
nutrients

Article

Effects of Acute Resistance Exercise with and without
Whole-Body Electromyostimulation and Endurance Exercise on
the Postprandial Glucose Regulation in Patients with Type 2
Diabetes Mellitus: A Randomized Crossover Study

Roman Holzer 1,2, Benedikt Schulte-Körne 1, Jan Seidler 1, Hans-Georg Predel 1 and Christian Brinkmann 1,2,*

����������
�������

Citation: Holzer, R.; Schulte-Körne,

B.; Seidler, J.; Predel, H.-G.;

Brinkmann, C. Effects of Acute

Resistance Exercise with and without

Whole-Body Electromyostimulation

and Endurance Exercise on the

Postprandial Glucose Regulation in

Patients with Type 2 Diabetes

Mellitus: A Randomized Crossover

Study. Nutrients 2021, 13, 4322.

https://doi.org/10.3390/nu13124322

Academic Editor: Maria Luz

Fernandez

Received: 9 November 2021

Accepted: 28 November 2021

Published: 29 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Preventive and Rehabilitative Sport Medicine,
Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne,
50933 Cologne, Germany; roman.holzer@protonmail.com (R.H.); b.schulte@dshs-koeln.de (B.S.-K.);
jan.seidler96@web.de (J.S.); predel@dshs-koeln.de (H.-G.P.)

2 Department of Fitness & Health, IST University of Applied Sciences, 40233 Düsseldorf, Germany
* Correspondence: ch.brinkmann@gmx.net

Abstract: Background: Long hyperglycemic episodes trigger complications in type 2 diabetes mellitus
(T2DM) patients. Postprandial glucose excursions can be reduced by acute physical activity. However,
it is not yet clear which type of exercise has the best effect on postprandial glucose levels. Methods: Six
T2DM patients participated in three 20-min moderate-intensity exercise sessions after breakfast in a
randomized order: resistance exercise with whole-body electromyostimulation (WB-EMS), resistance
exercise without electromyostimulation (RES) and cycling endurance exercise (END). A continuous
glucose monitoring system recorded glucose dynamics. Results: Postprandially-increased glucose
levels decreased in all cases. Time to baseline (initial value prior to meal intake) was quite similar for
WB-EMS, RES and END. Neither glucose area under the curve (AUC), nor time in range from the
start of the experiment to its end (8 h later) differed significantly. A Friedman analysis of variance,
however, revealed an overall significant difference for AUC in the post-exercise recovery phase (END
seems to have superior effects, but post-hoc tests failed statistical significance). Conclusions: There
are no notable differences between the effects of the different types of exercise on glucose levels,
especially when comparing values over a longer period of time.

Keywords: exercise; postprandial glucose regulation; continuous glucose monitoring; CGM; type 2
diabetes mellitus; T2DM; area under the curve (AUC)

1. Introduction

Diabetes mellitus is a disease that affects over 450 million people worldwide with
90–95% affected by type 2 diabetes mellitus (T2DM) [1]. Obesity and physical inactivity
play a critical role in its development [2]. Regular aerobic exercise of at least 150 min
per week at moderate to high intensity is recommended in the treatment of T2DM [3,4].
However, physical activity should preferably not be limited to endurance-based training
but should be combined with resistance training [4]. Resistance exercises for major muscle
groups should be performed two to three times a week [3]. Muscle contractions during
exercise lead to a translocation of glucose transporters within the muscle cell via an insulin-
independent mechanism [5]. This process corresponds to the physiological effect of insulin
and induces a reduction in blood glucose levels [5]. Both insulin sensitivity and glucose
tolerance can be increased up to 24 h or more following physical exercise [6].

While implementing these recommendations in daily life, people with T2DM face
several barriers, however, including lack of time [7,8]. Originally established in competitive
sports, electromyostimulation (EMS) training has become increasingly popular in health
and recreational sports. One major advantage of EMS training is the time saved compared
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to conventional resistance training [9,10]. EMS training has proved to be successful for
improving physical performance [9–12]. Through EMS, muscles are stimulated percuta-
neously by electrical stimulation via electrodes on the skin surface. A distinction in the use
of EMS depends on whether its application is combined with voluntary contractions/active
exercises or is applied passively during physical rest. In general, the combination of EMS
with voluntary contractions/active exercises induces greater muscular adaptations than
the passive application of EMS or solely voluntary contractions without EMS [12]. Another
distinction in EMS training is made between local stimulation, where the focus is on a
single muscle only, and whole-body EMS (WB-EMS), where entire muscle groups are used
for a more functional training. The frequency of the applied stimulation current influences
different muscle fibers. That is, high-frequency stimulation currents are used to increase
maximum strength, while low-frequency currents can lead to an improvement in strength
endurance [9].

Increased muscle contraction due to percutaneous electromyostimulation can result
in higher muscle fiber damage if used excessively [13,14]. Increased muscle fiber damage,
which can occur with conventional exercise as well, can result in elevated creatine kinase
(CK) levels [14,15]. Consequently, WB-EMS should be used at moderate intensity when
applied for the first time to prevent adverse health effects [16]. However, when it is
adequately and properly instructed, WB-EMS is considered a safe and efficient training
method, even for physically untrained individuals [10].

As resistance exercise with WB-EMS is offered by several providers in both commercial
and clinical settings, it is important to determine its effects on patients’ glucose regulation
in relation to the effects of well-established and recommended conventional forms of
exercise (resistance and endurance type). Therefore, the main objective of the present study
is as follows:

Evaluation of the effects of resistance exercise with WB-EMS compared to the effects
of conventional resistance exercise (without WB-EMS) and endurance exercise on the
postprandial glucose regulation in patients with T2DM.

The glucose profiles of the different exercise modes should be recorded using a
continuous glucose monitoring (CGM) system.

As a secondary objective of the study, the subjects’ perception of the EMS application,
as well as of their use of the CGM system and awareness of their individual glucose
responses, will be analyzed using a questionnaire.

2. Materials and Methods

This randomized crossover study with three exercise sessions was conducted in
accordance with the Good Clinical Practice guidelines and the Declaration of Helsinki.
All subjects performed three moderate-intensity exercise bouts (resistance exercises with
whole-body electromyostimulation: WB-EMS; resistance exercises without whole-body
electromyostimulation: RES; continuous endurance exercise: END) in a randomly assigned
order. The project was approved by the Ethics Committee of the German Sport University
Cologne (reference number 003/2020).

2.1. Participants

Non-insulin-dependent T2DM patients without severe nephropathy, neuropathy, ad-
vanced retinopathy and/or severe cardiovascular complications were included in this study.
Recruitment took place via leaflets in diabetes-related surgeries, via social media (diabetes
professional associations, diabetes support groups) and through newspaper articles.

The decision on inclusion/exclusion was based on a detailed anamnesis, completion
of a medical examination and recommended contraindications for non-medical WB-EMS
use [17]. As this study was conducted under medical supervision and with medically
trained investigators, diabetes mellitus was not considered as an absolute contraindication.
The participants’ individual pharmacological therapies were not modified during the study.
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All subjects participated voluntarily and provided written informed consent for inclusion
in the study.

2.2. Study Design

The subjects visited the institute on 4 days with a break of at least 72 h. The visits
entailed a preliminary visit for anamnesis, preparation and familiarization, and three
exercise sessions. On the day of anamnesis, the subjects underwent a medical examination,
followed by an incremental exercise test (IET) to determine their individual maximum
performance level. The IET was carried out on a cycling ergometer according to the World
Health Organization (WHO) protocol (25 watts + 25 watts every 2 min) until exhaustion
or the occurrence of predefined stopping criteria [18]. For the glycemic assessment, a
continuous glucose monitoring (CGM) system was attached to the subjects’ left upper arm.
To give the participants sufficient time to completely recover, and as the CGM’s accuracy
might be reduced in the initial days of use [19,20], a run-in phase of at least 72 h was
scheduled between the first and second visit. At the end of the first visit, a familiarization
session with the WB-EMS was performed, determining the size of the vest and pants and
the intensity of the EMS stimulus. In addition, the subjects were shown how to perform
the exercises.

On the following days of the experiment, the exercise sessions were conducted in
a randomized order according to a standardized daily schedule (Figure 1). A venous
blood sample was collected to determine the subjects’ blood variables, namely fasting
glucose, glycated hemoglobin (HbA1c), total cholesterol, high-density lipoprotein (HDL),
low-density lipoprotein (LDL) and triglycerides.
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Figure 1. Standardized schedule of the experiment.

2.3. Experimental Procedure

The participants arrived at the institute in the early morning after an overnight fast.
The subjects were given a standardized breakfast (310 kcal, 61.5 g carbohydrates (of which
61.5 g was sugar), 0.5 g fat, 14.5 g protein), which they were asked to consume within 20 min.
The meal contained a high amount of sugar to induce a significant glucose excursion in
the subjects.

Fifty min after the start of the measurements, subjects started exercising for 20 min
(assigned to the different exercise types in a randomized order). After the exercise, the
participants remained in a state of physical rest. They had lunch exactly 4 h after the start of
the experiment. It included a standardized meal (625 kcal, 77.5 g carbohydrates (of which
7.0 g was sugar), 23.5 g fat, 22.5 g protein), which they were asked to consume within
30 min.

Subsequently, the subjects were allowed to leave the institution, but were instructed
to stick as close to their daily routine as possible and not engage in any further physical
activities. Furthermore, no further food intake was allowed for the subsequent 4 h.
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2.4. Exercise Sessions

Since resistance training with EMS can lead to strong muscular strain, the recom-
mended EMS exercise duration was limited to a maximum of 20 min [16]. To compare
glucose responses of the different exercise types, the three exercise sessions were matched
for exercise time.

The protocol for the resistance exercise (RES) session was identical to the WB-EMS
session, with the exception that no WB-EMS was applied. RES was used to evaluate the
direct effect of EMS.

In total, the subjects performed 8 exercises (squats, biceps curls, good mornings,
bilateral shoulder horizontal abductions, lunges left, lunges right, bench presses, crunches)
with one set of 20 repetitions each (except crunches with 10 repetitions) over the 20 min.
The exercises were performed one after the other without a break between sets.

Some exercises (squats, good mornings, lunges, crunches) were performed as body
weight exercises (the line of pull was perpendicular to the ground). An elastic resistance
band was used for all other exercises (biceps curls, bilateral shoulder horizontal abductions
and bench presses).

The intensity of the exercises could be adjusted by changing the range of motion or
by using different resistance bands. Participants were instructed to perform the exercises
with moderate intensity, so that they would have been able to perform 3–4 more repetitions
after completion of each set (until, in theory, muscular failure would have been occurred).

The EMS device XBody Newave (XBODY International Kft., Budapest, Hungary) was
used for the WB-EMS session. The bipolar, low-frequency stimuli (80 Hz) were applied
percutaneously via vest and pants to the respective muscle groups.

Electrical stimulation was applied for 4 s each time, within which one repetition
was performed, followed by 4 s of rest. The intensity of the electrical stimulation was
determined by the participants and compared with a muscle contraction scale (0–10;
0 = no contraction, 10 = extremely strong muscle contraction), while participants were
asked to stay at a level of 4–5 (mild to moderate muscle contraction). Similar protocols
have been used in former research studies [9,10,21] and are also being used in commercial
EMS studios.

Moderate-intensity continuous endurance exercise (END) was performed on a bicycle
ergometer at 50% of the maximum power achieved at IET. This training modality for END
is commonly used in training therapy and research [22,23].

2.5. Continuous Glucose Monitoring

Participants’ glucose responses were measured using the FreeStyle Libre 2 (FSL2)
Flash Glucose Monitoring System (Abbott Diabetes Care, Witney, Oxon, UK). FSL2 is a
measurement device that continuously monitors glucose in the interstitial fluid (ISF) of the
subcutaneous adipose tissue. The system consists of a reader and a sensor that is worn on
the upper arm. The sensor is attached with an applicator, whereby a flexible, sterile tip is
inserted in the subcutaneous tissue and fixed with an adhesive foil. In the EU, the FSL2 has
been approved for a 14-day use. During this period, the measured value can be scanned as
often as desired. A value is also automatically saved in the system for every 15 min up to
8 h. The sensor does not require frequent calibration as the calibration process is part of the
manufacturing process [24]. The system is ready for use 1 h after the sensor’s application.
The accuracy of readings on the first day(s) is lower than on subsequent days, however,
due to temporary local trauma at the sensor’s application site [19].

2.6. Questionnaire

Subjects were asked to complete a questionnaire before and after participation in the
study. The questionnaire was designed to collect additional information on the partici-
pants’ expectations and experiences. All “questions” were expressed as statements, and
agreement/disagreement was assessed using a 5-point Likert scale (“agree”, “rather agree”,
“neither nor”, “rather disagree”, “disagree”).
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2.7. Data Analysis

The continuous glucose values of FSL2 were exported as a .csv-file and linearly
interpolated to one value per minute.

The time interval from the start of the experiment until the postprandial glucose levels
returned to baseline for the first time (time to baseline = TTB) was determined.

To allow for a comparison of the individual exercise sessions despite different starting
values, we calculated the change from the starting value (∆glucose) for each glucose profile.

The area under the curve (AUC) was calculated for each minute value using the
trapezoidal rule [25]. Thus, the AUC of the single minute values could be summed up for
different time frames (Table 1).

Table 1. Experimental phases and corresponding time intervals.

Phase Interval Start End

breakfast 0–49 min beginning of experiment start of exercise
exercise 50–69 min start of exercise end of exercise
recovery 70–239 min end of exercise start of lunch

daily routine 240–480 min start of lunch end of experiment
supervised phase 0–240 min beginning of experiment start of lunch

overall 0–480 min beginning of experiment end of experiment

An important parameter for assessing health risks in diabetes mellitus is the time in
target range (TIR), expressed as the percentage of readings/time within the glucose range
of 70–180 mg/dL [26,27]. Time above target range (TAR) as well as below target range
(TBR) were also calculated.

The nonparametric Friedman test was used to compare differences between condi-
tions. If overall significant differences were found, Dunn–Bonferroni post-hoc tests were
performed to explore which data from which exercise types differed from each other.

Results from the questionnaire were analyzed using the Wilcoxon signed-rank test,
where appropriate.

The results are presented as mean values (± standard deviation (SD)). Statistical
significance was considered at p < 0.05. Data were analyzed using Microsoft Office Excel
2016 for Windows (Microsoft Corporation, Redmond, WA, USA) and IBM SPSS Statistics 27
(IBM Corp., Armonk, NY, USA). Illustrations were made with Microsoft Office Excel 2016.

3. Results
3.1. Subjects’ Characteristics

A total of 6 subjects (3 women, 3 men) with T2DM were enrolled in the trial. On
average, T2DM was first diagnosed in the patients 5.3 (±3.3) years before the start of
the investigation. Anthropometric data and metabolic variables of the participants are
presented in Table 2.

Table 2. Subjects’ characteristics.

Anthropometric Data Metabolic Variables

age (years) 55.2 ± 7.5 HbA1c (%) 7.1 ± 0.5
height (cm) 175.4 ± 5.9 fasting blood glucose (mg/dL) 169.0 ± 49.3
weight (kg) 100.2 ± 21.6 total cholesterol (mg/dL) 202.5 ± 53.1

BMI (kg/m2) 32.7 ± 7.6 LDL (mg/dL) 117.8 ± 48.4
HDL (mg/dL) 48.5 ± 10.8

triglycerides (mg/dL) 208.7 ± 84.3

Values are means ± SD. BMI, body mass index; HbA1c, glycated hemoglobin; LDL, low-density lipoprotein; HDL, high-density lipoprotein.
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3.2. Glucose Profiles

The mean fasting glucose was 137.5 (±14.3) mg/dL for WB-EMS, 137.4 (±17.0) mg/dL
for RES and 149.8 (±34.1) mg/dL for END at the beginning of the experiment. Postprandial
peak values after breakfast were reached, on average, at 56 min (WB-EMS), 51 min (RES)
and 49 min (END), which was quite similar between the different conditions. Glucose
levels decreased with the beginning of physical activity and during the following passive
recovery period. The mean postprandial minimum was reached just before the start of
lunch after 237 min (WB-EMS; 103.2 ± 14.5 mg/dL), 233 min (RES; 108.1 ± 11.2 mg/dL)
and 243 min (END; 107.1 ± 13.1 mg/dL). Glucose levels over the subsequent 4 h during
which the subjects followed their daily routines averaged at 147.2 (±26.1) mg/dL for
WB-EMS, 151.1 (±14.8) mg/dL for RES and 148.2 (±26.3) mg/dL for END. The mean
glucose levels for the entire 8-h experimental period were 146.9 (20.5) mg/dL for WB-EMS,
149.2 (15.6) mg/dL for RES and 146.4 (20.1) mg/dL for END.

All of the above-mentioned values did not significantly differ between the three
experimental conditions (WB-EMS, RES, END).

3.3. Time to Baseline (TTB)

After glucose excursions were induced by breakfast at the beginning of the exper-
iment, physical activity was performed to lower postprandial glucose levels. To assess
the rate of glucose reduction, we calculated the time until subjects reached their baseline
level (initial value before breakfast) for the first time. The TTB determined for WB-EMS
was 120.7 (±36.9) minutes, for RES it was 127.3 (±40.3) minutes and for END it was
100.8 (±42.4) minutes. There were no significant differences between the three conditions.

3.4. AUC Analyses

As the fasting glucose levels at the beginning of each experimental run differed not
only inter- but also intraindividually, the change from the initial baseline value (∆glucose)
was calculated for better comparability. This resulted in normalized glucose curves starting
from 0, which are illustrated in Figure 2.
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Figure 2. Rate of glucose changes (∆glucose) for resistance exercise combined with whole-body
electromyostimulation (WB-EMS), resistance exercise without WB-EMS (RES) and endurance
exercise (END).

The area under the respective ∆glucose curves was calculated for the AUC analyses.
AUC values of different time intervals are presented in Figure 3.
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Figure 3. Area under the ∆glucose curve (AUC) of the different experimental phases. Values are
means ± SD. WB-EMS, resistance exercise combined with whole-body electromyostimulation; RES,
resistance exercise without WB-EMS; END, endurance exercise. * Significant difference between
conditions (overall significance: p = 0.042, post-hoc tests failed significance).

During the recovery phase (70−240 min), a significant overall difference was found
between the three exercise methods (p = 0.042). The Dunn–Bonferroni post-hoc tests did
not, however, reveal a significant result (END vs. WB-EMS: p = 0.063; END vs. RES:
p = 0.130. WB-EMS vs. RES: p = 1.000).

3.5. Time in/above/below Range (TIR, TAR, TBR)

Within the investigated 8-h periods, mean TIR was 80.8% (±15.6%) for WB-EMS,
83.8% (±14.5%) for RES and 79.0% (±19.3%) for END. While none of the subjects spent
time below target range (TBR), the results for time above target range (TAR) were 19.2%
(±15.6%) for WB-EMS, 16.2% (±14.4%) for RES and 21.0% (±19.3%) for END. There were
no significant differences between the three conditions.

3.6. Questionnaire

Subjects’ agreement with the statements in the questionnaire was coded as follows:
−2 = disagree, −1 = rather disagree, 0 = neither nor, 1 = rather agree, and 2 = agree.
The mean values are shown in Figure 4. Differences between pre- and post-survey were
not significant.

WB-EMS was tendentially rated as a good training method and participants were
not afraid of exercising with WB-EMS. After participation in the study, all subjects rated
exercising with WB-EMS as (rather) pain-free. Furthermore, everyone agreed that the
use of a CGM system is (rather) uncomplicated and well tolerable. Glucose awareness
both during physical activity and after food intake tended to increase as a result of par-
ticipation in the study. There were no significant differences in the ratings post- versus
pre-study participation.
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Figure 4. Subjects’ rating based on their perception of the whole-body electromyostimulation
application (WB-EMS), the use of the continuous glucose monitoring (CGM) system and glucose
awareness pre- and post-study participation. Values are means ± SD.

4. Discussion

In this study, exercise was shown to be effective in lowering postprandial glucose
levels. This result is in line with observations from other studies [28,29]. The glucose-
lowering effect was observed for all types of exercise investigated, even at an exercise
duration of 20 min.

Theoretically, WB-EMS, with its high recruitment of glycolytic type 2 fibers [30]
and increased muscle contraction [12], was expected to result in a greater decrease in
postprandial glucose levels due to contraction-induced glucose uptake [5,31]. In this study,
however, no significant difference in the acute postprandial glucose response was found
between exercise with and without WB-EMS.

In former studies, increased postprandial glucose uptake was observed from passive
EMS application at the quadriceps femoris (at rest without exercise/voluntary contraction)
compared with the control condition without EMS [32,33].

Long-term studies showed improvements in insulin sensitivity, glycemic control or
physical performance after several weeks of local or whole-body EMS [34–38] with both
active and passive application.

To date, the acute effects of WB-EMS application on postprandial glucose regulation
has not been investigated in comparison with different exercise types without EMS, as was
performed in this study.

Some potential reasons might explain the absence of significant differences between
the effects of WB-EMS and RES or END on postprandial glucose regulation in this study.

Although the subjects completed a familiarization session with the WB-EMS during
their first visit, they were largely inexperienced in exercising with electrical muscle stimula-
tion. Consequently, the WB-EMS exercise intensity was initially set at a moderately intense
level, according to the general recommendations for WB-EMS use in untrained persons [16].
Higher intensities when exercising with WB-EMS should only be used after several training
sessions, as very high intensities could lead to severe muscle fiber damage and rhabdomy-
olysis, especially in untrained persons [10,13]. However, enhanced carbohydrate oxidation
has been reported for EMS applications also with low intensity [30].
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Furthermore, electrical stimulation during exercise as used in WB-EMS, can lead to
higher acute serum cortisol levels compared to exercise without electrical stimulation [39].
Cortisol as a glucocorticoid promotes gluconeogenesis in the liver, on the one hand, and
reduces skeletal muscle glucose uptake, on the other [40]. It can be speculated that these
two effects of cortisol counterbalanced the possible effects of increased contraction-induced
glucose uptake and increased carbohydrate oxidation induced by WB-EMS. Unfortunately,
cortisol levels were not measured in the present study, but should be considered in future
studies for further clarification.

While subjects performed different exercises with defined repetitions and breaks
between them in WB-EMS and in RES, they continuously performed moderately intense
activity in END. It can be concluded with caution that the steady movement pattern of END
is more suitable than resistance exercise for reducing postprandial glucose levels in the
subsequent recovery period. These findings are consistent with results from other studies
that investigated the effects of resistance versus endurance exercise on postprandial glucose
response, where advantages were identified for endurance-based exercises [28,41,42].

During exercise, skeletal muscle glucose uptake and consumption depend predom-
inantly on the intensity and duration of exercise [43,44]. The duration of the exercise
sessions was identical, and the intensities were in a comparable range. However, glucose
uptake is not only elevated during exercise but also in the post-exercise period due to glyco-
gen repletion, increased GLUT4 translocation and enhanced insulin sensitivity [4,31,43,44].
Continuous motion during endurance exercise is likely to elicit higher glucose uptake
in the subsequent recovery phase than resistance exercise [28,41,42]. One reason for this
difference may be the increased muscle damage after resistance exercise, especially after
high-intensity and/or eccentric exercises, resulting in decreased GLUT4 content and de-
creased insulin signaling in the damaged muscle [45]. Increased muscle damage may also
occur during training with WB-EMS due to percutaneous stimulation [13,14]. In the long
term, however, resistance training appears to have comparable positive effects on glycemic
control in T2DM than endurance-based training [4,28,29,46].

Increased skeletal muscle glucose uptake and insulin sensitivity can be elevated up to
24 h or longer following exercise [4,6]. During the subjects’ daily routine after lunch, no
AUC differences were observed between the three exercise types explored in the present
study. Although a difference in the recovery phase was expected to have manifested in the
following hours, this was not the case. It could be that the effects of the different exercise
sessions equalize over time, which would also explain the comparable long-term effects of
resistance and endurance training [4,28].

In addition to the experiments, a survey on the participants’ expectations and expe-
riences was carried out. The survey indicated that the participants had no apprehension
of exercising with WB-EMS as an innovative training method. Subjects obviously did not
experience any pain during the WB-EMS training sessions. The high degree of supervision
with a maximum of two subjects per trainer/coach could have had an appealing effect and
might motivate people with T2DM and low affinity to conventional exercise to engage in
this type of exercise [10,38].

The use of a CGM system was rated as very positive by the subjects. Studies have
demonstrated positive effects on glycemic control by using CGM systems, also in T2DM
patients [47].

Strengths and Limitations

The study´s strengths include: randomized-controlled design, standardized process
and data recording over the day as well as inclusion of a special patient group.

The study was performed in an exploratory manner. One limitation of this study is
the small sample size, although the number of participants in this study is comparable
with that of other studies in this field [30,32,33,48,49].

EMS training is costly in a commercial setting. For this reason, it is not possible for
many patients to use this type of training. However, the EMS market is constantly growing
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and diverse sports and exercise offers increase the chance for an individual with T2DM
to find an offer that is suitable for him/her. Therefore, training recommendations for
T2DM patients should also consider this type of training. Ultimately, this study shows
that moderate-intensity physical activity, regardless of resistance exercise (with or without
EMS) or endurance exercise, can lower glucose levels in T2DM patients.

5. Conclusions

The results of this preliminary study suggest that all types of exercise (WB-EMS,
RES, END) affect postprandial glucose concentrations similarly. There were no notable
differences between their effects on glucose levels, especially when comparing values over
a longer period of time. WB-EMS resistance exercise as an innovative type of exercise was
well tolerated by the patients.

The lack of additional beneficial effects of electromyostimulation (when used in
resistance exercises) on glucose regulation throughout the day may be due to the acute
exercise setting and further studies on chronic use may be required to elucidate the potential
beneficial effects of WB-EMS resistance training for T2DM patients.

Results of this study could also be helpful for patients treated with insulin to better
assess if/to what extent insulin doses/extra carbohydrate doses need to be adjusted.

Author Contributions: Conceptualization, C.B. and R.H.; methodology, C.B. and R.H.; validation,
C.B. and R.H.; formal analysis, R.H.; investigation, R.H., B.S.-K. and J.S.; resources, H.-G.P.; data cura-
tion, R.H.; writing—original draft preparation, R.H.; writing—review and editing, C.B.; visualization,
R.H.; supervision, C.B.; project administration, C.B. and R.H.; funding acquisition, C.B. and R.H. All
authors have read and agreed to the published version of the manuscript.

Funding: This project received investigator-initiated funding from Abbott Diabetes Care.

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki and approved by the Ethics Committee of the German Sport University
Cologne (reference number 003/2020).

Informed Consent Statement: Written informed consent was obtained from all subjects involved in
the study.

Data Availability Statement: Data are available from the corresponding author upon reasonable
request.

Acknowledgments: The authors thank XBODY International and XBody Training Germany for
providing the EMS devices and for their excellent technical support.

Conflicts of Interest: C.B. is a member of the Abbott Advisory Board. All other authors declare that
they have no conflict of interest. The funder had no role in the design of the study, in the collection,
analyses or interpretation of data, in the writing of the manuscript or in the decision to publish
the results.

References
1. International Diabetes Federation. IDF Diabetes Atlas, 8th ed.; International Diabetes Federation: Brussels, Belgium, 2017.
2. Jaacks, L.M.; Siegel, K.R.; Gujral, U.P.; Narayan, K.V. Type 2 diabetes: A 21st century epidemic. Best Pract. Res. Clin. Endocrinol.

Metab. 2016, 30, 331–343. [CrossRef] [PubMed]
3. American Diabetes Association 5. Lifestyle Management: Standards of Medical Care in Diabetes—2019. Diabetes Care 2018, 42,

S46–S60. [CrossRef]
4. Colberg, S.R.; Sigal, R.J.; Yardley, J.E.; Riddell, M.C.; Dunstan, D.W.; Dempsey, P.C.; Horton, E.S.; Castorino, K.; Tate, D.F. Physical

Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care 2016, 39, 2065–2079.
[CrossRef] [PubMed]

5. Stanford, K.I.; Goodyear, L.J. Exercise and type 2 diabetes: Molecular mechanisms regulating glucose uptake in skeletal muscle.
Adv. Physiol. Educ. 2014, 38, 308–314. [CrossRef] [PubMed]

6. Macdonald, A.L.; Philp, A.; Harrison, M.; Bone, A.J.; Watt, P.W. Monitoring Exercise-Induced Changes in Glycemic Control in
Type 2 Diabetes. Med. Sci. Sports Exerc. 2006, 38, 201–207. [CrossRef] [PubMed]

7. Korkiakangas, E.E.; Alahuhta, M.A.; Laitinen, J.H. Barriers to regular exercise among adults at high risk or diagnosed with type
2 diabetes: A systematic review. Health Promot. Int. 2009, 24, 416–427. [CrossRef]

http://doi.org/10.1016/j.beem.2016.05.003
http://www.ncbi.nlm.nih.gov/pubmed/27432069
http://doi.org/10.2337/dc19-s005
http://doi.org/10.2337/dc16-1728
http://www.ncbi.nlm.nih.gov/pubmed/27926890
http://doi.org/10.1152/advan.00080.2014
http://www.ncbi.nlm.nih.gov/pubmed/25434013
http://doi.org/10.1249/01.mss.0000183852.31164.5a
http://www.ncbi.nlm.nih.gov/pubmed/16531885
http://doi.org/10.1093/heapro/dap031


Nutrients 2021, 13, 4322 11 of 12

8. Lidegaard, L.P.; Schwennesen, N.; Willaing, I.; Faerch, K. Barriers to and motivators for physical activity among people with Type
2 diabetes: Patients’ perspectives. Diabet. Med. 2016, 33, 1677–1685. [CrossRef]

9. Filipovic, A.; Kleinöder, H.; Dörmann, U.; Mester, J. Electromyostimulation—A Systematic Review of the Effects of Different
Electromyostimulation Methods on Selected Strength Parameters in Trained and Elite Athletes. J. Strength Cond. Res. 2012, 26,
2600–2614. [CrossRef]

10. Kemmler, W.; Weissenfels, A.; Willert, S.; Shojaa, M.; Von Stengel, S.; Filipovic, A.; Kleinöder, H.; Berger, J.; Fröhlich, M.
Efficacy and Safety of Low Frequency Whole-Body Electromyostimulation (WB-EMS) to Improve Health-Related Outcomes in
Non-athletic Adults. A Systematic Review. Front. Physiol. 2018, 9, 573. [CrossRef]

11. Bax, L.; Staes, F.; Verhagen, A. Does Neuromuscular Electrical Stimulation Strengthen the Quadriceps Femoris? Sports Med. 2005,
35, 191–212. [CrossRef]

12. Paillard, T. Combined Application of Neuromuscular Electrical Stimulation and Voluntary Muscular Contractions. Sports Med.
2008, 38, 161–177. [CrossRef]

13. Kemmler, W.; Teschler, M.; Bebenek, M.; Von Stengel, S. Hohe Kreatinkinase-Werte nach exzessiver Ganzkörper-Elektromyostimulation:
Gesundheitliche Relevanz und Entwicklung im Trainingsverlauf. Wien. Med. Wochenschr. 2015, 165, 427–435. [CrossRef]

14. Stöllberger, C.; Finsterer, J. Side effects of whole-body electro-myo-stimulation. Wien. Med. Wochenschr. 2018, 169, 173–180.
[CrossRef]

15. Brancaccio, P.; Maffulli, N.; Limongelli, F.M. Creatine kinase monitoring in sport medicine. Br. Med. Bull. 2007, 81–82, 209–230.
[CrossRef]

16. Kemmler, W.; Froehlich, M.; Von Stengel, S.; Kleinöder, H. Whole-Body Electromyostimulation—The Need for Common Sense!
Rationale and Guideline for a Safe and Effective Training. Dtsch. Z. Für Sportmed. /Ger. J. Sports Med. 2016, 2016, 218–221.
[CrossRef]

17. Kemmler, W.; Weissenfels, A.; Willert, S.; Fröhlich, M.; Ludwig, O.; Berger, J.; Zart, S.; Becker, S.; Backfisch, M.; Kleinöder, H.; et al.
Recommended Contraindications for the Use of Non-Medical WB-Electromyostimulation. Dtsch. Z. Für Sportmed. /Ger. J. Sports
Med. 2019, 70, 278–282. [CrossRef]

18. Brinkmann, C.; Weh-Gray, O.; Brixius, K.; Bloch, W.; Predel, H.-G.; Kreutz, T. Effects of exercising before breakfast on the health of
T2DM patients—A randomized controlled trial. Scand. J. Med. Sci. Sports 2019, 29, 1930–1936. [CrossRef]

19. Ajjan, R.A.; Cummings, M.H.; Jennings, P.; Leelarathna, L.; Rayman, G.; Wilmot, E.G. Accuracy of flash glucose monitoring
and continuous glucose monitoring technologies: Implications for clinical practice. Diabetes Vasc. Dis. Res. 2018, 15, 175–184.
[CrossRef]

20. Heinemann, L.; Schoemaker, M.; Schmelzeisen-Redecker, G.; Hinzmann, R.; Kassab, A.; Freckmann, G.; Reiterer, F.; Del Re, L.
Benefits and Limitations of MARD as a Performance Parameter for Continuous Glucose Monitoring in the Interstitial Space. J.
Diabetes Sci. Technol. 2019, 14, 135–150. [CrossRef]

21. Filipovic, A.; Kleinöder, H.; Dörmann, U.; Mester, J. Electromyostimulation—A Systematic Review of the Influence of Training
Regimens and Stimulation Parameters on Effectiveness in Electromyostimulation Training of Selected Strength Parameters.
J. Strength Cond. Res. 2011, 25, 3218–3238. [CrossRef]

22. De Nardi, A.T.; Tolves, T.; Lenzi, T.L.; Signori, L.U.; da Silva, A.M.V. High-intensity interval training versus continuous training
on physiological and metabolic variables in prediabetes and type 2 diabetes: A meta-analysis. Diabetes Res. Clin. Pract. 2018, 137,
149–159. [CrossRef]

23. Ramos, J.; Dalleck, L.C.; Tjonna, A.E.; Beetham, K.; Coombes, J.S. The Impact of High-Intensity Interval Training Versus Moderate-
Intensity Continuous Training on Vascular Function: A Systematic Review and Meta-Analysis. Sports Med. 2015, 45, 679–692.
[CrossRef]

24. Hoss, U.; Budiman, E. Factory-Calibrated Continuous Glucose Sensors: The Science behind the Technology. Diabetes Technol. Ther.
2017, 19, S-44. [CrossRef]

25. Le Floch, J.-P.; Escuyer, P.; Baudin, E.; Baudon, D.; Perlemuter, L. Blood Glucose Area Under the Curve: Methodological Aspects.
Diabetes Care 1990, 13, 172–175. [CrossRef]

26. Battelino, T.; Danne, T.; Bergenstal, R.M.; Amiel, S.A.; Beck, R.; Biester, T.; Bosi, E.; Buckingham, B.A.; Cefalu, W.T.;
Close, K.L.; et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the
International Consensus on Time in Range. Diabetes Care 2019, 42, 1593–1603. [CrossRef]

27. Beck, R.W.; Bergenstal, R.M.; Riddlesworth, T.D.; Kollman, C.; Li, Z.; Brown, A.S.; Close, K.L. Validation of Time in Range as an
Outcome Measure for Diabetes Clinical Trials. Diabetes Care 2018, 42, 400–405. [CrossRef]

28. Borror, A.; Zieff, G.; Battaglini, C.; Stoner, L. The Effects of Postprandial Exercise on Glucose Control in Individuals with Type
2 Diabetes: A Systematic Review. Sports Med. 2018, 48, 1479–1491. [CrossRef]

29. van Dijk, J.-W.; Manders, R.J.F.; Tummers, K.; Bonomi, A.G.; Stehouwer, C.D.A.; Hartgens, F.; van Loon, L.J.C. Both resistance-
and endurance-type exercise reduce the prevalence of hyperglycaemia in individuals with impaired glucose tolerance and in
insulin-treated and non-insulin-treated type 2 diabetic patients. Diabetologia 2011, 55, 1273–1282. [CrossRef]

30. Hamada, T.; Hayashi, T.; Kimura, T.; Nakao, K.; Moritani, T. Electrical stimulation of human lower extremities enhances energy
consumption, carbohydrate oxidation, and whole body glucose uptake. J. Appl. Physiol. 2004, 96, 911–916. [CrossRef]

31. Richter, E.A.; Hargreaves, M. Exercise, GLUT4, and Skeletal Muscle Glucose Uptake. Physiol. Rev. 2013, 93, 993–1017. [CrossRef]

http://doi.org/10.1111/dme.13167
http://doi.org/10.1519/JSC.0b013e31823f2cd1
http://doi.org/10.3389/fphys.2018.00573
http://doi.org/10.2165/00007256-200535030-00002
http://doi.org/10.2165/00007256-200838020-00005
http://doi.org/10.1007/s10354-015-0394-1
http://doi.org/10.1007/s10354-018-0655-x
http://doi.org/10.1093/bmb/ldm014
http://doi.org/10.5960/dzsm.2016.246
http://doi.org/10.5960/dzsm.2019.401
http://doi.org/10.1111/sms.13543
http://doi.org/10.1177/1479164118756240
http://doi.org/10.1177/1932296819855670
http://doi.org/10.1519/JSC.0b013e318212e3ce
http://doi.org/10.1016/j.diabres.2017.12.017
http://doi.org/10.1007/s40279-015-0321-z
http://doi.org/10.1089/dia.2017.0025
http://doi.org/10.2337/diacare.13.2.172
http://doi.org/10.2337/dci19-0028
http://doi.org/10.2337/dc18-1444
http://doi.org/10.1007/s40279-018-0864-x
http://doi.org/10.1007/s00125-011-2380-5
http://doi.org/10.1152/japplphysiol.00664.2003
http://doi.org/10.1152/physrev.00038.2012


Nutrients 2021, 13, 4322 12 of 12

32. Jabbour, G.; Belliveau, L.; Probizanski, D.; Newhouse, I.; McAuliffe, J.; Jakobi, J.; Johnson, M. Effect of Low Frequency Neuromus-
cular Electrical Stimulation on Glucose Profile of Persons with Type 2 Diabetes: A Pilot Study. Diabetes Metab. J. 2015, 39, 264–267.
[CrossRef] [PubMed]

33. Miyamoto, T.; Fukuda, K.; Kimura, T.; Matsubara, Y.; Tsuda, K.; Moritani, T.; Miyamoto, T.; Fukuda, K.; Kimura, T.;
Matsubara, Y.; et al. Effect of percutaneous electrical muscle stimulation on postprandial hyperglycemia in type 2 diabetes.
Diabetes Res. Clin. Pract. 2012, 96, 306–312. [CrossRef] [PubMed]

34. Joubert, M.; Métayer, L.; Prévost, G.; Morera, J.; Rod, A.; Cailleux, A.; Parienti, J.-J.; Reznik, Y. Neuromuscular electrostimulation
and insulin sensitivity in patients with type 2 diabetes: The ELECTRODIAB pilot study. Acta Diabetol. 2014, 52, 285–291.
[CrossRef] [PubMed]

35. Crowe, L.; Caulfield, B. Aerobic neuromuscular electrical stimulation—an emerging technology to improve haemoglobin A1c in
type 2 diabetes mellitus: Results of a pilot study. BMJ Open 2012, 2, e000219. [CrossRef]

36. Giggins, O.M.; Crowe, L.; Coughlan, G.F.; Caulfield, B. Neuromuscular electrical stimulation exercise: A potential alternative to
conventional exercise in the management of type 2 diabetes. Br. J. Diabetes Vasc. Dis. 2017, 17, 46–51. [CrossRef]

37. Rose, B.; Lankisch, M.; Herder, C.; Röhrig, K.; Kempf, K.; Labrenz, S.; Hänsler, J.; Koenig, W.; Heinemann, L.; Martin, S. Beneficial
Effects of External Muscle Stimulation on Glycaemic Control in Patients with Type 2 Diabetes. Exp. Clin. Endocrinol. Diabetes 2008,
116, 577–581. [CrossRef]

38. Van Buuren, F.; Horstkotte, D.; Mellwig, K.P.; Fründ, A.; Vlachojannis, M.; Bogunovic, N.; Dimitriadis, Z.; Vortherms, J.; Humphrey,
R.; Niebauer, J. Electrical Myostimulation (EMS) Improves Glucose Metabolism and Oxygen Uptake in Type 2 Diabetes Mellitus
Patients—Results from the EMS Study. Diabetes Technol. Ther. 2015, 17, 413–419. [CrossRef]

39. Wahl, P.; Hein, M.; Achtzehn, S.; Bloch, W.; Mester, J. Acute metabolic, hormonal and psychological responses to cycling with
superimposed electromyostimulation. Graefe’s Arch. Clin. Exp. Ophthalmol. 2014, 114, 2331–2339. [CrossRef]

40. Kuo, T.; McQueen, A.; Chen, T.-C.; Wang, J.-C. Regulation of Glucose Homeostasis by Glucocorticoids. In Advances in Experimental
Medicine and Biology; Springer: Berlin/Heidelberg, Germany, 2015; Volume 872, pp. 99–126.

41. Bellini, A.; Nicolò, A.; Bulzomì, R.; Bazzucchi, I.; Sacchetti, M. The Effect of Different Postprandial Exercise Types on Glucose
Response to Breakfast in Individuals with Type 2 Diabetes. Nutrients 2021, 13, 1440. [CrossRef]

42. Bacchi, E.; Negri, C.; Trombetta, M.; Zanolin, M.E.; Lanza, M.; Bonora, E.; Moghetti, P. Differences in the Acute Effects of Aerobic
and Resistance Exercise in Subjects with Type 2 Diabetes: Results from the RAED2 Randomized Trial. PLoS ONE 2012, 7, e49937.
[CrossRef]

43. Asano, R.Y. Acute effects of physical exercise in type 2 diabetes: A review. World J. Diabetes 2014, 5, 659–665. [CrossRef]
44. Jensen, T.E.; Richter, E.A. Regulation of glucose and glycogen metabolism during and after exercise. J. Physiol. 2012, 590,

1069–1076. [CrossRef]
45. Maarbjerg, S.J.; Sylow, L.; Richter, E.A. Current understanding of increased insulin sensitivity after exercise—Emerging candidates.

Acta Physiol. 2011, 202, 323–335. [CrossRef]
46. Bweir, S.; Al-Jarrah, M.; Almalty, A.-M.; Maayah, M.; Smirnova, I.V.; Novikova, L.; Stehno-Bittel, L. Resistance exercise training

lowers HbA1c more than aerobic training in adults with type 2 diabetes. Diabetol. Metab. Syndr. 2009, 1, 27. [CrossRef]
47. Maiorino, M.I.; Signoriello, S.; Maio, A.; Chiodini, P.; Bellastella, G.; Scappaticcio, L.; Longo, M.; Giugliano, D.; Esposito, K. Effects

of Continuous Glucose Monitoring on Metrics of Glycemic Control in Diabetes: A Systematic Review with Meta-analysis of
Randomized Controlled Trials. Diabetes Care 2020, 43, 1146–1156. [CrossRef]

48. Poole, R.B.; Harrold, C.P.; Burridge, J.H.; Byrne, C.D.; Holt, R.I.G. Electrical muscle stimulation acutely mimics exercise in
neurologically intact individuals but has limited clinical benefits in patients with type 2 diabetes. Diabetes, Obes. Metab. 2004, 7,
344–351. [CrossRef]

49. Manders, R.J.F.; van Dijk, J.-W.; van Loon, L.J. Low-Intensity Exercise Reduces the Prevalence of Hyperglycemia in Type
2 Diabetes. Med. Sci. Sports Exerc. 2010, 42, 219–225. [CrossRef]

http://doi.org/10.4093/dmj.2015.39.3.264
http://www.ncbi.nlm.nih.gov/pubmed/26124997
http://doi.org/10.1016/j.diabres.2012.01.006
http://www.ncbi.nlm.nih.gov/pubmed/22296854
http://doi.org/10.1007/s00592-014-0636-5
http://www.ncbi.nlm.nih.gov/pubmed/25107502
http://doi.org/10.1136/bmjopen-2011-000219
http://doi.org/10.15277/bjd.2017.127
http://doi.org/10.1055/s-2008-1065331
http://doi.org/10.1089/dia.2014.0315
http://doi.org/10.1007/s00421-014-2952-4
http://doi.org/10.3390/nu13051440
http://doi.org/10.1371/journal.pone.0049937
http://doi.org/10.4239/wjd.v5.i5.659
http://doi.org/10.1113/jphysiol.2011.224972
http://doi.org/10.1111/j.1748-1716.2011.02267.x
http://doi.org/10.1186/1758-5996-1-27
http://doi.org/10.2337/dc19-1459
http://doi.org/10.1111/j.1463-1326.2004.00400.x
http://doi.org/10.1249/MSS.0b013e3181b3b16d

	Introduction 
	Materials and Methods 
	Participants 
	Study Design 
	Experimental Procedure 
	Exercise Sessions 
	Continuous Glucose Monitoring 
	Questionnaire 
	Data Analysis 

	Results 
	Subjects’ Characteristics 
	Glucose Profiles 
	Time to Baseline (TTB) 
	AUC Analyses 
	Time in/above/below Range (TIR, TAR, TBR) 
	Questionnaire 

	Discussion 
	Conclusions 
	References

