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Abstract: Accurate measurement requires assessment of measurement equivalence/invariance
(ME/I) to demonstrate that the tests/measurements perform equally well and measure the same
underlying constructs across groups and over time. Using structural equation modeling, the mea-
surement properties (stability and responsiveness) of intervention measures used in a study of
metabolic syndrome (MetS) treatment in primary care offices, were assessed. The primary study
(N = 293; mean age = 59 years) had achieved 19% reversal of MetS overall; yet neither diet quality
nor aerobic capacity were correlated with declines in cardiovascular disease risk. Factor analytic
methods were used to develop measurement models and factorial invariance were tested across three
time points (baseline, 3-month, 12-month), sex (male/female), and diabetes status for the Canadian
Healthy Eating Index (2005 HEI-C) and several fitness measures combined (percentile VO2 max from
submaximal exercise, treadmill speed, curl-ups, push-ups). The model fit for the original HEI-C was
poor and could account for the lack of associations in the primary study. A reduced HEI-C and a
4-item fitness model demonstrated excellent model fit and measurement equivalence across time,
sex, and diabetes status. Increased use of factor analytic methods increases measurement precision,
controls error, and improves ability to link interventions to expected clinical outcomes.

Keywords: physical fitness; diet quality; factor analysis; structural equation modeling; measurement
equivalence/invariance; metabolic syndrome; cardiometabolic health

1. Introduction
1.1. Lifestyle Treatment of Cardio-Metabolic Conditions

Significant progress has been made in demonstrating the overall benefits of personal-
ized lifestyle counselling in prevention of cardiometabolic conditions. Cardiometabolic
risk (CMR) conditions include various combinations of prediabetes and type 2 diabetes,
hypertension, dyslipidemia and higher visceral abdominal fat accumulation, as typically
assessed by waist circumference. Several large clinical trials have demonstrated reduc-
tions in cardiovascular (CVD) mortality and diabetes incidence, namely the PREDIMED
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study [1,2] and the Diabetes Prevention Program [3–5] and subsequent studies [6,7]. CMR
conditions and diseases are a major and growing health burden in many countries, as
obesity continues to increase worldwide [8]. Excess body weight is associated with adverse
metabolic effects in a sizable minority and become more prominent in middle age. These
adverse effects manifest as the already mentioned conditions, as well as the combination
described as metabolic syndrome (MetS). MetS is defined as three or more indicators,
including higher waist circumference, higher blood pressure, dyslipidemia characterized
by low high-density lipoprotein and elevated triglyceride levels, and elevated glucose
levels [9]. The various clinical definitions describe overlapping populations [10], and
different combinations of risk factors likely differentially affect CVD risk [11]. For example,
people with MetS have approximately double the CVD risk as people without MetS [12].

Worldwide prevalence of some of the risk factors like hypertension, obesity and type
2 diabetes are well documented [13], while prediabetes [14] and MetS have less often been
assessed in national surveys [15]. In Canada, 21% of adults 20–79 years old had MetS
in the 2012–2013 survey [16], whereas in the United States (US) 33% of adults aged 20
and older met the criteria for the condition in NHANES 2002–2013 [17]. Among people
60 years and older, 39% of Canadians and 46% of Americans from the same analyses had
MetS [16,17]. Ongoing costs of CMR are substantial, as confirmed in a 2016 US study of the
Medical Expenditure Panel Survey. Among those with three or four risk factors (mostly
MetS) compared to those with none of the CMR conditions, health care utilization was 50%
higher, days missed from work 75% higher and yearly health care costs more than twice as
high [18]. In addition, recent experience with COVID-19 has confirmed increased risk of
severe disease in the presence of these CMR conditions, although estimates of excess risk
vary [19,20].

1.2. Measurement Issues

All relevant practice guidelines for CMR conditions promote lifestyle change in a
general way [21–24]. Effective lifestyle services to treat CMR are not, however, routinely
being offered within health care in Canada [25] and elsewhere, and multiple issues are
involved, including structural issues like lack of resources and expertise in family medicine
practices, and clinician perceptions of poor effectiveness of lifestyle programs in practice
(the efficacy-effectiveness gap) [6]. Focusing on the efficacy-effectiveness gap, key chal-
lenges for researchers include: (1) measurement challenges in assessing diet and exercise in
typical community and healthcare settings, (2) measurement issues in identifying the key
aspects of the intervention processes, and (3) linking process indicators to key changes in
clinical measures at the individual level.

Better measures of diet and exercise (issue 1) that are relatively simple to collect,
reliable and could validly assess the achieved level of diet and fitness status at each time
point and over time are a priority. With a focus on improving measures, it may be possible
to identify key aspects of interventions and better link them to clinical changes.

Assessment of the measurement properties of diet quality and physical fitness mea-
sures is the focus of this secondary analysis of a primary care-based lifestyle study [26]. A
19% reversal of MetS and reduction in CVD risk score, as measured by PROCAM risk score
(analogous to the Framingham risk score but for MetS) [27] was seen in this one-year study
overall, as previously published [26]. Unpublished data showed changes in individual
scores for diet quality and aerobic capacity were not correlated with individual changes
in PROCAM scores as was hoped, given the overall group results. Only changes in waist
circumference were correlated with PROCAM score. Therefore, we asked if measurement
error in the intervention measures could have accounted for the lack of associations, and
secondly whether changes in one behavior could have had effects on the other. This latter
question came from consideration of the potential for a carry -over effect, as discussed in
the multiple behavior change literature [28]. Diet and physical activity interventions are
the most commonly studied multiple risk behavior interventions [29]. To explore these
possibilities, a detailed structural equation modeling (SEM) analysis was undertaken.
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First, the physical activity and diet measures are briefly reviewed, followed by an
introduction to SEM, which represents a melding of factor analysis and path analysis
into one comprehensive statistical methodology. In general, a structural equation model
consists of two parts: (1) the measurement model, which links observed variables to latent
variables via a confirmatory factor analysis, and (2) the structural model linking latent
variables to each other via systems of simultaneous equations [30]. This measurement
analysis uses both exploratory factor analysis (EFA) and confirmatory factor analysis (CFA)
with detailed explanations of the modeling process. The analysis for carry-over effects was
conducted with the resulting latent variables.

1.3. Fitness Assessment

Fitness assessment in community- or primary care-based studies may include mul-
tiple tests to determine measures of some or all of the four main health-related fitness
components: cardio-respiratory fitness or aerobic capacity, muscle fitness or strength, flexi-
bility, and body composition, based on a wide range of standardized procedures [31,32].
A key measure of cardiorespiratory fitness employed in many studies is an estimate of
maximal oxygen consumption (VO2 max), providing an indicator of both cardiac and
pulmonary functioning. VO2 max may be expressed as an absolute rate in litres of oxygen
per minute (L/min) or in terms of percentiles relative to age-and sex-based averages. Ac-
curate VO2 max measurement requires physical effort sufficient in duration and intensity
to put the aerobic energy (i.e., cardiorespiratory) system through its range of capacity. A
treadmill or exercise bike is used to vary exercise intensity progressively while measuring
pulmonary function and the chemical composition of inhalation/exhalation air for the
oxygen/carbon dioxide ratio. Accurate assessment of VO2 max is beyond the capacity of
community studies, so many groups have created various sub-maximal exercise-based
and non-exercise-based estimation equations for clinical practice [32]. Significant error has
been demonstrated using these less accurate methods and research is underway to develop
tools that can be used in clinical practice [33]. In the meantime, a variety of approaches
have been used.

1.4. Diet Quality Assessment

Assessment of diet in community-based intervention studies remains challenging,
given the complexity of diet with many foods eaten daily and the large day-to-day variation
in intake. Personalized diet counselling or therapy for CMR conditions, including MetS,
involves two main approaches [34]; a weight loss focus as exemplified by the Diabetes
Prevention Program [3] versus a focus on diet quality, as exemplified by the PREDIMED
study, which promoted a Mediterranean diet [2]. Therefore, multiple diet assessment
methods were used to take advantage of the complementary strengths and limitations
of different tools, specifically recalls coupled with a food frequency questionnaire (FFQ)
approach. In North America, the use of the Healthy Eating Index (HEI) was originally de-
veloped for epidemiological studies, as it is scored against the benchmark of the US Dietary
Guidelines (the basis of nutrition policy in the US), and has had extensive development,
and population data are available for comparison [35]. More recently, its use has been
reviewed in CMR intervention studies [36]. Other diet quality tools used in intervention
studies include various versions of the Mediterranean Diet Score (MDS) [37], as well as
scores based on different aspects of diet (see Miller et al. for recent review [38]). Interest
in the use of diet quality scores in lifestyle intervention studies has been growing, as they
provide a summary measure that can potentially be linked to clinical outcomes. Therefore,
this analysis is timely.

1.5. Structural Equation Modeling and Measurement Equivalence/Invariance (ME/I)

Accurate measurement and representation of summary indices and measures re-
quires assessment of measurement equivalence/invariance (ME/I) to demonstrate that
the items/tests/measurements perform equally well and measure the same underlying
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constructs across groups and/or over time [39–43]. The longitudinal design of the current
study allows for analysis of a combination of cross sectional and change models, as well
as assessment of ME/I [41]. This requires examining simultaneous relationships between
constructs in the SEM framework. Appropriate baseline sampling allowed us to under-
stand the extent (i.e., prevalence) of cardiovascular risk, profiles of dietary behaviors, and
the initial and subsequent levels of physical activity/fitness. The repeated measures data
allows each participant to serve as their own baseline or control, as well as measuring
changes in each of the two areas of concern (i.e., dietary/nutritional behavior, physical
activity/exercise). Information garnered from cross-sectional models and the evaluation
of appropriate measurement models developed through EFA and CFA methods will help
inform models to be used to predict changes within constructs as well as testing structural
relationships between constructs. As noted by Hayduk [39] creation of latent variables
relies on accurate measurement of observed constructs.

With appropriate conceptual models established and ME/I assessed, relationships
between the latent HEI and physical activity/fitness constructs over time were assessed
to see if changes in one lifestyle intervention were associated with changes in the other
over time, in line with the emerging area of multiple risk behavior interventions. The basic
argument is that experiences, skills, knowledge and self-efficacy can be carried-over to
different behaviors and domains [28].

2. Methods
2.1. Data from Original Study

The data come from a non-randomized 12-month feasibility study for lifestyle treat-
ment of MetS conducted from 2012–2015 at three Canadian primary care clinics in three
different provinces (Edmonton, Alberta, Toronto, Ontario, and Quebec City, Quebec) [26].
All participants were recruited by their primary care physicians. Inclusion criteria included:
(1) adults at least 18 years age; (2) a body mass index (BMI) less than 35; and (3) presence
of at least 3 out of 5 criteria for MetS [9]. Exclusion criteria included relevant medical,
safety or logistic reasons, as described in the primary paper [26]. The study plan is shown
in Figure 1. Study data were obtained from the patients’ medical charts and entered
into a secure online data capture system (Research Electronic Data Capture; REDCap:
http://www.projectredcap.org/; accessed on 1 November 2021) by locally designated
clinic staff. The current sample was comprised of 293 adults, aged 18–81 years old (mean
59 years), and 52% female.
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Physician review with participants occurred quarterly. As noted in Figure 1, lifestyle
intervention consists of weekly appointments for 12 weeks, followed by monthly appoint-
ments and interactions for up to one year by locally employed Registered Dietitians (RD)
and kinesiologists. All interventions were personalized, and practitioners were trained
and supported by the research team [44,45]. The patient experience was highly positive,
as documented by focus groups and a questionnaire [46]. This analysis uses the baseline,
3-month and 12-month data.

2.2. Available Measures
2.2.1. Physical Activity/Fitness

Aerobic fitness of participants was assessed by a methodology described by Ebbeling
et al. to estimate maximal oxygen consumption [47], using a submaximal aerobic fitness
test that is considered safe and appropriate for low risk, apparently healthy, non-athletic
adults 20–59 years of age. A steady state heart rate is established after a warm-up by
altering the treadmill speed at a 5% incline for 4 min, as described in detail elsewhere [48].
Both speed (in miles/h) and heart rate (bpm) are required in the calculation of this version
of VO2 max. The measure was further adjusted to create a percentile score relative to
others in the same age-sex category. Other measures of exercise output and fitness assessed
muscular strength, flexibility, and endurance [45,48]. Each of these measures interacts with
and is dependent upon the fitness level of the cardiopulmonary system. These various
measures were not combined into an overall fitness score in the original study [48,49].

2.2.2. Diet Quality—HEI-C

To calculate the Canadian version of the HEI (HEI-C) [50,51], a FFQ was developed
to assess the average number of servings of food groups eaten over the past month and
then scored according to specific age and sex criteria based on Canada’s Food Guide
(CFG) 2007 recommendations and serving sizes [52] (see Supplement Table S1). The scores
for the moderation components, energy (kcal) from saturated fat and other foods (as a
percentage of total energy), and sodium (in milligrams) were calculated from the results
of two 24-h recalls, done about one week apart, at baseline, 3-months and 12-months,
as previously described [50]. The dietary intake data were collected by the RDs at each
centre and analyzed centrally to maintain quality control using a comprehensive nutrient
analysis program (ESHA Food Processor—Canadian Version 10, Salem, OR, USA) and
double data entry.

2.2.3. Other Variables

Many other clinical measures were collected in the dataset, including medical diag-
noses and medication usage [26]. While all participants met the criteria for MetS, prevalence
of specific features vary in different samples [53], and in the primary study, approximately
half of the sample had a formal diagnosis of type 2 diabetes mellitus (DM). As this was a
main clinical issue, we assessed by DM status.

2.3. Analytics Plan

Correlation matrices were examined for all items from the HEI-C, physical activ-
ity/fitness measures, and the PROCAM scores to confirm previous findings. Test-retest
correlations across time points were also examined.

Baseline data were considered the first step to establishing the measurement models
for HEI-C and physical activity/fitness. Upon establishing an acceptable fit for the baseline
models, longitudinal extensions of measurement models were examined. Females were
utilized for model development, with replication/extension to males. For disease status,
models were initially tested on the no-DM group (i.e., MetS but no diagnosis of DM),
then extended to examine those with DM. The fit of all models was assessed using model
chi square (χ2; non-significant result is desirable but often unlikely in larger samples),
Comparative Fit Index, (CFI > 0.90), Non-Normed Fit Index (NNFI, also known as the
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Tucker-Lewis Index NNFI > 0.90), Root Mean Square Error of Approximation (RMSEA
range 0.05–0.08 accepted, smaller values indicate better fit) (see Tables 1 and 2). The general
recommendation is to evaluate model fit through consensus of an array of fit indexes.
These fit indices are consistent with recommendations from Bentler [54], Cheung and
Rensvold [55], Kline [56], Lai and Green [57], McNeish, An and Hancock [58] and others.
Statistically significant χ2 values are not unusual in larger samples or more complex models,
and the model(s) fit may still be acceptable.

Comparisons of the same constructs over time or in different groups assumes the
tests/items demonstrate factorial invariance and this has been described as the most impor-
tant empirical question to address whenever multiple groups or time points are present [59].
Invariance testing involves a series of nested constraints that examine whether the vari-
ance/covariance relationships among variables operate similarly across groups/points of
measurement. Multiple tests of ME/I were conducted following the strategies described
by Hayduk [39], Little [59], Meredith [60], Millsap [61], Vandenberg and Lance [41], and
van de Schoot et al. [42].

Configural invariance, weak metric invariance, strong invariance of measurement
intercepts, and strict invariance of the uniqueness or error terms were all examined, as
indicated in Tables 1 and 2. Configural invariance is also called pattern invariance, meaning
the same variables are loading onto the same factors across groups or over time. A lack of
configural invariance in the physical activity/fitness model would be demonstrated if a
measure like speed was important at baseline but not later in the study (or if it was salient
for men but not for women). Configural invariance says nothing about the magnitude
of the factor loadings, simply that the same variables load onto the same factors across
groups [43]. Weak metric invariance, also called factor loading invariance, is a test of the
equivalence of the magnitude or size of the factor loadings across groups or time (Little [59],
Meredith [60], Vandenberg and Lance [41]). In addition to the same variables loading
onto the same factors across groups (or over time), the relationship or proportionality of
the loadings on the factors is demonstrated to be the same (i.e., the rank order and the
size of the factor loadings are consistent across comparisons). Tests of weak metric or
factor loading invariance are often the highest level of ME/I accomplished and finding this
evidence is a sizable accomplishment in complex models. There is some disagreement about
how difficult weak invariance is to obtain as Horn, McArdle and Mason [62] suggested
that configural invariance is often the best one can hope to obtain in social science data.
Physiological measure or laboratory values often demonstrate more precision than self-
reported data. Little [59] provided a different perspective, suggesting weak invariance
is often attained, whereas invariance of intercepts, is much more important and difficult.
Every observed variable/item in the SEM model has an intercept and tests of invariance of
these intercepts is important if one hopes to examine mean comparisons between groups
or over time (as is implicitly done in analysis of variance models). This is often referred to
as strong invariance (also known as scalar invariance or intercept invariance) [59]. Finally,
the most restrictive form of invariance, and one that is often impossible to attain, is strict
invariance (i.e., demonstrating the equality of the error/residual/uniqueness terms across
groups/time—also known as error variance invariance or residual invariance). Little [59]
suggests this level is overly restrictive and argues even if found, strict invariance does not
ensure a “better” level of invariance. Therefore, testing for strict invariance was undertaken,
but models were not rejected based on a lack of strict invariance. All tests of invariance are
part of a hierarchy, and these nested models are tested from the least restrictive (configural
model) to the more restrictive test (strict invariance).

Model fit was evaluated and the presence or absence of ME/I was determined using
the fit indexes and thresholds previously described. Additionally, the model χ2 is additive
and allows for tests of the differences of chi-square values (∆χ2) between nested models
to determine whether the tested level of invariance is accepted (i.e., is the inclusion of
added restrictions, for example—constraining factor loadings to be equal across groups—
acceptable or does it degrade the fit of the model?). The ∆χ2 should be a non-significant
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difference for the test of invariance to be accepted. This indicates that the change from
a less restrictive model to a more restrictive model is negligible [59]. One concern with
this approach to comparing models is that ∆χ2 values are overly sensitive. Additional
methods for model comparison include computing differences or delta values for the CFI
and RMSEA fit indexes (Tables 1 and 2). The delta values for CFI would be rejected if the
model change exceeds 0.005, or if delta for RMSEA exceeds 0.01 [63]. The process was
similar for both physical activity/fitness and the HEI-C.

Modeling of associations in latent factors was then completed, to assess possible
associations across the interventions.

3. Results
3.1. Physical Activity/Fitness
3.1.1. Exploratory Factor Analysis Model

Pearson correlations were examined among the physical activity/fitness variables
(i.e., treadmill speed, percentile VO2 max, partial curl-ups, push-ups, flexibility). Moderate
to high correlations were observed for all but flexibility (range r = 0.36 between speed
and push-ups to r = 0.85 between speed and VO2 max). Baseline reliability and test-retest
correlations for the rest of the measures was good (α = 0.65; rspeed = 0.74, rVO2max = 0.89,
rcurlup = 0.66, rpushup = 0.81). Flexibility was dropped from further consideration.

Exploratory Factor Analysis of the physical activity/fitness items, using Maximum
Likelihood extraction demonstrated a one-factor model fit the data. The Kaiser–Meyer–
Olkin (KMO) measure of sampling adequacy was only moderate with a value of 0.66. The
KMO ranges from 0–1.00 with values greater than 0.8 providing evidence that the relation-
ships among examined variables are amenable to factor analytic procedures. Individual
items were assessed using the KMO values from the diagonal of the anti-image matrix.
KMO values ranged from 0.61 for speed and VO2 max to 0.83 for partial curl-ups.

There was only one eigenvalue greater than 1.0 and the Scree Plot showed a sharp
break between one and two factors, suggesting a one-factor solution. VO2 max is often
used as a “gold-standard” measure of fitness, and our goal was to evaluate whether adding
measures of strength would contribute to measuring fitness above and beyond cardiores-
piratory measures. Model fit was moderate, with a model χ2 (2) = 24.12, p = 0.001. The
Goodness of Fit Index (GFI) index in EFA should be non-significant, but one also has to
interpret the factor loadings, which ranged from moderate to large (i.e., Λpush-ups = 0.44,
Λcurl-ups = 0.46, Λspeed = 0.88, and ΛVO2 max = 0.97). The communalities (i.e., the
amount of variance accounted for in each item) were 0.19 for push-ups, 0.21 for curl-ups,
0.77 for speed, and 0.93 for VO2 max. The overall sum of squared factor loadings or per-
centage of variance accounted for by the model was 53% utilizing the single-factor solution.

Upon confirmation of this result, we examined CFA utilizing the Analysis of Moments
Structures (AMOS) Structural Equation Modeling (SEM) program (Amos Version 26.0.
Chicago: IBM SPSS). The results from AMOS are presented below. All factor loadings were
statistically significant, and the variance accounted for in the observed indicators varied
between 18% and 97% (see Figure 2). These results map onto the EFA results described
above. One benefit of the SEM/CFA approach is that AMOS provides numerous measures
of model fit not available in EFA statistical packages. Overall model fit was strong and
supported the multiple indicator model of fitness (see Figure 2 and Table 1, Models #2
and #3). The only modification of the factor model was correlating the error term between
push-ups and curl-ups, as both were indicators of strength.
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Figure 2. Baseline confirmatory factor analysis model. FitnessBl = latent factor; Speed = treadmill
speed; VO2 max = age-sex percentile of VO2 max; Curls = Curl-ups; Pus = Push-ups; e# = error terms.
Squares are measured variables; circles are latent variables.

Table 1. Model Comparison for Physical Activity/Fitness Models.

Model # Model X2

(df)
X2

p-Value CFI NNFI RMSEA
[95% CI]

∆X2

∆CFI
∆RMSEA

Desirable Criterion or Range NS desirable >0.9 >0.9 0.05–0.08 acceptable;
lower better

∆X2 = NS
∆CFI ≤ 0.005

∆RMSEA ≤ 0.01

Longitudinal Invariance

1 1-Factor
Model

0.939
(1) 0.333 1.00 1.00 0.000

0.000–0.153

2 Longitudinal
Configural

139.29
(37) 0.001 0.97 0.94 0.097

0.080–0.115

3 Longitudinal
Metric

159.36
(43) 0.001 0.96 0.93 0.096

0.081–0.112

Reject.
Accept
Accept

4 Longitudinal
Intercepts Only

394.09
(45) 0.001 0.89 0.80 0.157

0.148–0.178

Reject
Reject
Reject

5
Longitudinal
Loadings and

Intercepts

415.82
(51) 0.001 0.88 0.82 0.157

0.143–0.171

Reject
Reject
Reject

6 Longitudinal Model
Residuals Not tested as invariant intercepts not found

Sex Models—Female

7 Female Baseline 0.100
(1) 0.752 1.00 1.00 0.000

0.000–0.148

8
Female

Longitudinal
Configural

56.99
(37) 0.019 0.98 0.96 0.060

0.025–0.089
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Table 1. Cont.

Model # Model X2

(df)
X2

p-Value CFI NNFI RMSEA
[95% CI]

∆X2

∆CFI
∆RMSEA

9
Female

Longitudinal
Metric

66.57
(43) 0.012 0.98 0.96 0.060

0.029–0.088

Accept
Accept
Accept

10 Female
Intercepts Only

171.13
(45) 0.001 0.88 0.80 0.136

0.115–0.158

Reject
Reject
Reject

11 Female Loadings
and Intercepts

180.89
(51) 0.001 0.88 0.82 0.130

0.110–0.151

Accept
Accept
Accept

12 Female
Residuals Not tested as invariant intercepts not found

Sex Models—Male

13 Male Baseline 3.94
(1) 0.047 0.99 0.90 0.145

0.014–0.307

14

Males
Longitudinal

Configural
117.59

(37) 0.001 0.95 0.90 0.125
0.100–0.150

15
Males

Longitudinal
Metric

136.59
(43) 0.001 0.95 0.90 0.125

0.102–0.149

Reject
Accept
Accept

16 Male
Intercepts Only

250.41
(45) 0.001 0.88 0.80 0.181

0.159–0.203

Reject
Reject
Reject

17 Male Loadings
and Intercepts

275.94
(51) 0.001 0.87 0.80 0.177

0.157–0.198

Reject
Reject
Reject

18 Male
Residuals Not tested as invariant intercepts not found

Gender Invariance of Longitudinal Fitness Model

19 Sex Invar.
Configural

174.60
(74) 0.001 0.96 0.93 0.068

0.055–0.082

20 Sex Model
Sex Invariant

180.76
(83) 0.001 0.97 0.94 0.064

0.051–0.076

Accept
Accept
Accept

21 Sex Model
Time Invariant

206.58
(89) 0.001 0.96 0.93 0.067

0.055–0.079

Reject
Accept
Accept

22 Sex Model
Intercepts Not run based on previous intercept models

23 Sex Model
Residuals Not run as intercept models were not accepted

Disease-State Models—No Diabetes

24 NoDM Baseline 1.12
(1) 0.290 1.00 0.96 0.029

0.000–0.228

25 NoDM Longitudinal
Configural

97.42
(37) 0.001 0.96 0.91 0.108

0.082–0.134

26
NoDM

Longitudinal
Metric

106.96
(43) 0.001 0.95 0.91 0.103

0.079–0.128

Accept
Accept
Accept

27
NoDM

Longitudinal
Intercepts Only

218.98
(45) 0.001 0.87 0.78 0.166

0.145–0.189

Reject
Reject
Reject
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Table 1. Cont.

Model # Model X2

(df)
X2

p-Value CFI NNFI RMSEA
[95% CI]

∆X2

∆CFI
∆RMSEA

28 NoDM
Residuals Not tested as invariant intercepts not found

Disease-State Models—Diabetes

29 DM Baseline 0.002
(1) 0.968 1.00 1.00 0.000

0.000–0.000

30
DM

Longitudinal
Configural

72.57
(37) 0.001 0.98 0.96 0.080

0.052–0.107

31
DM

Longitudinal
Metric

89.75
(43) 0.001 0.97 0.95 0.085

0.060–0.110

Reject
Accept
Accept

32
DM

Longitudinal
Intercepts Only

215.14
(45) 0.001 0.91 0.84 0.158

0.137–0.180

Reject
Reject
Reject

33 DM
Residuals Not tested as invariant intercepts not found

Disease Invariance of Longitudinal Fitness Model

34 Disease Model
Configural

170.00
(74) 0.001 0.97 0.94 0.067

0.054–0.080

35 Disease Model
Disease Invariant

184.87
(83) 0.001 0.97 0.94 0.065

0.052–0.078

Accept
Accept
Accept

36 Disease Model
Time Invariant

201.93
(89) 0.001 0.96 0.94 0.066

0.054–0.078

Reject
Accept
Accept

37 Disease Model
Intercepts Not run based on previous intercept models

38 Disease Model
Residuals Not run as intercept models were not accepted

X2 = Model chi square; CFI = Comparative Fit Index; NNFI = Non-Normed Fit Index; RMSEA = Root Mean Square Error of Approximation;
∆ = change. Best model(s) in each hierarchal set of models shown in italics.

3.1.2. Longitudinal Extension of Physical Activity/Fitness Model

Given the results above, we extended the measurement model in AMOS to test
a longitudinal (i.e., three time points: baseline, 3-months, 12-months) model [59]. As
we measured the same indicators of fitness on each occasion, the AMOS program and
standard convention in SEM allows for correlations between the same indicators over time
(e.g., speed at baseline is expected to correlate with the subsequent speed measures at 3-
and 12-months). Each of the four indicators were treated in this manner, to allow for the
autocorrelation of measuring the same indicators on the same participants, over time (see
Figure 3). The extended, longitudinal model of fitness (Table 1, Model #2) demonstrated
excellent model fit (χ2 (37) = 139.29, p < 0.001, CFI =.97, NNFI = 0.94, RMSEA= 0.097). All
factor loadings were statistically significant, with squared multiple correlation or variance
accounted for ranging from 8% to 87% (not shown).

The fitness factor created at each measurement point was regressed onto the subse-
quent measure (i.e., baseline fitness predicting 3-month fitness, 3-month fitness predicting
12-month fitness) and the results showed that 73% of the variance in fitness at 3-months was
predicted by baseline fitness, and 84% of variance in fitness at 12-months was explained
by fitness level at 3-months of the intervention (see Figure 3 and Table 1, Model #3). The
model did not meet criteria for invariance of intercepts however, longitudinal invariance of
factor loadings was found (Table 1, Models #4 and #5 compared to Model #3).
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3.1.3. Sex Invariance of Physical Activity/Fitness Model

Invariance testing was conducted for females (cross-sectional/baseline fitness model,
longitudinal extension of fitness model (tests of invariance of variable loadings, intercepts,
intercepts and loadings, and residuals if appropriate); males (testing the same sequence
noted above); then examining the issue of sex invariance for the longitudinal fitness model
(i.e., test of invariance of loading across time in a simultaneous model, constraining equality
of the longitudinal loadings across sex, tests of equality of intercepts, and tests of residuals,
if appropriate). Our results showed that, in addition to the model fitting well for both
women (Model #9) and men (Model #15), invariance of the fitness model was demonstrated
across the three time points of the intervention as well as across sex (Table 1, Models #20
and #21).

Testing equivalence of the variable intercepts were mixed at best, and based on overall
decrement of model fit, it was deemed that invariant intercepts were not accepted (Table 1,
Models #10 and #16). Given this result, and that all models are hierarchical regarding their
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restrictiveness (i.e., if one fails to accept equivalence of loadings, you should not continue
with ME/I testing), we concluded that the fitness model demonstrated invariant factor
loadings for sex and across time. The final result is shown in Figure 3. The magnitudes
of the standardized loadings were identical for males and females, however, as we were
unable to accept the constraint of the residual or uniqueness terms, the loadings appear
slightly different in size over time (i.e., unstandardized loadings were identical across the
three time points). Standardized loadings are presented as they are generally easier to
interpret (with values ranging from 0–1, with larger values indicating stronger loadings)
and they are similar to correlations for general interpretation purposes. VO2 max and
speed measures contributed more to the physical activity/fitness factor than the strength
measures (push-ups, curl-ups), yet all four measures are significant components of the
overall factor.

3.1.4. Disease-State Invariance of Physical Activity/Fitness Model

Invariance was tested for participants with noDM (cross-sectional/baseline fitness
model, longitudinal extension of fitness model, tests of invariance of variable loadings,
intercepts, intercepts and loadings, and residuals if appropriate); those with DM (testing
the same sequence noted above); then examining the issue of disease-state invariance
for the longitudinal fitness model (i.e., test of invariance of loadings across time in a
simultaneous model, constraining equality of the longitudinal loadings across disease-state,
tests of equality of intercepts, and tests of residuals, if appropriate). Results showed that,
in addition to the model fitting well for participants with noDM (Table 1, Model #26), and
those with DM (Model #31), invariance of the fitness model was demonstrated across the
three time points of the intervention as well as across disease-states (Table 1, Models #35
and #36). Testing equivalence of the variable intercepts gave mixed results at best, and
based on overall decrement of model fit, it was deemed that invariant intercepts were
not accepted.

We found that the fitness model demonstrated invariant loadings for disease-states
(noDM vs. DM) and across time (baseline, 3-months, 12-months). The results for the
disease-state model are shown in Figure 4. The magnitude of the standardized loadings
are identical for noDM and DM, however, as we were unable to accept the constraint
of the residual or uniqueness terms, the loadings appear slightly different in size over
time (i.e., unstandardized loadings were identical across the three time points and across
disease-states). As noted in the previous results, VO2 max and speed measures contributed
more to the physical activity/fitness factor than the strength measures (push-ups, curl-ups),
yet all four measures are significant components of the overall factor. It was noted that the
amount of explained variance in the physical activity/fitness factor was higher in the DM
group (73% at 3-months, 91% at 12-months, than the noDM group: 73% at 3-months, 75%
at 12-months).

3.2. Healthy Eating Index (HEI-C)
3.2.1. Exploratory Factor Analysis Model

Pearson correlations were examined for the 11 HEI-C items (see Supplement, Table S1).
Low to moderate correlations were observed, with some items showing very small correla-
tions (e.g., milk and alternatives, unsaturated fats, total grains, and meat and alternatives
showed the lowest correlations). We examined EFA of the full complement of 11 HEI-C
items, using Maximum Likelihood extraction, with Promax rotation if the result had more
than one resulting factor (i.e., to allow the resulting factors to correlate). The Kaiser-Meyer-
Olkin (KMO) measure of sampling adequacy was only moderate with a value of 0.604.
Individual items were assessed using the KMO values from the diagonal of the anti-image
matrix. Variables with the lowest KMO values (i.e., below 0.6) were: total grains, meat and
alternatives, milk and alternatives, raising concern about the inclusion of these items.
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There were four eigenvalues exceeding 1.0, however, the Scree Plot showed a gradual
decline without any clear breaks or drop-offs, suggesting a one-factor solution was most
likely. Four factors with only 11 items would not be reasonable (i.e., ideally three or more
items should result per factor), and the one-factor solution, especially if weak items were go-
ing to be removed/deleted, made conceptual sense. We evaluated the four-factor solution
(based on eigenvalues greater than 1.0). Model fit was poor, with a model χ2 (17) = 26.59,
p = 0.064 and factor loadings were not conceptually meaningful.

The total score of the HEI-C is most widely used, therefore a one-factor solution would
provide evidence whether this is a valid and meaningful approach. We examined a one-
factor HEI-C model. The resulting factor loadings for the 11-item HEI-C EFA still reflected
the same items noted earlier as being weak in this solution (i.e., milk and alternatives,
meat and alternatives, total grains, and unsaturated fats). While many of these items make
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conceptual sense or might be seen as useful in dietary models, statistical evidence was not
supporting retention of these items. We also noted that the communalities (i.e., the amount
of variance accounted for in each item) were very low for these four items.

Additional EFA with 7 HEI-C items (i.e., removing the poorly fitting items: milk
and alternatives, meat and alternatives, total grains, and unsaturated fats), Maximum
Likelihood extraction, and no rotation in one factor was examined. The Kaiser–Meyer–
Olkin (KMO) measure of sampling adequacy improved to 0.675 but was still low. Individual
items ranged from 0.621–0.780.

There were two eigenvalues exceeding 1.0 (the second values barely exceeded 1.0
at 1.09), the Scree Plot showed a gradual decline without any clear breaks or drop-offs,
suggesting a one-factor solution. Model fit was improved from the previous model, but it
is still not an ideal model χ2 (14) = 35.97, p = 0.001. Factor loadings ranged from 0.25–0.85.

3.2.2. Testing the Reduced HEI-C in CFA/SEM

The results of testing the reduced HEI-C model in a single factor solution with seven
items in AMOS are presented in Figure 5. All factor loadings were statistically significant
(low of 0.34 for whole Grains to a high of 0.50 for total vegetables/Fruit) and the variance
accounted for ranged between 12% (whole grains) to 25% (vegetables/fruit), with an aver-
age variance of 18%. These results are consistent with the EFA results described above. We
added two correlated error/residual terms to the model. Total vegetables/fruits and whole
fruits, and also between total vegetables/fruits and dark green and orange vegetables.
These variables are conceptually related. Model fit for the 7-item version (Table 2, Model #1)
was exceptional with χ2 (12) = 11.10, p < 0.521, CFI = 1.00, and RMSEA = 0.000. For com-
parison purposes, the 11-item (full) HEI-C resulted in two items with non-significant factor
loadings (i.e., total grains and meat and alternatives), and both milk and alternatives and
unsaturated fats had marginal/borderline values and χ2 (44) = 208.28, p < 0.001, CFI= 0.57,
and RMSEA = 0.11, outside the published cut-off values range (0.05 to 0.08).
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Figure 5. Baseline confirmatory factor analysis model for HEI-C. HEI = total HEI-C; VF = total
vegetables and fruit; WF = whole fruit; DG = dark green and orange vegetables; WG = whole grains;
SF = saturated fats; SOD = sodium; OTH = Other foods; e# = error terms. Squares are measured
variables; circles are latent variables.



Nutrients 2021, 13, 4258 15 of 25

The reduced-item HEI-C model was therefore tested for longitudinal invariance in
the total sample, as well as for each sex and each disease group (i.e., noDM/DM). The
model demonstrated weak metric invariance (i.e., equivalence of the magnitude of the
factor loadings over all three measurement points in the intervention—Table 2, Model #3).
The model also demonstrated weak invariance of all factor loadings when compared across
sex (Model #20) and across disease groups (Model #35).

Table 2. Model Comparison for Reduced (7-Item) HEI-C Models.

Model # Model X2

(df)
X2

p-value CFI NNFI RMSEA
[95% CI]

∆X2

∆CFI
∆RMSEA

Desirable Criterion or Range NS desirable >0.9 >0.9 0.05–0.08 acceptable;
lower better

∆X2 = NS
∆CFI ≤ 0.005

∆RMSEA ≤ 0.01

Longitudinal Invariance

1 1-Factor
Model

11.10
(12) 0.521 1.00 1.00 0.000

0.000 -0.056

2 Longitudinal
Configural

205.15
(160) 0.009 0.95 0.93 0.031

0.046–0.063

3 Longitudinal
Metric

219.33
(172) 0.009 0.95 0.94 0.031

0.016–0.042

Accept
Accept
Accept

4 Longitudinal
Intercepts Only

371.10
(174) 0.001 0.80 0.74 0.062

0.054–0.071

Reject
Reject
Reject

5
Longitudinal
Loadings and

Intercepts

388.17
(186) 0.001 0.80 0.75 0.061

0.052–0.070

Accept
Accept
Accept

6 Longitudinal Model
Residuals Not tested as invariant intercepts not found

Sex Models—Female

7 Female Baseline 25.39
(12) 0.019 0.90 0.77 0.086

0.038–0.133

8
Female

Longitudinal
Configural

200.85
(160) 0.016 0.93 0.89 0.041

0.019–0.058

9
Female

Longitudinal
Metric

219.28
(172) 0.009 0.92 0.89 0.043

0.028–0.059

Accept
Accept
Accept

10 Female
Intercepts Only

290.84
(174) 0.001 0.79 0.72 0.067

0.053–0.080

Reject
Reject
Reject

11 Female Loadings
and Intercepts

309.48
(186) 0.001 0.78 0.72 0.066

0.053–0.079

Accept
Accept
Accept

12 Female
Residuals Not tested as invariant intercepts not found

Sex Models—Male

13 Male Baseline 8.11
(12) 0.777 10.00 10.00 0.000

0.000–0.059

14
Males

Longitudinal
Configural

210.31
(160) 0.005 0.90 0.85 0.047

0.027–0.064

15
Males

Longitudinal
Metric

219.33
(172) 0.009 0.95 0.94 0.031

0.016–0.042

Accept
Accept
Accept
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Table 2. Cont.

Model # Model X2

(df)
X2

p-value CFI NNFI RMSEA
[95% CI]

∆X2

∆CFI
∆RMSEA

16 Male
Intercept Only

310.29
(174) 0.001 0.72 0.63 0.072

0.061–0.088

Reject
Reject
Reject

17 Male Loadings
and Intercepts

324.04
(186) 0.001 0.72 0.65 0.073

0.059–0.086

Reject
Reject
Reject

18 Male
Residuals Not tested as invariant intercepts not found

Sex Invariance of Longitudinal HEI-C Model

19 Sex Invar.
Configural

415.75
(320) 0.001 0.94 0.91 0.026

0.018–0.033

20 Sex Model
Sex Invariant

420.65
(338) 0.001 0.92 0.88 0.030

0.019–0.038

Accept
Accept
Accept

21 Sex Model
Time Invariant

454.23
(350) 0.001 0.90 0.87 0.032

0.023–0.040

Reject
Accept
Accept

22 Sex Model
Intercepts Not run based on previous intercept models

23 Sex Model
Residuals Not run as intercept models were not accepted

Disease-State Models—No Diabetes

24 NoDM Baseline 16.12
(12) 0.186 0.96 0.91 0.059

0.000–0.106

25
NoDM

Longitudinal
Configural

205.10
(160) 0.009 0.91 0.87 0.045

0.023–0.062

26
NoDM

Longitudinal
Metric

224.15
(172) 0.005 0.89 0.86 0.047

0.027–0.063

Accept
Accept
Accept

27
NoDM

Longitudinal
Intercepts Only

283.75
(174) 0.001 0.77 0.70 0.067

0.053–0.081

Reject
Reject
Reject

28 NoDM
Residuals Not tested as invariant intercepts not found

Disease-State Models—Diabetes

29 DM Baseline 9.50
(12) 0.660 1.00 1.00 0.000

0.000–0.068

30
DM

Longitudinal
Configural

172.59
(160) 0.235 0.98 0.96 0.023

0.000–0.045

31
DM

Longitudinal
Metric

183.88
(172) 0.254 0.98 0.97 0.021

0.000–0.043

Accept
Accept
Accept

32
DM

Longitudinal
Intercepts Only

276.63
(174) 0.001 0.80 0.73 0.063

0.048–0.076

Reject
Reject
Reject

33 DM
Residuals Not tested as invariant intercepts not found

Disease Invariance of Longitudinal HEI-C Model

34 Disease Model
Configural

377.70
(320) 0.015 0.95 0.92 0.025

0.012–0.034
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Table 2. Cont.

Model # Model X2

(df)
X2

p-value CFI NNFI RMSEA
[95% CI]

∆X2

∆CFI
∆RMSEA

35 Disease Model
Disease Invariant

397.95
(338) 0.014 0.94 0.92 0.025

0.012–0.034

Accept
Accept
Accept

36 Disease Model
Time Invariant

410.90
(350) 0.014 0.94 0.92 0.024

0.012–0.034

Accept
Accept
Accept

37 Disease Model
Intercepts Not run based on previous intercept models

38 Disease Model
Residuals Not run as intercept models were not accepted

X2 = Model chi square; CFI = Comparative Fit Index; NNFI = Non-Normed Fit Index; RMSEA = Root Mean Square Error of Approximation;
∆ = change. Best model(s) in each hierarchal set of models shown in italics. This explains why the acceptable model is the longitudinal
metric models (Model #3 and #9) and not the loadings and intercepts models (Model #5 and #11).

3.2.3. Longitudinal Extension of Reduced HEI-C Model

Based on the cross-sectional results above, we extended the reduced (7-item) HEI-C
model to test the fit longitudinally. As with the physical activity/fitness models previously,
we allowed correlations between the same indicators over time (e.g., vegetable/fruit at
baseline are expected to correlate with the subsequent vegetable/fruit measures). We also
maintained the correlation between the vegetable/fruit variable error terms as described
above. The autocorrelation of the same indicators on the same participants over time was
evaluated (see Supplement Figure S1). The extended, longitudinal model demonstrated
excellent model fit (Table 2, Model #3). All measures of model fit improved for the longitu-
dinal HEI-C model compared to the cross-sectional or baseline model. All factor loadings
were statistically significant with the exception of the sodium variable at 3-months, and
squared multiple correlations or variance accounted for in each variable, ranging from just
over 1% (sodium at 3-months) to 72% for vegetables/fruit at baseline.

The HEI-C factor was regressed onto the subsequent measure (i.e., baseline HEI-C
predicting 3-month HEI-C, 3-month HEI-C predicting 12-month HEI-C) and the results
showed that 42% of the variance in HEI-C at 3-months was predicted by baseline HEI,
and 52% of variance in HEI-C at 12-months was explained by HEI-C at 3-months of the
intervention (see Supplement Figure S1).

3.2.4. Sex Invariance of Reduced HEI-C Model

Invariance testing followed the same sequence as for the physical activity/fitness
model. Models were examined for females (cross-sectional/baseline HEI-C model, lon-
gitudinal extension of HEI-C model (tests of invariance of variable loadings, intercepts,
intercepts and loadings, and residuals if appropriate); males (testing the same sequence
noted above); then examining the issue of sex invariance for the longitudinal HEI-C model
(i.e., test of invariance of loading across time in a simultaneous model, constraining equality
of the longitudinal loadings across sex, tests of equality of intercepts, and tests of residuals,
if appropriate). Results showed that, in addition to the model fitting well for both men
(Model #15) and women (Model #9), invariance of the HEI-C model was demonstrated
across the three time points of the intervention as well as across sex (Models #20 and #21).
Testing equivalence of the variable intercepts yielded results that were mixed at best, and
based on overall decrement of model fit, it was deemed that invariant intercepts were not
accepted. The HEI-C model demonstrated invariant loadings for sex and across time. The
final result is shown in Supplement Figure S2.

The magnitudes of the standardized loadings are identical for males and females,
however, as we were unable to accept the constraint of the residual or uniqueness terms,
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the loadings appear slightly different in size over time (i.e., unstandardized loadings were
identical across the three time points).

3.2.5. Disease State Invariance of Reduced HEI-C Model

Invariance testing participants with and without DM (cross-sectional/baseline HEI-C
model, longitudinal extension of HEI-C model, tests of invariance of variable loadings,
intercepts, intercepts and loadings, and residuals if appropriate); then examining the issue
of disease-state invariance for the longitudinal HEI-C model (i.e., test of invariance of
loading across time in a simultaneous model, constraining equality of the longitudinal
loadings across disease-state, tests of equality of intercepts, and tests of residuals, if ap-
propriate). Results showed that, in addition to the model fitting well for participants with
no DM (Model #26), and those with DM (Model #31), invariance of the HEI-C model was
demonstrated across the three time points of the intervention as well as across disease-states
(Models #35 and #36). Testing equivalence of the variable intercepts yielded poor results,
and invariant intercepts were not accepted. We found that the HEI-C model demonstrated
invariant loadings for disease-states (noDM vs DM) and across time (Supplement Figure S3).

3.3. Assessment of Associations between Physical Activity/Fitness and Reduced HEI-C

To test whether diet quality and physical activity/fitness were significantly related
over the course of the year-long intervention, structural regression was conducted. For
males and females overall, regression paths in green showed significant results, structural
regression in red were not statistically significant (Figure 6). The following relationships
were significant: fitness-baseline to HEI-C-3month; HEI-C-3-month to fitness-12-month;
fitness-3-month to HEI-C-12-months.
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Figure 6. Overall sex and time invariant results showing structural regressions between HEI and Fitness factors. Regression
paths in green show significant results, structural regression in red were not statistically significant. FitnessB1 = baseline;
Fitness3 = 3-months; Fitness12 = 12-months Speed = treadmill speed; VO2 max = age-sex percentile; Curls = Curl-
ups; PU = Push-ups. HEIBl = total HEI-C baseline; HEI3Mth = total HEI-C at 3-months; HEI12Mth = total HEI-C at
12-months; VF = total vegetables and fruit; WF = whole fruit; DG = dark green and orange vegetables; WG = whole grains;
SF = saturated fats; SOD = sodium; OTH = Other foods; e# and r# = error terms.
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The models were then examined for sex and disease-state comparisons. Previous
results suggested that both models were at least weak-metric invariant (i.e., the factor
loadings for both physical activity/fitness and HEI-C, demonstrated equivalence across the
comparison group and over time). This result was found, with the sex-model demonstrat-
ing weak-metric invariance as the highest level χ2 (935) = 1375.33, CFI = 0.89, NNFI = 0.87,
RMSEA= 0.040. Strong auto-regressive relationships were noted for fitness, wherein fitness-
baseline predicted 53% of the variance of fitness-3-month, and fitness-3-month predicted
64% of the variance in fitness at 12-months in females, whereas these values were 64%
and 84% respectively in males. Regarding HEI-C, baseline to 3-months accounted for 39%
variance and 3-month to 12-months accounted for 57% in females, whereas 51% and 40%
variance were accounted for in males.

We then examined the relationships separately for women and men (Supplement
Figures S4 and S5). For women, the only significant relationship was fitness at baseline was
significantly related to HEI-C at 3-months (Supplement Figure S4), while for men HEI-C at
3-months was significantly related to fitness at 12-months and fitness at 3-months predicted
HEI-C at 12-months (Supplement Figure S5).

The disease-state model showed invariance through the level of structural vari-
ances/covariance (i.e., the only coefficients in the model that were not equivalent were
the residual or error terms). Strong auto-regressive relationships were noted for fitness
whereby fitness-baseline predicted 70% of the variance of fitness-3-month, and fitness-3-
month predicted 91% of the variance in fitness at 12-months in DM, whereas these values
were 74% and 78% respectively in participants with noDM. Regarding HEI-C, baseline to
3-months accounted for 44% variance and 3-month to 12-months accounted for 41% in DM,
whereas 42% and 67% variance were accounted for in noDM. Model fit: χ2 (978) = 1261.94,
CFI = 0.93, NNFI = 0.92, RMSEA= 0.032. Of note among the structural regressions, only
the relationship from HEI-C-3-month to fitness-12-month was statistically significant in
participants with noDM and those with DM (see Supplement Figure S6).

4. Discussion

Health behavior change researchers working in community and primary care contexts
are interested in the potential for using composite summary scales and measures to describe
changes in health behaviors. Scales have typically been developed and validated by
researchers within the nutrition and kinesiology disciplines and it is common to adopt
validated tools in community intervention studies, as was done in this secondary analysis.
To answer our original question, could measurement error have accounted for the lack of
association with the CVD risk score? Certainly, the measurement properties of the original
HEI-C were poor and could have contributed to a lack of association. Lack of association
of changes in percentile VO2 max could also be due to measurement issues with VO2
max, especially given recent documentation of measurement error in similar equations
tested by Peterman et al. [33]. The Ebbeling equation was not specifically tested in their
validation study on multiple equations against measured VO2 max. Further work on the
measurement properties of both diet quality and fitness measures is warranted.

The results of the analysis of the measurement properties of HEI-C were particularly
interesting as the concept of using scales to assess overall diet quality has a relatively long
history in nutritional epidemiology, with the first HEI published in 1995, based on the work
of Kennedy and colleagues [64]. Four measures within the original 11-item HEI-C model
did not contribute to the latent HEI-C factor: milk and alternatives, meat and alternatives,
total grains, and unsaturated fats. While these food groups are important for general health,
if intake did not vary among the participants with low vs. high HEI scores at baseline and
did not change with intervention, they will not contribute to the model. Examination of the
data from the original study provides indirect evidence to support this interpretation [50].
Mean HEI scores for meat and alternates were high at baseline (8/10 possible points) and
remained high throughout the 12-month intervention. Scores for milk and alternates were
average at baseline (4.8 of 10 possible points), increased slightly at 3-months and returned
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to 5.0 at 12-months, reflecting no change attributable to the dietary intervention. Scores for
total grains declined from 3.4 of 5 possible points to 3.1 at 12-months, while carbohydrate
intake was 48% of kcal throughout. Unsaturated fat intake was confirmed to be low and
relatively stable both from the nutrient analysis and HEI-C analysis. The reduced latent
HEI-C factor had better measurement properties and it was possible to detect interesting
interactions between physical activity and diet change.

Going forward, development of new diet quality tools is needed for the intervention
context. Such intervention tools can potentially be adapted from tools already developed
in epidemiology. Interesting work is underway to develop an adapted diet quality tool
for Canada that is associated with lower risk of MetS markers. Lafreniere et al. have used
reduced rank regression to identify food groups associated with MetS markers in a French
Canadian sample [65]. Their retained food groups in their modified C-HEI tool were total
vegetables and fruit, whole fruit, dark green and orange vegetables, whole grains, yogurt,
nuts and legumes, red and processed meat, refined grains, sugar-sweetened beverages,
“other foods”. While there is substantial overlap with our reduced 7-item HEI-C, namely
five of seven items are on both lists (total vegetables and fruit, whole fruit, dark green
and orange vegetables, whole grains “other foods”) with only saturated fat and sodium
retained in our version but not in their version. Interestingly, both our work and Lafreniere
et al. use variance as a key criterion for retention of food groups. There is some danger to
this data-driven approach, in that food groups that are important to health may be missed.
For example, fish may be important; it is a key component of the Mediterranean diet with
desirable nutritional properties, yet Canadians do not eat very much fish and it did not
emerge as a group in the LaFreniere analysis. For future intervention studies, fish might
need to be included as a target food to increase intake. Still, Lafreniere’s results are very
interesting, and along with our work provide a basis for progress in the development of
new diet quality tools for intervention work.

Parallel work in physical activity/fitness is needed but was not reviewed in detail. A
one factor model that included cardiorespiratory fitness, treadmill speed, and measures of
strength was generalizable across comparison groups, providing stable, reliable measure-
ment of true mean differences in the latent fitness factor. The results confirm the relevance
of VO2 max as a prominent contributor and that muscular strength is also relevant. The
flexibility measure did not contribute, yet it may be possible to find other indicators of
flexibility which could contribute to a summary measure. The results contribute to ongo-
ing development and validation of summary physical activity/fitness scales suitable for
community studies.

The results of the analysis showing that diet quality and physical activity/fitness were
associated over time was informative, especially in that the effect was more prominent
in men than women, with change in physical activity/fitness more likely to affect later
changes in HEI-C, rather than diet changes influencing fitness later in the intervention.
No comparable analyses were found in the literature. Recent studies in multiple health
behavior change have developed composite summary scores of health behavior change [66],
used other analysis methods [67] or focused on associations with other measures such as
self-efficacy [68]. These preliminary results do suggest different strategies for programming
with men and women and tend to support longer term interventions.

SEM has been used extensively in psychology, given the need to analyze latent con-
structs and non-independent longitudinal data within and across individuals and use is
gradually increasing in nutrition and kinesiology, with the increasing interest in multi-
dimensional scales for assessing diet quality and physical fitness change. Expertise is
required to do the analysis; hence the process was more thoroughly explained than is typi-
cal Most past validation studies in diet and physical fitness have sought to establish means
and ranges to be similar to some more accurate standard, with comparison to specific
nutrients or physiologic measures, a basic strategy. However, if the other measurement
properties (i.e., variances and covariances, variable intercepts, and residuals) addressed
by SEM are not invariant, then the likelihood of detecting measurable change decreases
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dramatically. Further analyses, including structural regressions between latent constructs
or development of latent change models, may be conducted with confidence that measure-
ment error has been minimized and observed outcomes or differences are true differences
and not driven by inaccurate measurement or imprecise methodology.

SEM is not without limitations [69,70]. There are methodological challenges in dealing
with non-normal and missing data, both common in lifestyle intervention studies. Mod-
elling complex phenomena is inherently challenging and use of SEM does not solve the
inherent problem of model mis-specification and omitted variables. In addition, study
design features such as the number of time points, number of indicators and their relia-
bility will influence the power of SEM analysis. Generally, sample sizes in the range of
~200 are needed. Tomarken and Waller provide a useful introduction to strengths and
limitations [70].

Expertise in both the content area and SEM is required to do the analysis; hence the
analytical process was more thoroughly explained than is typical. Some invariance papers
will not include all tests, however, the sequence should be examined in the appropriate
order (i.e., some studies do not test intercept invariance but will test configural, weak, and
strict invariance or others will include intercept invariance and stop without testing strict
invariance). When the result of an invariance test is rejected or implausible, testing stops
(e.g., if weak metric invariance was accepted/plausible, but invariance of intercepts rejected,
we revert to the weak metric model as the accepted level for that model). Additional tests
of structural (not measurement) invariance exist, when relationships between latent factors
are tested for equality across groups/time (i.e., constraining factor variances/covariances
or structural regression coefficients between factors). There are often questions of interest
in these structural relationships of latent variables, but they are outside the realm of mea-
surement invariance [71,72]. Regardless of the labels applied, demonstration of invariance
is critically important in establishing the validity and application of the resulting factor
models. Collaborators with expertise in SEM should be brought into the validation process
much earlier and could be informing initial development of new diet and physical fitness
measures for community intervention studies.

In conclusion, assessment of the measurement properties of diet quality and physical
fitness measures was the main focus of this analysis, with an example analysis of possible
associations between different lifestyle interventions. The original issue that prompted
exploration of SEM; lack of association of intervention measures with disease risk score
can now be partially explained. Work is underway to address the “mechanisms of action”
for lifestyle programs in CMR conditions and we look forward to meaningful progress to
improve effectiveness of lifestyle programs in health care and community settings.
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