulin kappa-chain variable region (IGKV7). CD79B, the B-cell
antigen receptor expressed by B cells [65], which is involved in antigen processing and
presentation and also a B cell maturation marker [66], was upregulated in response to FV
dietary intervention. Development of B-cell lineage was affected as TNFRSF13C, essential
for B-cell development and function, was also positively regulated [67,68]. CD1A which is
expressed by B cells in pigs and humans, but also by pig and human dendritic cells [69] and
monocytes [70,71] is involved in lipid antigen presentation to T cells [72]. LY86, a positive
regulator of signaling in response to LPS [73], is expressed in B cells and monocytes [74].
This gene expression pattern suggests that B cell number/function was positively affected
by an FV-supplemented diet. In support of our observations, a polyphenol-rich variety
of apples provided in the diet to healthy adults was also shown to induce changes in
peripheral blood mononuclear cells (PBMC) gene expression with differential regulation of
immunoglobulin-related genes that had roles in immunoglobulin production and B-cell
mediated immunity [75]. Significant changes in the expression of genes associated with
immune-related pathways were also detected in adults at risk of developing metabolic
syndrome who received a freeze-dried blueberry-supplemented diet [76], thus demonstrat-
ing that controlled nutritional interventions have the potential to affect health through
immune response modulation. However, more studies with larger sample numbers are
needed to explain the molecular mechanism of action of different FV-enriched diets and its
regulation of inflammation on metabolic diseases.

To further support the biological impact of the host transcriptome changes induced by
our two-week dietary FV intervention, our DGE dataset showed a significant overlap with
immunological datasets related to the induction of memory cell response and B-cell stimu-
lation in previously defined functional profiles within the MSigDB database. Therefore, the
data provide new molecular evidence that an FV-supplemented diet selectively suppresses
the host inflammatory response and cellular movement through cytokine receptor signal-
ing while stimulating B-cell development, suggesting that FV supplementation favorably
affects the composition and function of the host intestinal microbiota with selective activa-
tion of humoral immune protection and reduced inflammation. However, the mechanism
linking changes in the microbiome and WBC gene expression will need to be validated
with focused functionality studies that evaluate the interaction of microbiome-derived
metabolites or the direct effect of FV inherent bioactive components such as polyphenols.
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