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Abstract: (1) Background: vitamin A deficiency (VAD) is highly prevalent in children living in poor
conditions. It has been suggested that vitamin A supplementation (VAS) may reduce the risk of acute
respiratory tract infections (ARTI). Our study provides updates on the effects of oral VAS (alone)
in children on ARTI and further explores the effect on interesting subgroups. (2) Methods: eight
databases were systematically searched from their inception until 5 July 2021. The assessments of
inclusion criteria, extraction of data, and data synthesis were carried out independently by two
reviewers. (3) Results: a total of 26 randomized trials involving 50,944 participants fulfilled the
inclusion criteria. There was no significant association of VAS with the incidence of ARTI compared
with the placebo (RR 1.03, 95% CI 0.92 to 1.15). Subgroup analyses showed that VAS higher than
WHO recommendations increased the incidence of ARTI by 13% (RR 1.13, 95% CI 1.07 to 1.20), and
in the high-dose intervention group, the incidence rate among well-nourished children rose by 66%
(RR 1.66, 95% CI 1.30 to 2.11). (4) Conclusions: no more beneficial effects were seen with VAS in
children in the prevention or recovery of acute respiratory infections. Excessive VAS may increase
the incidence of ARTI in children with normal nutritional status.

Keywords: vitamin A supplementation; acute respiratory tract infections; meta-analysis; subgroups

1. Introduction

Acute respiratory tract infection (ARTI), including acute upper respiratory infection
(AURI), i.e., common cold, pharyngitis, and tonsillitis and acute lower respiratory infection
(ALRI), i.e., pneumonia and bronchitis [1] are a major cause of morbidity and mortality
worldwide [2]. In 2008, an estimated 8.795 million deaths occurred among children under
the age of 5 in the world, of which 68% were caused by infectious diseases [3]. ARTI was
responsible for an estimated 2.56 million deaths worldwide in 2017 and was the most
common cause of death among children under 5 years old [4]. A systematic analysis
estimated that in 2018 there were 10 million cases of influenza-virus-associated ALRI and
around 35,000 total deaths from influenza-virus-associated ALRI, and most ALRIs occur in
children and in people living in poor conditions [5]. The role of nutrition in supporting
the immune system is well-established. Meanwhile, numerous mechanisms and clinical
data suggest that vitamins, including vitamins A, B6, B12, C, D, and E, play important and
complementary roles in supporting the immune system [6]. Inadequate intake of these
nutrients is common, leading to a decline in resistance to infection, thereby increasing the
burden of disease.

Vitamin A deficiency (VAD) is a condition resulting from inadequate absorption or
ingestion of vitamin A, with a global burden estimated at 806,000 disability-adjusted life
years (DALYs) [7]. Retinyl palmitate, the major dietary provitamin vitamin A, and β-
carotene, the major dietary provitamin A carotenoids, are widely used to improve VAD [8].
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Deficiency of this nutrient during pregnancy increases the risk of maternal night blindness
and anemia and may be a cause of congenital malformations, childhood VAD can also
cause xerophthalmia, lower resistance to infection and increase the risk of mortality [9].
WHO recommends vitamin A supplementation (VAS) with a dose of 100,000 IU (30 mg
retinol activity equivalent, RAE) in infants aged 6–11 months and 200,000 IU (60 mg RAE)
every 4–6 months for children aged 12–59 months living in settings where VAD is a public
health problem [10].

With an interest in the intervention potential for vitamin-A-deficient populations, a
number of randomized trials have tested the effectiveness of high-dose VAS for children
aged from 6 months to 5 years. A meta-analysis by Brown and colleagues showed no
evidence of a benefit from VAS on ALRI recovery in developing countries [11]. Another
meta-analysis in 2003 showed that VAS was correlated with a slight but significant in-
crease in respiratory tract infections (RTI) (RR 1.08, 95% CI: 1.05–1.11) [12]. However, a
recent randomized control study demonstrated that VAS decreased the incidence rate of
respiratory-related illnesses (p < 0.05) [13]. Swami and colleagues also observed a decline in
morbidity due to ARTI after the mass distribution of vitamin A in first month (p < 0.001) [14].
In addition, high-dose VAS was found to have the opposite effect in children with different
nutritional status—the incidence of ALRI was lower in underweight supplement-treated
children but higher in the normal-weight group compared with a placebo [15]. No clear
conclusion can be drawn as to the effect of VAS in the amelioration of ARTI, and the
significance of the dose has not been considered; thus, in this study we aimed to include all
randomized control studies related to this issue and tried to clarify whether vitamin A is
effective in relation to ARTI or not.

2. Materials and Methods

The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)
guidelines were used to conduct this review [16].

2.1. Search Strategy and Study Selection

We conducted an electronic search of Pubmed, Web of science, EMBASE, Medline,
the Cochrane Library, Science direct, Scopus databases, and Ovid from their inception
up to 5 July 2021. We searched articles using the following terms: (Vitamin A or retinol
or carotene) and (respiratory tract infection or acute lower respiratory infection or acute
respiratory tract infection or acute upper respiratory infection or pneumonia or tonsillitis
or Sore throat or pharyngitis or cold or bronchitis) and (Supplement or fortified or interven-
tion) and (trial or double blind or single blind or controlled study or comparative study).
The detailed search strings are shown in Appendix A.

2.2. Inclusion/Exclusion Criteria

All studies were identified from databases and imported into EndNote X9 and re-
peated studies were deleted. Abstracts/titles/full texts were screened by two reviewers,
Yihan Zhang and Yifei Lu, according to the inclusion and exclusion criteria.

The inclusion criteria: (1) randomized controlled trials (RCTs); (2) full text available;
(3) reported on the association between VAS and ARTI; (4) reported on children aged 0 months
to eleven years.

The exclusion criteria: (1) studies investigating the link between VAS and tuberculosis
or chronic lung conditions such as chronic obstructive pulmonary disease and asthma;
(2) studies evaluating the effects of food fortification, the consumption of foods rich in
vitamin A, beta-carotene supplementation, or co-interventions (for example, multiple
vitamin or mineral supplementation); (3) severe malnutrition; (4) signs of VAD, including
xerophthalmia; (5) concurrent serious illness; (6) concurrent measles infection.
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2.3. Definition of Outcomes

Primary outcomes: the primary outcome was the incidence of ARTI, including AURI,
ALRI, and acute respiratory tract infection of unspecified location.

Secondary outcomes: The secondary outcomes included (1) the severity of ARTI—the
mean number of episodes, the duration of the illness; (2) the incidence of ALRI; and (3) the
severity of ALRI—hospitalization, days to resolution of symptoms.

2.4. Data Extraction and Quality Assessment

For this review, two investigators (Yihan Zhang and Ligang Yang) independently used
a data collection sheet to extracted the required information from eligible studies, including
the full name of the first author, year of study, location, study design, characteristics
of participants (number of each group, age, sex), types of interventions (duration, dose,
frequency), and outcome characteristics.

We used the Cochrane Collaboration’s risk-of-bias tool to assess the quality of the
evidence, obtained seven categories, namely, random sequence generation, allocation
concealment, blinding of participants and personnel, blinding of outcome assessment,
incomplete outcome data, selective reporting, and other bias.

2.5. Data Synthesis and Analysis

STATA 11.0 software (Stata, College Station, TX, USA) was used for the meta-analysis.
The severity of ARTI and ALRI was calculated based on the mean difference (MD) and
their associated 95% confidence intervals (CI). When only the standard errors of the means
(SEMs) were reported, we calculated SDs by multiplying SEMs by the square root of the
sample size. When reporting the median and range we used the formula given in the
Cochrane guidelines to obtain means and SDs [17]. For dichotomous outcomes, rate ratios
(events per child-year) and risk ratios (events per child) used the same scale and could be
interpreted in the same way; thus, we combined the rate ratios and risk ratios to calculate
the incidence of ARTI and ALRI. Heterogeneity was assessed using the I2 statistic. When
I2 < 50% and p < 0.1, we used fixed-effects models to pool outcomes, otherwise we used
random-effects models (I2 ≥ 50%).

Subgroup analysis was performed to calculate the effect of dose (standard (up to
100,000 IU for children aged 0 to 11 months, and 200,000 IU for children aged 12 months
to 11 years every 4–6 months) or high (greater than standard)), frequency (low (one dose
4-plus-month), medium (one dose every 4 months), or high (doses more than once in
4 months)), area, and three kinds of nutritional status on outcome measures: stunted,
wasted, and normal. Variations among subgroups were evaluated on the basis of the
p-value at 95% CI.

To assess the impact of each individual study on the overall estimates for the rest of
the studies, the leave-one-out sensitivity analysis was repeated by deleting one study at
a time to confirm that the findings were not affected by any individual study. We used
Egger’s test to test for publication bias.

3. Results
3.1. Baseline Characteristics of Included Studies

Figure 1 illustrates the selection process of this study. Databases searches yielded
2309 records after duplicates were removed. We identified 141 relevant studies, searching
by title and abstract. Twenty-six of the 141 original studies screened met the inclusion
criteria for quantitative synthesis (meta-analysis). Of the 26 studies included, 10 studies
reported the association between vitamin A and LRTI [11,18–26], 16 reported the association
between vitamin A and ARTI [13–15,27–39]. Table 1 summarizes the characteristics of
the included studies. We identified a total of 50,944 participants, 25,981 individuals on
intervention, and 24,963 on placebo. The ages of the enrolled children ranged from 0 months
to 11 years. The total dosage of vitamin A varied from 50,000 to 618,000 IU (15–185.4 mg
RAE) for infants and from 100,000 to 1236,000 IU (30–370.8 mg RAE) for 1–11-year-olds.
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The baseline serum retinol levels of all participants were within the normal range and
showed no significant difference between the intervention group and control group. The
quality of each trial included in the study is listed in Table 2.

Nutrients 2021, 13, x FOR PEER REVIEW 4 of 17 
 

 

185.4 mg RAE) for infants and from 100,000 to 1236,000 IU (30–370.8 mg RAE) for 1–11-
year-olds. The baseline serum retinol levels of all participants were within the normal 
range and showed no significant difference between the intervention group and control 
group. The quality of each trial included in the study is listed in Table 2. 

 
Figure 1. Prisma flowchart for the study selection process. 

Table 1. Characteristics of the included studies. 

First 
Author/Location/Year 

Age 
Range  

(Month) 

Baseline Serum Retionl 
Status (μmol/L) 

Intervention and 
Duration 

Number per 
Limb Outcome Measures 

Overall Mortality of 
Study 

IT CT <1 Year >1 Year IT CT Total IT CT 

Anne/Australia/2006 <132 0.50 0.80 
50,000 IU on 
Days 1 and 

5 

100,000 IU 
on Days 1 

and 5 
108 107 

Days to normalization 
of SpO2; Days to 

resolution of fever; 
Days for respiratory 
rate to settle; Days in 

hospital 

0 0 0 

Kjolhede/Guatemala/19
95 

3–48 0.92 0.87 
100,000 IU 

on 
admission 

200,000 IU 
on 

admission 
132 131 

Days to normalization 
of SpO2; Days to 

resolution of fever; 
Days for respiratory 
rate to settle; Days in 

hospital 

4 2 2 

Figure 1. Prisma flowchart for the study selection process.
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Table 1. Characteristics of the included studies.

First
Author/Location/Year

Age Range
(Month)

Baseline Serum Retionl
Status (µmol/L) Intervention and Duration Number per

Limb Outcome Measures
Overall Mortality

of Study

IT CT <1 Year >1 Year IT CT Total IT CT

Anne/Australia/2006 <132 0.50 0.80 50,000 IU on
Days 1 and 5

100,000 IU
on Days 1

and 5
108 107

Days to normalization of SpO2; Days to
resolution of fever; Days for respiratory

rate to settle; Days in hospital
0 0 0

Kjolhede/Guatemala/1995 3–48 0.92 0.87 100,000 IU
on admission

200,000 IU
on admission 132 131

Days to normalization of SpO2; Days to
resolution of fever; Days for respiratory

rate to settle; Days in hospital
4 2 2

Mahalanabis/India/2004 2–24 0.71 ± 0.53 0.71 ± 0.62
33,333 IU

twice daily
for 4 d

33,333 IU
twice daily

for 4 d
38 38 Days to resolution of fever; Days for

respiratory rate to settle 1 1 0

Quinlan/Chicago/1996 2–58 - 100,000 IU
on admission

100,000 IU
on admission 21 11 Days to normalization of SpO2; Days in

hospital 0 0 0

Fawzi/Tanzanian/1998 6–60 - - 200,000 IU
over 2 d

400,000 IU
over 2 d 346 341

Days to normalization of SpO2; Days to
resolution of fever; Days for respiratory

rate to settle; Days in hospital
21 13 8

Nacul/Brazil/1997 6–59 0.45 ± 0.34 0.38 ± 0.28 200,000 IU
over 2 d

400,000 IU
over 2 d 239 233

Days to normalization of SpO2; Days to
resolution of fever; Days for respiratory

rate to settle
4 2 2

Rodríguez/Ecuador/2005 2–59 1.26 ± 0.54 1.35 ± 0.59 50,000 IU on
admission

100,000 IU
on admission 121 118

Days to normalization of SpO2; Days to
resolution of fever; Days for respiratory

rate to settle
5 2 3

Si/Vietnam/1997 1–59 - - 200,000 IU
over 2 d

400,000 IU
over 2 d 279 309 Days to resolution of fever; Days for

respiratory rate to settle; Days in hospital 4 1 3

Stephensen/Peru/1998 3–120 0.24 ± 0.17 0.31 ± 0.24

100,000 IU
on admission

and 50,000
IU the

nextday

200,000 IU
onadmission
and 100,000

IU the
next day

48 47 Days in hospital 0 0 0
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Table 1. Cont.

First
Author/Location/Year

Age Range
(Month)

Baseline Serum Retionl
Status (µmol/L) Intervention and Duration Number per

Limb Outcome Measures
Overall Mortality

of Study

IT CT <1 Year >1 Year IT CT Total IT CT

Bhandari/Govindpuri/1994 12–60 - - - 200,000 IU
on admission 422 420

Incidence of Acute lower respiratory
tract

Infection
- - -

Biswas/Calcutta/1994 12–71 - - - 200,000 IU
on admission 91 83

Mean number of episodes; Mean
duration per episode; Mean duration per

child
0 0 0

Rahmathullah/India/1991 6–60 - -
8375

IU/week,
52 weeks

8375
IU/week,
52 weeks

7655 7764
Incidence of Acute lower respiratory

tract
Infection

- - -

Dibley/Indonesian/1996 6–47 - -
103,000

IU/4 months,
2 years

206,000
IU/4 months,

2 years
396 386

Incidence of Acute lower respiratory
tract

Infection; Incidence of Acute respiratory
tract infection

1 0 1

Chen/China/2013 36–72 1.15 ± 0.30 1.14 ± 0.27 - 200,000 IU
on admission 95 104 Incidence of Acute respiratory tract

infection; Cough (days) - - -

Barreto/Brazil/1994 6–48 - -
100,000

IU/4 months,
1 year

200,000
IU/4 months,

1 year
620 620

Incidence of Acute lower respiratory
tract

Infection; Cough (days)
4 2 2

Venkatarao/India/1996 0–12 - - 200,000 IU at
6 months old - 311 297 Mean duration per child 12 3 9

Long/Mexico/2006 6–15 - -
20,000 IU/2

months,
1 year

45,000 IU/2
months,
1 year

180 183
Incidence of Acute lower respiratory

tract
Infection

- - -

Pinnock/Adelaide/1986 12–48 4.21 ± 0.15 4.08 ± 0.17 - 1500 IU/day,
5 months 76 71 Mean number of episodes; Cough (days) - - -

Kartasasmita/India/1995 12–54 2.71 ± 0.65 1.60 ± 0.59 -
200,000 IU

on admission
and 6 months

126 143 Mean number of episodes;
Mean duration per episode - - -
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Table 1. Cont.

First
Author/Location/Year

Age Range
(Month)

Baseline Serum Retionl
Status (µmol/L) Intervention and Duration Number per

Limb Outcome Measures
Overall Mortality

of Study

IT CT <1 Year >1 Year IT CT Total IT CT

Rahman/Bangladesh/1996 2.5 0.43 ± 0.24 0.42 ± 0.20
50,000 IU on

4 week,
8 week

- 84 81 Mean number of episodes; Mean
duration per child - - -

Sempertegui/Ecuador/1999 6–36 3.40 ± 0.93 3.49 ± 0.91
10,000

IU/week,
40 weeks

10,000
IU/week,
40 weeks

200 200

Incidence of Acute lower respiratory
tract

Infection; Incidence of Acute respiratory
tract infection

- - -

Stansfield/Haiti/1993 6–83 - -
100,000 IU/
4 months,

1 year

200,000
IU/4 months,

1 year
8351 6993 Incidence of Acute respiratory tract

infection 72 36 36

Fawzi/Tanzania/2000 6–60 - -
100,000

IU/4 months,
1 year

200,000
IU/4 months,

1 year
289 285

Mean number of episodes; Cough (days);
Incidence of Acute respiratory tract

infection
- - -

Swami/Chandigarh/2007 12–60 - - - 200,000 IU
on admission 276 252 Mean number of episodes 2 0 2

Long/Mexican/2007 6–15 - -
20,000

IU/2 months,
1 year

45,000
IU/2 months,

1 year
97 98 Incidence of Acute respiratory tract

infection - - -

Soofi/Pakistan/2017 0–1 - - 50,000 IU on
admission - 5380 5648

Incidence of Acute lower respiratory
tract

Infection
243 128 115

VA: vitamin A; IT: intervention group; CT: control group.
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Table 2. Quality of the studies included in the meta-analysis.

First Author
Random
Sequence

Generation

Allocation
Conceal-

ment

Blinding of
Participants

and Personnel

Blinding of
Outcome

Assessment

Incomplete
Outcome

Data

Selective
Reporting

Other
Bias

Anne 2006 low low low unclear low low low
Kjolhede 1995 unclear low unclear unclear high low unclear

Mahalanabis 2004 low low low low low low low
Quinlan 1996 unclear unclear low unclear low high high
Fawzi 1998 unclear low low unclear low low low
Nacul 1997 low low low low low low low

Rodríguez 2005 low low low low low low low
Si 1997 unclear unclear low unclear unclear unclear high

Stephensen 1998 low low low unclear low unclear low
Bhandari 1994 low low low low low low low
Biswas 1994 low low low low high unclear unclear

Rahmathullah 1991 unclear low low unclear low high unclear
Dibley 1996 low low low unclear unclear high high
Chen 2013 unclear high low unclear low unclear high

Barreto 1994 low low low low high low low
Venkatarao 1996 unclear low high high high unclear high

Long 2006 low low low unclear high low unclear
Pinnock 1986 unclear low low unclear high unclear unclear

Kartasasmita 1995 low unclear unclear unclear low unclear high
Rahman 1996 unclear low low unclear high low high

Sempertegui 1999 low low low unclear high low high
Stansfield 1993 low low low low low low low

Fawzi 2000 unclear low low unclear low low unclear
Swami 2007 unclear unclear unclear unclear high high high
Long 2007 low low low unclear low unclear unclear
Soofi 2017 low low low low low unclear unclear

3.2. Association between Vitamin A and ARTI
3.2.1. Incidence of ARTI

We found that seven studies showed no significant difference between the vitamin
A group and the placebo group (RR 1.03, 95% CI 0.92 to 1.15; I2 = 74.4%, p = 0.001;
Figure 2; [13,15,30,33,34,38,39]).
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3.2.2. The Severity of ARTI

Six studies shared the continuous outcome episodes of all symptoms and other contin-
uous outcomes, including cough days, mean duration per episode, and mean duration per
child, reported by three studies, respectively. Vitamin A intervention did not significantly
change the mean number of episodes (WMD −0.35, 95% CI −1.25 to 0.55; I2 = 91.3%,
p < 0.001; Figure 3a; [14,28,35–37,39]), mean cough days (WMD 0.12, 95% CI −1.43 to 1.67;
I2 = 0.0%, p = 0.571; Figure 3b; [13,35,39]), mean duration per episode (WMD −0.07, 95%
CI −0.50 to 0.37; I2 = 0.0%, p = 0.552; Figure 3c; [28,30,36]), or mean duration per child
(WMD −5.19, 95% CI −12.81 to 2.42; I2 = 80.4%, p = 0.006, Figure 3d; [28,32,37]).
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3.3. Association between Vitamin A and LRTI
3.3.1. Incidence of LRTI

Six studies analyzed the incidence of LRTI. Meta-analysis did not show significant
differences between the intervention group and the placebo group (RR 1.02, 95% CI 0.94 to
1.12; I2 = 35.1%, p = 0.173; Figure 4; [15,26,27,29–31]).
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3.3.2. The Severity of LRTI

Seven studies shared the outcome days to resolution of fever and days for respiratory
rate to settle, and six studies reported on the days to normalization of oxygen saturation
(SpO2) and days in hospital. There was no evidence of heterogeneity between studies
for days to resolution of fever (I2 = 0.0%, p = 0.695), days for respiratory rate to settle
(I2 = 0.0%, p = 0.568), days to normalization of SpO2 (I2 = 0.0%, p = 0.811) or days in
hospital (I2 = 0.0%, p = 0.889), so a fixed-effect model was used. Supplementation with
vitamin A did not significantly shorten days to resolution of fever (WMD −0.07, 95%
CI −0.17 to 0.03; Figure 5a; [11,18,19,21–24]), days for respiratory rate to settle (WMD 0.00,
95% CI −0.17 to 0.17; Figure 5b; [11,18,19,21–24]), days to normalization of SpO2 (WMD
0.00, 95% CI−0.01 to 0.01; Figure 5c; [18–23]), or days in hospital (WMD 0.11, 95% CI−0.33
to 0.54; Figure 5d; [18–21,24,25]).
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Figure 5. (a) Comparison of Vitamin A versus Control, Outcome 7—Days to resolution of fever due to lower respiratory
tract infection (LRTI) at longest follow-up; (b) Comparison of Vitamin A versus Control, Outcome 8—Days for respiratory
rate to settle due to lower respiratory tract infection (LRTI) at longest follow-up; (c) Comparison of Vitamin A versus
Control, Outcome 9—Days to normalization of SpO2 due to lower respiratory tract infection (LRTI) at longest follow-up;
(d) Comparison of Vitamin A versus Control, Outcome 10—Days in hospital due to lower respiratory tract infection (LRTI)
at longest follow-up; WMD: weighted mean difference.

3.4. Subgroup Analysis

We found evidence of significant heterogeneity in outcome 1 and outcome 2; thus,
we performed subgroup analysis to explore potential sources of heterogeneity. For the
incidence of ARTI, subgroup analysis was carried out in terms of dose, frequency, area,
and nutritional status (Table 3). High-dose (greater than standard) vitamin A intervention
was associated with a 13% increase in the incidence of ARTI (RR 1.13, 95% CI 1.07 to
1.20) and standard dose did not show any significant difference (RR 0.82, 95% CI 0.64 to
1.03). Only medium-frequency (one dose every 4 months) intervention studies reported
a combined 14% increase in ARTI incidence (RR 1.14, 95% CI 1.07 to 1.23). Three RCTs
reported on the incidence of ARTI after VAS in groups based on nutritional status, in which
the doses exceeded the WHO recommendations. It was observed that participants with
normal nutritional status showed a higher risk of the incidence of ARTI after vitamin A
intervention (RR 1.66, 95% CI 1.30 to 2.11), but those with a stunted and wasted nutritional
status showed no significant difference between the vitamin A group and the placebo
group (RR 0.82, 95% CI 0.46 to 1.47) (RR 0.59, 95% CI 0.21 to 1.67). No subgroup differences
were observed between the two groups in terms of area. Dose, frequency, and area were
considered as the stratified factors of outcome 2 (Table 4).
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Table 3. Subgroup analyses—incidence of acute respiratory tract infection.

Subgroup Number of Studies RR 95%CI p
Heterogeneity

I2 p

dose
high 4 1.131 (1.065, 1.200) <0.001 19.3% 0.294

standard 3 0.815 (0.643, 1.032) 0.090 59.4% 0.085
frequency

low 1 0.650 (0.392, 1.078) 0.095
medium 3 1.143 (1.066, 1.225) <0.001 32.0% 0.230

high 3 0.923 (0.764, 1.115) 0.406 70.3% 0.035
area

Asia 2 0.893 (0.552, 1.446) 0.645 73.5% 0.052
Other
areas 5 1.033 (0.893, 1.195) 0.658 79.2% 0.001

Nutritional status

stunted 3 0.821 (0.457, 1.474) 0.509 59.7% 0.083
wasted 2 0.589 (0.208, 1.668) 0.319 52.3% 0.148
normal 3 1.656 (1.302, 2.106) <0.001 14.9% 0.309

RR: rate ratios (events per child-year) or RRs (events per child); dose: standard (up to 100,000 IU for children
aged 0 to 11 months and 200,000 IU for children aged 12 months to 11 years every 4–6 months); high (greater than
standard); frequency: low (one dose 4-plus-month); medium (one dose every 4 months); high (doses more than
once in 4 months); CI: confidence intervals.

Table 4. Subgroup analyses—mean number of episodes.

Subgroup Number of Studies WMD 95%CI p
Heterogeneity

I2 p

dose
standard 4 −0.683 (−1.684, 0.318) 0.181 86.9% <0.001

high 2 0.188 (−0.327, 0.702) 0.475 0.0% 0.971
frequency

low 4 −0.081 (−0.522, 0.360) 0.719 0.0% 0.860
median 1 0.180 (−0.473, 0.833) 0.589

high 1 −1.500 (−1.643, 1.357) <0.001
area

Asia 4 −0.081 (−0.522, 0.360) 0.719 0.0% 0.860
Other
areas 2 −0.691 (−2.337, 0.954) 0.410 95.9% <0.001

WMD: weighted mean difference; dose: standard (up to 100,000 IU for children aged 0 to 11 months and 200,000
IU for children aged 12 months to 11 years every 4–6 months); high (greater than standard); frequency: low (one
dose 4-plus-month); medium (one dose every 4 months); high (doses more than once in 4 months); CI: confidence
intervals.

3.5. Sensitivity Analysis

We conducted sensitivity analysis to investigate whether any single study signifi-
cantly affected the pooled results and the results showed the stability of the meta-analysis
(Figures 6 and 7).
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3.6. Publication Bias

For the outcomes of more than seven studies, we used the Egger test to test for
publication bias. The Egger test showed no evidence of significant publication bias (p = 0.48,
p = 0.46, p = 0.07).

4. Discussion

To the best of our knowledge, this is the first meta-analysis and systematic review
that has included all randomized control studies (RCTs) on this issue, reporting on the
effects of vitamin A on ARTI. Overall, our meta-analysis showed no evidence that VAS
alters the incidence or course of ARTI, which was consistent with the results of previous
meta-analyses which studied LRTI [40,41]. Stratified analyses were conducted to further
explore the effect of vitamin A on interesting subgroups. We found that VAS exceeding
the WHO’s recommended dose led to an increase in ARTI incidence, especially in children
with good nutrition.

Vitamin A is an essential nutrient and it cannot be synthesized by the human body
and must be obtained from dietary sources [42]. Oral VAS and food fortification are the
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most direct ways to provide vitamin A for people with vitamin A deficiency and the
absorbed vitamin A is mainly stored in the liver [8]. In populations whose vitamin A
availability from food is low, infectious diseases can precipitate VAD by decreasing intake,
decreasing absorption, and increasing excretion [43]. Vitamin A has been described as
an anti-infectious vitamin because of its role in regulating the human immune system
and immune functions [44]. By improving immune function, vitamin A reduces mortal-
ity associated with measles, diarrhea, and other illnesses [45]. Studies in animals have
revealed that VAD could lead to immunoglobulin dysregulation, squamous cell metaplasia,
infectious disease, and death [46]. However, excessive intake of vitamin A can also lead to
acute and chronic toxicity. Recently, several human studies have suggested an association
between an excessive intake of vitamin A and increased bone fragility that potentially leads
to osteoporosis [47,48]. Children are particularly sensitive to vitamin A, with daily intakes
of 1500 IU/kg body weight reportedly leading to toxicity [49]. Borel and his colleagues
also found that there is high individual variability in β-carotene bioavailability [50,51] and
β -carotene is the most important dietary source of vitamin A and can be cleaved to form
vitamin A after absorption in the intestine [52–54]. In the present meta-analysis, the dose of
VAS exceeded the WHO’s recommended dose may lead to adverse effects, such as the 13%
increase in ARTI incidence (p < 0.001, I2 = 19.3%). Furthermore, receiving vitamin A at the
WHO-recommended dose might be effective in preventing ARTI, with a borderline p-value
of 0.090. Of the 25 studies included, three studies [15,30,39] stratified participants by nu-
tritional status and the intervention dose in all three studies exceeded the recommended
dose. The pooled results showed that participants with normal nutritional status had a
66% increase in ARTI incidence (p < 0.001, I2 = 14.9%), but there was no evidence that VAS
altered the ARTI incidence in stunted or wasted children. This indicates that high-dose
vitamin A supplementation provided to children with adequate vitamin A stores might
cause temporary immune dysregulation and lead to increase risks of infectious diseases.

VAS programs began in the 1990s in response to evidence demonstrating the as-
sociation between VAD and increased childhood mortality [55,56]. At present, more
than 80 countries worldwide are implementing universal VAS programs targeted at chil-
dren from 6–59 months of age through semi-annual national campaigns, according to WHO
recommendations [45]. However, our meta-analysis suggests that VAS has no consistent
overall protective effect on the incidence or course of ARTI and that it increased the inci-
dence of ARTI in the case of high-dose vitamin A supplementation, especially in children
with a normal nutritional status. It is plausible that the studies included in this paper
excluded children with signs of VAD, and VAS in excess of physiological requirements
may cause an adverse effect on the immune system. Thus, we recommend that VAS for
children aged 0 to 11 years should take the nutritional status and baseline serum retinol
into consideration. Authorities should bear in mind that capsules should be distributed up
to two times a year and at standard doses to avoid the accumulation of vitamin A toxicity.

Publication bias tends to favor studies with statistically significant results, rather than
those showing no effect [57]. We believe our study was free of publication bias as most of
the studies had negative results and the Egger test did not show any.

Our study has several limitations. We included studies that used different definitions
of RTI and the small number of RCTs available for quantitative synthesis. Furthermore, we
did not perform a subgroup analysis on age or gender, which may be helpful in explaining
the great heterogeneity of results. Despite these limitations, our study is the first to include
all ARTI RCTs and to explore the results by subgroup.

5. Conclusions

We conclude that VAS according to WHO recommendations has little value for chil-
dren aged 0 to 11 years in the prevention of or recovery from acute respiratory infec-
tions, and it may cause a temporary immune dysregulation and lead to increased risks
of infectious diseases when provided in excess of the WHO’s recommended dose. Thus,
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vitamin A should be provided based on the serum retinol levels and nutritional status of
children, and a comprehensive nutritional approach should be taken.
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Appendix A

Pubmed 107: ((Vitamin A) or retinol or carotene) and ((respiratory tract infection) or
(acute lower respiratory infection) or (acute respiratory tract infection) or (acute upper
respiratory infection) or pneumonia or tonsillitis or (Sore throat) or pharyngitis or cold
or bronchitis) and (Supplement or fortified or intervention) and (trial or (double blind) or
(single blind) or (controlled study) or (comparative study))

Filters applied: Clinical Trial, Randomized Controlled Trial.
Web of science 1296: TOPIC: (((Vitamin A) or retinol or carotene) and ((respiratory

tract infection) or (acute lower respiratory infection) or (acute respiratory tract infection) or
(acute upper respiratory infection) or pneumonia or tonsillitis or (Sore throat) or pharyngitis
or cold or bronchitis) and (Supplement or fortified or intervention) and (trial or (double
blind) or (single blind) or (controlled study) or (comparative study)))

Refined by: database: (WOS OR MEDLINE) AND document types: (ARTICLE OR
OTHER)

Embase 317: (vitamin AND a OR retinol OR carotene) AND (respiratory AND tract
AND infection OR (acute AND lower AND respiratory AND infection) OR (acute AND
respiratory AND tract AND infection) OR (acute AND upper AND respiratory AND
infection) OR pneumonia OR tonsillitis OR (sore AND throat) OR pharyngitis OR cold OR
bronchitis) AND (supplement OR fortified OR intervention) AND (trial OR (double AND
blind) OR (single AND blind) OR (controlled AND study) OR (comparative AND study))
AND (‘article’/it OR ‘short survey’/it)

Cochrane553: ((Vitamin A) or retinol or carotene) and ((respiratory tract infection)
or (acute lower respiratory infection) or (acute respiratory tract infection) or (acute upper
respiratory infection) or pneumonia or tonsillitis or (Sore throat) or pharyngitis or cold
or bronchitis) and (Supplement or fortified or intervention) and (trial or (double blind) or
(single blind) or (controlled study) or (comparative study)) in Title Abstract Keyword

Science direct 9:(Vitamin A or retinol or carotene) and ((respiratory tract infection)
or (acute lower respiratory infection) or (acute respiratory tract infection) or (acute upper
respiratory infection) or pneumonia or tonsillitis or (Sore throat) or pharyngitis or cold or
bronchitis) and (Supplement or fortified or intervention)

Filters applied: Research articles, Other.
Scopus 610: TITLE-ABS-KEY(((vitamin AND a)OR retinol OR carotene) AND ((respi-

ratory AND tract AND infection) OR (acute AND lower AND respiratory AND infection)
OR (acute AND respiratory AND tract AND infection) OR (acute AND upper AND respi-
ratory AND infection) OR pneumonia OR tonsillitis OR (sore AND throat) OR pharyngitis
OR cold OR bronchitis) AND (supplement OR fortified OR intervention) AND (trial OR
(double AND blind) OR (single AND blind) OR (controlled AND study) OR (comparative
AND study))) AND (LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “sh”))
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Ovid 853: ((Vitamin A) or retinol or carotene) and ((respiratory tract infection) or
(acute lower respiratory infection) or (acute respiratory tract infection) or (acute upper
respiratory infection) or pneumonia or tonsillitis or (Sore throat) or pharyngitis or cold
or bronchitis) and (Supplement or fortified or intervention) and (trial or (double blind) or
(single blind) or (controlled study) or (comparative study)).mp. [mp = title, abstract, full
text, caption text] limit 1 to original articles
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