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Abstract: We investigated if supplementing obese mothers (MO) with docosahexaenoic acid (DHA)
improves milk long-chain polyunsaturated fatty acid (LCPUFA) composition and offspring anxiety
behavior. From weaning throughout pregnancy and lactation, female Wistar rats ate chow (C) or
a high-fat diet (MO). One month before mating and through lactation, half the mothers received
400 mg DHA kg−1 d−1 orally (C+DHA or MO+DHA). Offspring ate C after weaning. Maternal
weight, total body fat, milk hormones, and milk nutrient composition were determined. Pups’ milk
nutrient intake was evaluated, and behavioral anxiety tests were conducted. MO exhibited increased
weight and total fat, and higher milk corticosterone, leptin, linoleic, and arachidonic acid (AA)
concentrations, and less DHA content. MO male and female offspring had higherω−6/ω−3 milk
consumption ratios. In the elevated plus maze, female but not male MO offspring exhibited more
anxiety. MO+DHA mothers exhibited lower weight, total fat, milk leptin, and AA concentrations,
and enhanced milk DHA. MO+DHA offspring had a lowerω−6/ω−3 milk intake ratio and reduced
anxiety vs. MO. DHA content was greater in C+DHA milk vs. C. Supplementing MO mothers
with DHA improves milk composition, especially LCPUFA content andω−6/ω−3 ratio reducing
offspring anxiety in a sex-dependent manner.

Keywords: pregnancy; obesity; breastfeeding; behavioral disorders; LCPUFA; interventions

1. Introduction

Obesity in children and women of reproductive age is a worldwide health problem
that has reached epidemic proportions [1–3]. Maternal obesity during pregnancy has a
negative impact on the health of both mothers and their babies [4–6]. Obese pregnant
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women, for example, are more likely to develop gestational diabetes, hypertension, and
pre-eclampsia [7,8], as well as being less likely to initiate breastfeeding [9–11], and when
they do, they breastfeed for a shorter period of time, reducing the offsprings’ benefits of
breastfeeding [12].

According to epidemiological studies, breastfeeding protects infants from rapid neona-
tal weight gain and obesity susceptibility later in life [13] and plays a key role in preventing
childhood behavioral disorders [14]. However, recent evidence suggests that the extent of
breastmilk’s benefits are modulated by its fatty acid composition [15], such as long-chain
polyunsaturated fatty acids (LCPUFA). LCPUFAs such as eicosapentaenoic acid (EPA),
docosahexaenoic acid (DHA), and arachidonic acid (AA) play important roles during
lactation as they are key constituents of cell membranes, the nervous system, and the retina
in the infant [16,17].

Infants’ ability to synthesize LCPUFA, particularly DHA, is reduced. As a result, for
neonates, breastmilk is by far the greatest source of these fatty acids [18]. In previous studies,
we have demonstrated that maternal obesity induced by a high-fat diet has an effect on
maternal milk nutrient concentrations, including an increase in milk fat content, a decrease
in DHA and EPA, and an increase in AA. In later life, these changes predispose offspring to
greater fat accumulation, metabolic problems, cognitive alterations, and increased anxiety-
like behavior [19,20]. These poor offspring outcomes have been associated with the altered
availability of LCPUFA during fetal development and/or lactation. [15,21–23]. In addition,
regulatory compounds in milk such as cortisol or leptin can potentially influence offsprings’
behavior and growth trajectory [24,25]. It has been shown that some of the negative
outcomes linked with low LCPUFA availability during development are mitigated by
maternal ω−3 supplementation during pregnancy [26–28]. However, in the context of
developmental programming, there have been a limited number of studies on the effects of
DHA supplementation before and during pregnancy and lactation in obese rat pregnancies
and its impact on milk composition and offspring behavior. We hypothesized that DHA
supplementation in obese pregnant rats would improve the adverse changes in maternal
milk LCPUFA concentration and offspring anxiety behavior.

2. Methods
2.1. Females Recruited for Breading as Mothers for Offspring Study Production

The Animal Experimentation Ethics Committee of the Instituto Nacional de Ciencias
Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico (ethical approval
code, BRE-1870) approved all procedures, which are in accordance with the ARRIVE
criteria for reporting animal studies [29,30]. Female albino Wistar rats were born and raised
in the INCMNSZ animal facility, which is accredited by the Association for Assessment
and Accreditation of Laboratory Animal Care International (AAALAC) and follows its
criteria. Rats were maintained at a constant temperature (22–23 ◦C) and under controlled
lighting (lights on 07:00 to 19:00 h) and fed standard laboratory chow diet (LabRodent Diet
5001, Fort Worth, TX, USA) containing 23.9% protein, 5.0% fat, 31.9% polysaccharide, 6.2%
simple sugars, 5.0% fiber, 7.0% minerals and ~1.0% vitamins (w/w), physiological fuel
3.4 kcal g−1 (29% as protein, 58% as CHO, 13% as fat). At 14–16 weeks of age (weighing
200–240 g), females were randomly assigned to breed with non-litter mates of proven
fertility. At delivery (day 0), litters that provided Founder Generation (F0) mothers were
culled to 10 pups, each with at least four females. At weaning (day 21), one female F0 pup
from each litter was randomly assigned to either a maternal control (C, n = 16) group fed a
conventional laboratory chow diet or a maternal obesity (MO, n = 14) group fed a high-fat
diet [31] containing 23.5% protein, 20.0% lard, 5.0% corn oil fat, 20.2% polysaccharide,
20.2% simple sugars, 5.0% fiber, 5.0% mineral mix, 1.0% vitamin mix (w/w), physiological
fuel 4.8 kcal g−1 (17% as protein, 35% as CHO, 47% as fat). The high-fat diet was developed
at the INCMNSZ’s specialized dietary unit. To ensure homogeneity in the developmental
programming challenge and maternal genetics to which offspring were exposed by F0
mothers, only one F0 female from the same litter was included in any experimental group.
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At postnatal day (PND) 90, 1 month before mating and during pregnancy and lactation,
half of the F0 females from each group (C and MO) were maintained on their assigned
diet and received 400 mg DHA · kg−1 d−1 (DSM Nutritional Products, Inc., Heerlen,
Netherlands) daily orally as an individual dose by pipette to generate 2 additional groups,
C+DHA and MO+DHA. On PND 120, F0 female rats were mated with proven male
breeders and conceived the next cycle. Lactating mothers were kept on their prenatal diets
(C or MO) and with or without DHA supplementation (C+DHA and MO+DHA).

2.2. Measurement of Milk Composition

Milk composition studies must always pay attention to collection timing and vali-
dation of assay techniques [32]. Milk was obtained between 11:00 and 13:00 h on day 21
of lactation (dL). Pups were removed from mothers after 4 h, and mothers were given
0.8 U of oxytocin (ip) and milked 15 min later, as previously reported. [33]. Milk samples
were vortexed to mix them completely, then separated into aliquots and stored at −20 ◦C
until they were analyzed. To achieve sample homogeneity, milk samples were thawed
at 37 ◦C and vigorously shaken. Gravimetric analysis was used to determine the water
concentration (%) [34]. Protein concentration (%) was determined using the Bradford test
(Biorad®, Hercules, CA, USA). Total fat concentration (%) was determined using the Folch
technique [35]. The concentrations of linoleic acid, AA, EPA, and DHA in milk fat were
determined using gas chromatography [33].

2.3. Milk Production and Pup Intake of Different Milk Components

Milk production was estimated based on detailed descriptions provided by us and
other investigators [36–38]. Briefly, at 20 dL and at 07:00 h, pups were removed for 4 h
from their mothers. Only dams had access to water and food ad libitum (to produce milk).
Mothers were weighed at the beginning and end of the 4 h period. Pups were individually
weighed before being returned to their mothers and then again 1 h later. Approximations
of male and female pup milk component intake (water, protein, fat, linoleic acid, AA, EPA,
and DHA) were estimated by milk intake (g h−1) × milk component (%) 100−1.

2.4. Fatty Acid Analysis

Milk lipids were extracted using a modified Folch technique. Samples were homog-
enized with 2 mL of 0.9% NaCl and 5 mL of chloroform:methanol (2:1) as previously
described [35,39]. Fatty acid extraction was carried out using chloroform (3 × 2 mL). The
organic phase was pooled, and 120–150 µL of methanol was added until the organic phase
turned transparent, then 1 g of Na2SO4 was added and vortexed to obtain the residue for
fatty acid analysis. A stream of nitrogen was used to evaporate the organic phase.

2.5. Preparation of Fatty Acid Methyl Esters

Samples of fatty acid methyl esters (FAME) were prepared as previously described [39].
Briefly, FAMEs were extracted using hexane, and the organic phase was pooled and
evaporated under a stream of nitrogen. Hexane was added to the residue and centrifuged
before being injected into a gas chromatograph with a flame ionization detector model
6850 (Agilent, Santa Clara, CA, USA). The retention times for methyl ester standards
(PolyScience, Niles, IL, USA) we used to identify fatty acid methyl esters, and each one
was reported as a percentage of total fatty acid in the sample.

2.6. Blood Collection and Hormone Quantification

On day 21 (end of lactation), F0 rats from all groups were weighed and euthanized
under general anesthesia with isoflurane, followed by decapitation using a rodent guil-
lotine (Thomas Scientific, Swedesboro, NJ, USA) by trained staff knowledgeable in the
technique. Blood was drawn from the trunk, and serum was separated and stored at
−70 ◦C. Corticosterone and leptin concentrations in both serum and milk were determined
by enzyme-linked immunosorbent assay (ELISA), using commercial rat kits from DRG
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International, Inc. (Springfield Township, NJ, USA) and Invitrogen (Carlsbad, CA, USA),
respectively. Each sample was measured in duplicate. The % of fat (Folch) and the adiposity
index (AI) were determined by excising and weighing the mammary gland and fat depots,
respectively. AI = total adipose tissue × 100 · body weight g−1. We report here data with
the following number of mothers, and offspring of each sex—C: n = 8, C+DHA: n = 8, MO:
n = 7, MO+DHA: n = 7.

2.7. Offspring (F1) Maintenance

To guarantee F1 homogeneity, on postnatal day (PND) 2, all F0 litters from all groups
studied were adjusted to 10 pups, with equal numbers of males and females wherever
possible. Litters with fewer than 11 or more than 14 pups were excluded from the study. At
weaning (PND 21), F1 litters were divided into male and female offspring and housed 5 per
cage and fed standard laboratory chow diet throughout the study. No litters or sexes from
different treatment or age groups were mixed together. After PND 50, a maximum of 3 rats
of the same sex and experimental group were housed per cage. On PND 110, behavioral
tests were conducted on male and female F1.

2.8. Behavioral Assessment
2.8.1. Elevated Plus Maze (EPM)

Two weeks prior to behavioral testing, a reverse light cycle was implemented with
lights turned off at 07.00 h and on at 19.00 h. At PND 110, F1 rats were evaluated during the
dark phase (between 08.00 h and 14.00 h). The EPM’s specifications have been described
in detail [40]. Briefly, rats were placed in the EPM and allowed to explore for 5 min.
The Ethovision system (Ethovision, Noldus Information Technology by Wageningen, The
Netherlands) kept track of the number of entries, distance traveled, and time spent in open
and closed arms. The number of false entries into the different areas was manually scored
by an experimenter who was blind to the subject’s treatment group. A false entry was
considered when less than 50% of the rat’s body was not inside the arms, whereas an arm
entry only was scored if the rat’s center of gravity entirely entered the arm. False entries
were subtracted from the total number of entries that were automatically counted. All
subjects were tested in a randomized sequence. Females’ behavioral assessments were
performed during diestrous.

2.8.2. Open Field (OF)

The day after EPM testing, the same subjects were evaluated in a 10-min OF test. The
specifications of the OF have been described in detail [40]. Briefly, the Ethovision system
was used to measure overall distance (measured in meters), number of entries and time
spent, and distance traveled inside the center zone.

2.9. Statistical Analysis

All data are presented as mean ± SEM, n = 7–8 per group from different litters. Body
weight, a basic and well-characterized biologically meaningful endpoint, was examined by
one-sided t-test in male and female F1 from the control group and was statistically different
(p < 0.001), therefore sexes were analyzed separately. To assess the statistical differences
within maternal diet and DHA supplementation groups, data were analyzed using two-
way multiple analysis of variance (ANOVA), followed by Tukey test. Corticosterone and
leptin concentrations in milk were compared to serum, and Pearson’s correlations were
calculated. p ≤ 0.05 was considered significant. Log-transformation was used for skewed
and spread data (serum and milk corticosterone, and milk leptin).

3. Results
3.1. Maternal Food Intake during Lactation

From lactation day 1–16, maternal food intake in g/day was reduced in MO and
MO+DHA groups compared with C and C+DHA, respectively (Figure 1A). Maternal
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energy intake per day, as well as average energy intake during lactation, were similar
in all groups (Figure 1B,C). Maternal fat intake was higher, while protein and carbohy-
drate intake was lower in MO and MO+DHA groups in comparison with C and C+DHA
(Figure 1D–F).

Nutrients 2021, 13, x FOR PEER REVIEW 5 of 21 
 

 

costerone and leptin concentrations in milk were compared to serum, and Pearson’s cor-
relations were calculated. p ≤ 0.05 was considered significant. Log-transformation was 
used for skewed and spread data (serum and milk corticosterone, and milk leptin). 

3. Results 
3.1. Maternal Food Intake during Lactation 

From lactation day 1–16, maternal food intake in g/day was reduced in MO and 
MO+DHA groups compared with C and C+DHA, respectively (Figure 1A). Maternal en-
ergy intake per day, as well as average energy intake during lactation, were similar in all 
groups (Figure 1B,C). Maternal fat intake was higher, while protein and carbohydrate in-
take was lower in MO and MO+DHA groups in comparison with C and C+DHA (Figure 
1D–F). 

 
Figure 1. Maternal food, energy, and macronutrient intake during lactation. Control (C), control with DHA (C+DHA), 
maternal obesity (MO), and maternal obesity with DHA (MO+DHA). (A). food intake, g/day; (B). energy intake, kcal/day; 
(C). average energy intake during lactation, kcal/day; (D). fat intake, g/day; (E). protein intake, g/day; (F). carbohydrate 
intake, g/day. Values are mean ± SEM, n = 7–8 mothers per group. * different vs. their respective control, p < 0.05. I = 
interaction between maternal diet and maternal DHA supplementation, n.s. = not significant. 

3.2. Maternal Parameters at the End of Lactation 
Body weight was higher in MO mothers compared with C, while maternal DHA sup-

plementation reduced MO+DHA body weight as compared with MO (Figure 2A). MO 
and MO+DHA had higher total fat and adiposity index than C and C+DHA, respectively; 
maternal DHA supplementation reduced total fat and adiposity index in MO+DHA com-
pared to MO (Figure 2B,C). Mammary gland weight was higher in mothers from MO and 
MO+DHA groups compared with C and C+DHA (Figure 2D); mammary gland fat con-
centration was higher in MO and MO+DHA as compared with C and C+DHA, respec-
tively (Figure 2E). Milk production was similar across all groups. (Figure 2F). 
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I = interaction between maternal diet and maternal DHA supplementation, n.s. = not significant.

3.2. Maternal Parameters at the End of Lactation

Body weight was higher in MO mothers compared with C, while maternal DHA
supplementation reduced MO+DHA body weight as compared with MO (Figure 2A). MO
and MO+DHA had higher total fat and adiposity index than C and C+DHA, respectively;
maternal DHA supplementation reduced total fat and adiposity index in MO+DHA com-
pared to MO (Figure 2B,C). Mammary gland weight was higher in mothers from MO and
MO+DHA groups compared with C and C+DHA (Figure 2D); mammary gland fat concen-
tration was higher in MO and MO+DHA as compared with C and C+DHA, respectively
(Figure 2E). Milk production was similar across all groups (Figure 2F).

3.3. Maternal Hormonal Concentrations at the End of Lactation

Maternal corticosterone and leptin concentrations in both serum and milk were in-
creased in MO compared with C (Figure 3A,B,D,E); maternal DHA supplementation
reduced serum corticosterone and milk leptin concentrations in MO+DHA to levels com-
parable with C and C+DHA (Figure 3A,E). Corticosterone concentrations in serum and
milk showed a highly significant positive correlation (R = 0.6, p < 0.001) (Figure 3C); there
was also a positive correlation between leptin concentrations in serum and milk (R = 0.4,
p < 0.05) (Figure 3F).
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3.4. Milk Nutrient Composition at the End of Lactation

MO and MO+DHA milk had lower percentages of water concentrations than C and
C+DHA (Figure 4A), but protein levels were similar among groups (C: 6.5 ± 0.5, C+DHA:
4.7 ± 0.8, MO: 6.5 ± 0.4, MO+DHA: 6.6 ± 0.5). The percentage of fat concentration in milk
was higher in MO and MO+DHA compared with C and C+DHA, respectively (Figure 4B).
Milk linoleic acid and AA concentrations were higher in MO than in C, while maternal DHA
supplementation only reduced AA in MO+DHA (Figure 4C,D). Milk EPA concentration
was lower in both MO and MO+DHA compared with C and C+DHA (Figure 4E). MO
milk had a lower DHA concentration than C (Figure 4F). Maternal DHA supplementation
increased milk DHA concentration in both C+DHA and MO+DHA groups when compared
to C and MO, respectively (Figure 4F). The percentage ofω−3 PUFA was similar among
groups. The percentage ofω−6 PUFA was higher in both MO and MO+DHA compared
with C and C+DHA, respectively. The monosaturated acids (MSA) were only higher in
MO+DHA in comparison with C+DHA, and the saturated fatty acids (SFA) were only
higher in MO than in C (Table 1).
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Table 1. Maternal rat milk composition (ω−3,ω−6, monounsaturated fatty acids-MSA, saturated
fatty acids-SFA) at the end of lactation. Control (C), control with DHA (C+DHA), maternal obesity
(MO), and maternal obesity with DHA (MO+DHA).

Fatty Acids, % C C+DHA MO MO+DHA Interaction

ω−3 PUFAS 0.4 ± 0.01 0.5 ± 0.08 0.4 ± 0.03 0.4 ± 0.03 p = n.s.

ω−6 PUFAS 2.8 ± 0.16 2.9 ± 0.39 5.7 ± 0.51 * 4.9 ± 0.29 * p = n.s.

MSA 4.6 ± 0.29 3.5 ± 0.52 6.1 ± 1.42 7.7 ± 0.38 * p = 0.06

SFA 5.8 ± 0.18 5.7 ± 0.44 7.6 ± 0.54 * 7.1 ± 0.34 p = n.s.
Mean ± SEM, n = 7–8 mothers per group. Two-way multiple analysis of variance (ANOVA) followed by Tukey
test. * different vs. their respective control, p < 0.05. I = interaction between maternal diet and maternal DHA
supplementation, n.s. = not significant.

3.5. Pup Nutrient Intake in Milk at the End of Lactation

At the end of lactation, male and female pups’ body weight was higher in MO and
MO+DHA than in C and C+DHA, respectively (Figure 5A,F). Maternal DHA supplementa-
tion reduced male and female pups’ body weight in MO+DHA compared to MO group;
C+DHA female pups weighed more than C (Figure 5F). Across all groups, male pups
consumed similar amounts of milk, water, protein, and fat (Figure 5B–E).
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Figure 5. Male and female pups milk intake at the end of lactation. Control (C), control with DHA (C+DHA), maternal
obesity (MO), and maternal obesity with DHA (MO+DHA). Male and female: (A,F). body weight, g; (B,G). milk intake, g/h;
(C,H). water intake, mg/h; (D,I). protein intake, mg/h; (E,J). fat intake, mg/h. Values are mean ± SEM, n = 7–8 rats from
different litters. Within the same group, means labeled with different letters differ, p < 0.05. * different vs. their respective
control, p < 0.05. I = interaction between maternal diet and maternal DHA supplementation, n.s. = not significant.

Milk consumption, as well as water and protein milk intake in female pups, was
similar across groups (Figure 5G–I). However, fat milk intake was higher in MO females
than in C (Figure 5J).

Milk linoleic acid intake was higher in male and female offspring from the MO group
compared with C (Figure 6A,F), and maternal DHA supplementation did not reduce male
(p = 0.09) or female (p = 0.07) milk linoleic acid intake. Milk AA intake was higher in male
and female MO offspring compared to C, whereas maternal DHA supplementation reduced
AA intake in female but not in male pups (p = 0.05) from the MO+DHA group compared
to MO (Figure 6B,G). EPA intake was lower in both male and female pups from MO and
MO+DHA compared to C and C+DHA (Figure 6C,H) but higher in female offspring from
C+DHA vs. C (Figure 6H). Milk DHA intake was significantly higher in females from
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C+DHA group compared with C, while in MO + DHA females, DHA intake was lower
than in C+DHA (Figure 6I); in males, DHA intake was similar among groups (Figure 6D).
The AA/EPA+DHA milk intake ratio was similar in the C and C+DHA groups but higher
in male and female MO offspring compared to C. The ratio of AA/EPA+DHA milk intake
in MO+DHA offspring was reduced by maternal DHA supplementation (Figure 6E,J).
Male and female ω−6 PUFA intake was higher in MO than in C. SFA intake was higher in
female pups from MO compared to C, but unchanged in male pups. ω−3 PUFA and MSA
milk intake were similar in males and females among all experimental groups (Table 2).
Male and female pups from MO and MO+DHA groups had higherω−6/ω−3 fatty acid
intake ratios than C and C+DHA, respectively. Maternal DHA supplementation reduced
theω−6/ω−3 fatty acid intake ratios in C vs. C+DHA and MO+DHA vs. MO (Table 2).
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Table 2. Pups’ milk intake (ω−3,ω−6, monounsaturated fatty acids-MSA, saturated fatty acids-SFA) at the end of lactation.
Control (C), control with DHA (C+DHA), maternal obesity (MO), and maternal obesity with DHA (MO+DHA).

Fatty acids, mg/h C C+DHA MO MO+DHA Interaction

Male

ω−3 PUFAS 3 ± 0.4 4 ± 1 4 ± 0.9 4 ± 1 p = n.s.

ω−6 PUFAS 20 ± 3 20 ± 6 60 ± 10 * 40 ± 10 p = n.s.

ω−6/ω−3
ratio 7.4 ± 0.36 a 5.7 ± 0.17 b 15.8 ± 0.42 a* 11.2 ± 0.54 b* p < 0.05

MSA 36 ± 6 29 ± 9 68 ± 29 64 ± 23 p = n.s.

SFA 40 ± 6 50 ± 10 80 ± 20 60 ± 20 p = n.s.

Female

ω−3 PUFAS 2 ± 0.3 a 5 ± 0.8 b 3 ± 0.7 3 ± 0.7 p < 0.05

ω−6 PUFAS 10 ± 2 30 ± 4 60 ± 10 * 40 ± 7 p < 0.05

ω−6/ω−3
ratio 7.4 ± 0.36 a 5.7 ± 0.17 b 15.8 ± 0.42 a* 11.2 ± 0.54 b* p < 0.05

MSA 24 ± 4 36 ± 8 58 ± 23 56 ± 12 p = n.s.

SFA 30 ± 4 50 ± 6 70 ± 20* 50 ± 10 p < 0.05

Mean ± SEM, n = 7–8 rats from different litters. Two-way multiple analysis of variance (ANOVA) followed by Tukey test. Within the same
group, means labeled with different letters differ, p < 0.05. * different vs. their respective control, p < 0.05. Interaction between maternal diet
and maternal DHA supplementation, n.s. = not significant.
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3.6. Elevated Plus Maze Studies

Male offspring behavior: the number of open arm entries was similar in F1 across
groups (Figure 7A). C+DHA pups spent more time in the open arms than C, whereas
MO+DHA offspring spent the least time in the open arms compared with C+DHA (Figure 7B).
In MO+DHA, the distance traveled in the open arms was lower than in C+DHA (Figure 7C).
The total distance traveled was similar across all groups (Figure 7D).
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Figure 7. Elevated plus maze in offspring at PND 110. Control (C), control with DHA (C+DHA), maternal obesity (MO), and
maternal obesity with DHA (MO+DHA). Male and female: (A,E). open arm entries, #; (B,F). open arm time, sec; (C,G). open
arm distance, m; (D,H). total distance travelled, m. Values are mean ± SEM, n = 7–8 rats from different litters. Within the
same group, means labeled with different letters differ, p < 0.05. * different vs. their respective control, p < 0.05. Interaction
between maternal diet and maternal DHA supplementation, n.s. = not significant.

Female offspring behavior: MO F1 had fewer entries and spent less time in the open
arms than C. Maternal DHA supplementation increased in MO+DHA the open arm entries,
as well as time spent in the open arms compared with MO (Figure 7E,F). No differences
were observed between groups in the distance traveled in the open arms or in the total
distance traveled (Figure 7G,H).

3.7. Open field Studies

Male offspring behavior: MO center zone entries, as well as time spent in the center
zone, was lower compared with C. Center zone distance as well, as total distance traveled
was similar among groups (Table 3).

Female offspring behavior: Center zone entries, time and distance, as well as total
distance traveled, were similar among groups (Table 3).
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Table 3. Open field test in male and female offspring at PND 130. Control (C), control with DHA
(C+DHA), maternal obesity (MO), and maternal obesity with DHA (MO+DHA).

C C+DHA MO MO+DHA Interaction

Male

Total
distance, m 47.1 ± 1.6 46.1 ± 3.5 44.9 ± 6.9 56.1 ± 9.8 p = n.s.

Center zone
entries, # 10.2 ± 1.7 8.8 ± 1.1 3.0 ± 0.4 * 7.7± 1.9 p = 0.06

Center zone
time, s 13.2 ± 1.6 13.0 ± 2.3 4.3 ± 1.5 12.9 ± 5.3 p = n.s.

Center zone
distance, m 2.9 ± 0.6 2.2 ± 0.3 0.87 ± 0.3 * 2.0 ± 0.4 p = 0.06

Female

Total
distance, m 57.8 ± 3.8 62.3 ± 2.7 49.2 ± 3.5 61.5 ± 4.9 p = n.s.

Center zone
entries, # 13.0 ± 2.9 13.7 ± 2.1 7.7 ± 1.9 12.6 ± 2.5 p = n.s.

Center zone
time, s 21.1 ± 5.0 22.6 ± 5.1 15.9 ± 4.7 20.7 ± 4.5 p = n.s.

Center zone
distance, m 4.1 ± 0.9 3.7 ± 0.7 2.3 ± 0.6 3.8 ± 0.5 p = n.s

Mean ± SEM, n = 7–8 rats from different litters. Two-way multiple analysis of variance (ANOVA) followed by
Tukey test, * different vs. their respective control, p < 0.05. n.s. not significant. Interaction between maternal diet
and maternal DHA supplementation, # = number, n.s. = not significant.

4. Discussion

Obesity rates in women of reproductive age have increased dramatically. Children
of obese mothers are more susceptible to metabolic and heart diseases, as well as behav-
ioral problems across their lifespan [41]. As a result, there is an urgent need to develop
strategies to control the negative effects of maternal obesity on offsprings’ health. Some
studies have addressed pregnancy and lactation as critical time windows for early pre-
vention of negative offspring health outcomes programmed by MO [19,20,42,43]. The
long-chain ω-3 PUFAs, EPA, and DHA are essential nutritional components, exerting
important anti-inflammatory, hypolipidemic, and neurological effects, especially during
development [44,45]. However, few experimental studies have investigated the potential
benefits of maternal DHA supplementation in obese rat mothers before, during, and after
pregnancy and lactation on milk composition and offspring anxiety-like behavior. We
hypothesized that DHA supplementation in obese pregnant rats improves milk LCPUFA
concentration and offspring anxiety behavior.

Dysregulation of energy homeostasis due to a disproportionate consumption of diets
high in fat, calories, or sugars is a major cause of excessive weight gain, as well as decreased
ω-3 PUFA intake [46]. In previous studies [20,33,43], we have shown that a high-fat diet
consumption prior to and throughout pregnancy and lactation increases maternal body
weight and total body fat in MO mothers at the end of lactation. The observation of the same
maternal phenotype in the current study demonstrates the robustness and reproducibility
of our model.

Consumption of a high-fat diet is considered one of the major causes of obesity since
high-fat diets are generally high in energy. In our model, during the lactation period, MO
mothers exhibited a reduction in food intake without changes in energy intake; this can be
explained by the fact that since their own weaning, MO mothers have been fed with the
high-fat diet, resulting in a decreased appetite [47]. The chow diet was used as a control
diet because our group [48] and others [49] have found that the use of purified diets raises
serum triglyceride concentrations.
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Animal studies suggest that increased consumption of ω-3 can reduce body fat in
rodents fed a high-fat diet [50,51], possibly as a result of altered gene expression and protein
function modulation of metabolic pathways related to energy balance, endocrine changes,
and inflammation [52]. Leptin is secreted in proportion to body fat mass by adipocytes
and plays an important role in energy homeostasis by acting as a negative feedback
regulator of appetite in the brain. Thus, decreased leptin signaling promotes positive
energy balance and fat accumulation. MO increases maternal leptin serum concentrations,
which is explained by the increased body weight, total fat, and adiposity index [53]. In
the present study, maternal DHA supplementation in obese rats (MO+DHA) decreased
maternal body weight, total fat, adiposity index, and mammary gland weight. These
findings suggest that DHA alters the balance of lipogenesis and lipolysis. Animal studies
suggest that early PUFA exposure influences adipose tissue development because AA
promotes adipocyte maturation while DHA inhibits this process. Offspring of rats fed a
diet rich inω-3 PUFAs during pregnancy and lactation had lower body weight, adipose
tissue mass, and leptin concentrations than offspring of mothers fed a diet low in ω-3
PUFAs [54]. These differences could explain the increase in pup body weight in the MO
group and the decrease in pup body weight due to maternal DHA supplementation.

Breast milk is the first food consumed by mammals and contains all of the energy and
nutrients required for normal offspring growth and development [25]. Breast milk also
contains proteins, minerals, vitamins, fats, sugars, antibodies, and growth factors [55], as
well as biologically active hormones such as glucocorticoids and leptin [56,57]. Glucocor-
ticoids influence metabolic processes such as carbohydrate, protein, and fat metabolism,
as well as cognition, behavior, and stress responses [56]. Furthermore, glucocorticoids
play an important role in milk secretion by inducing mammary gland development of
ultrastructural components (rough endoplasmic reticulum and tight junctions), regulating
milk protein gene expression, and controlling enzymes that are responsible for lipogenesis,
lactose synthesis, and the viability and function of mammary secretory cells [58]. There is
no firm evidence for or against the synthesis of glucocorticoids by the mammary gland.
However, evidence indicates that milk glucocorticoids are transferred directly from plasma
to breast milk [59]. The infant’s intestinal tract contains a high number of glucocorticoid
receptors in early life. Milk glucocorticoids that reach the infants’ intestines can thus easily
cross the intestinal epithelial barrier and then the blood-brain barrier [60].

Our results demonstrate that maternal high-fat diet consumption increased corticos-
terone concentrations in both serum and milk and that maternal DHA supplementation in
MO+DHA partially reduced corticosterone concentrations to levels comparable to C and
MO. It has been reported that plasma and breast milk glucocorticoids are correlated [61].
In line with this finding, our results showed a positive correlation between serum and
milk corticosterone. In control pregnant mice, it has been reported that supplementing the
diet with DHA and AA reduced corticosterone serum concentrations in the offspring at
adulthood [62]. In a study using isolated porcine microsomes, it has been suggested that
ω-3 (DHA) impedes adrenal glucocorticoid production [63]. In addition, chronic dietary
ω-3 PUFA supplementation has been shown to prevent chronic stress-induced emotional
and neuronal impairment by inhibiting hypothalamic–pituitary–adrenal (HPA) axis hyper-
activity [64]. However, the mechanisms underlying these effects on glucocorticoid function
are not well understood.

Leptin, an adipocyte-derived hormone, is synthesized by the mammary gland [65].
Leptin is also transferred from maternal blood to breast milk and from the milk to the
pup’s blood [66]. In rodents, between days 5 and 10 of lactation, milk and maternal plasma
leptin concentrations correlate positively. However, by late lactation, maternal milk leptin
concentrations are independent of maternal plasma leptin concentrations [65]. In the
present study, we observed that at the end of lactation, leptin concentrations in both serum
and milk were increased in MO mothers. Interestingly maternal DHA supplementation
had no effect on serum leptin but did reduce milk leptin concentration. Maternal DHA
supplementation has a direct effect on mammary gland growth and maturation as well



Nutrients 2021, 13, 4243 13 of 20

as transport functions during lactation. Supporting this view, ω-3 supplementation in
non-lactating mice modulates mammary gland structure, fatty acid composition, and
inflammatory processes [67]. There is a need for further studies into the effects of maternal
DHA supplementation in obese rats’ mammary gland development and function.

Breast milk is a complex and variable biofluid whose composition influences offspring
programming [68,69]. Breastfeeding not only has nutritional, immunological, and cognitive
benefits, but has also been linked to the prevention of obesity [70]. Breast milk composition
reflects maternal nutritional status and dietary intake. Milk vitamins, minerals, and fatty
acid composition, for example, are influenced by maternal nutrition [71,72]. Although DHA
can be synthesized by the mother from its precursor (α- linolenic acid), DHA obtained from
the mother’s diet is a more efficient source of DHA because less than 10% of α- linolenic acid
is converted to DHA [73]. Unfortunately, many women, including pregnant women, do not
consume the recommended amount ofω-3 and instead consume large amounts ofω-6 fatty
acids, increasing theω-6/ω-3 fatty acid intake ratio [73]. In the present study, we observed
that milk production was similar among groups and that milk from MO mothers contained
less water, EPA, and DHA and more fat, linoleic acid, and AA. Interestingly, maternal
DHA supplementation in obese rats did not modify water, fat, linoleic acid, and EPA
concentration; however, DHA was increased while AA was decreased to concentrations
similar to C. One rat study found that a dairy fat blend containing as little as 1.5% α-
linolenic acid is better than a palm oil blend, even when the recommended DHA and ARA
are added. If α-linolenic acid concentrations are increased in the dairy matrix by 50%, there
is a further increase in DHA. Dietary conditions can reveal a gender effect in brain PUFA,
particularly brain DHA, which was lower in male rats than female rats [74,75]. In humans,
it has been reported that when colostrum linoleic acid concentrations were high, lower
DHA concentrations were associated with lower IQs. High linoleic dietary intake reduces
the biosynthesis of DHA from α-linolenic by competing with the enzymes involved in
PUFA metabolism [76]. In the present study, the linoleic acid and DHA milk content were
reduced in the MO group.

In humans, DHA accumulation in the brain begins in utero and continues after
birth, peaking between the ages of two and four years [77]. The accumulation of fetal
LCPUFAs occurs as a result of placental transfer, which is directly dependent on the
maternal diet [77,78]. Breastfeeding is recommended for the first six months of life, during
which time the infant brain doubles in weight due to an increase in neurons, axons of nerve
fibers, and synapses, all of which are rich in DHA [73]. Therefore, an adequate LCPUFA
intake during lactation is of particular importance for infant neurological development.

The Food and Drug Administration suggests using body surface area to extrapolate
animal doses to human doses [79]. In this study, the control and obese mothers were
supplemented with 400 mg/kg of DHA, which according to Reagan-Shaw calculation,
is equivalent to 3.9 g/day for a human weighing 60 kg. The dose used in the present
study was chosen for three reasons: (1) it corresponds to a fifth of the no observed adverse-
effect dose in pregnant rats that is 2000 mg/kg/day [80]; (2) rodents have higher tissue
requirements of DHA than humans, since the metabolic rates are higher in rats compared
to humans [81]; (3) maternal DHA supplementation during pregnancy at different doses
(100, 300, and 500mg/kg) protects rats’ offspring against learning and memory impairment
following prenatal exposure to valproic acid [82]. These efficacious doses match well with
our dose of 400mg/Kg. The amount of DHA in the milk of DHA-supplemented dams is
0.24 g per 100 g of milk fat, which corresponds to 0.24% of DHA in relation to the total
amount of fatty acids; this concentration is much lower than the lowest concentration of
DHA (0.32%) contained in the infant formulas used in human studies [83].

Increased consumption of Western diets around the world has resulted in significant
changes in individuals’ fatty acid intake, resulting in a much greaterω-6/ω-3 ratio. This
rise is well known to have negative health consequences. Control animal studies help
to understand mechanisms, especially those that may enable beneficial interventions. In
contrast, human observational epidemiological studies only indicate associations. One of
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the goals of the present study was to obtain firm information that can be used to improve
milk composition in obese mothers by providing DHA supplementation. The findings in
the present study show that supplementing the diet of obese rat mothers with 400 mg/kg
of DHA reduces the ω-6/ω-3 ratio by 33%. This level of reduction is accompanied by
beneficial effects on offspring health.

Male and female pups of obese dams do not show differences in milk consumption.
However, in MO, pups’ AA milk intake was higher compared with C. EPA milk intake
had a tendency to be lower in male (p = 0.09) and female (p = 0.194) pups from MO, but
they were not statistically different. As a result, the ω-6/ω-3 fatty acid intake ratio in
the milk intake was higher in MO pups. Maternal DHA supplementation in obese rats
reduced pups’ AA, and EPA intake remained similar to MO. Theω-6/ω-3 fatty acid intake
ratio showed a clear statistically significant beneficial effect of DHA administration which
significantly reduced the ratio, returning the ratio to both MO and C values. In C+DHA
milk, DHA concentration and pups’ DHA intake was increased while theirω-6/ω-3 fatty
acid intake ratio was reduced. Insufficient ω-3 PUFA intake, as well as an excess of ω-6
PUFA, correlate with various diseases [84], including cancer, cardiovascular, inflammatory,
and autoimmune diseases [85]. Milk’sω-6/ω-3 PUFA ratio influences offspring growth,
neurodevelopment, and immunoresponsiveness. In a human study, ω-6 and ω-3 fatty
acids during the postnatal period (40 to 44 weeks of gestation) were found to be important
factors in early neurodevelopment [86]. In a murine model, it has been reported that
increased body weight, fasting insulin and triacylglycerol levels, and higher blood pressure
have been linked to the n-6/n-3 PUFA ratio in the perinatal period [87].

DHA is the most abundant PUFA in the brain and has a critical, indispensable role in
neuronal membrane function [88]. There is evidence that brain DHA concentrations are
decreased in Alzheimer’s disease and that major depression and bipolar disorder have
low DHA concentrations and high ω-6/ω-3 fatty acid intake ratios [89]. Therefore, a
diet affording an optimalω-6/ω-3 fatty acid intake ratio may be beneficial for promoting
physical and mental wellbeing [90]. EPA has beneficial effects on mood disorders [91].

More detailed evidence on the individual roles of EPA and DHA in brain health will
assist appropriate dietary recommendations to improve these neurological conditions.

We and others have published evidence to show that maternal obesity induces off-
spring cognitive and behavioral alterations [19,92]. In the present study, we observed that
both male and female offspring from obese mothers showed high levels of anxiety, as evi-
denced by a lower number of entries and time spent in the elevated plus maze’s open arms
compared to C. However, maternal DHA supplementation prevented the development of
this anxious behavior in female but not male rats. This observation falls into the general
framework of the investigations showing that many physiological functions and patho-
logical alterations, including those related to the Developmental Origins of Health and
Disease area [31,93], are sex-dependent. In the present study, the differences between male
and female rats might arise from the establishment of different patterns of connectivity in
response to stress. In fact, it has been shown that acute tail-shock stress inhibits estrogen-
dependent spine formation in CA1 neurons in female rats while enhancing spine density
in male CA1 neurons [94]. Interestingly, spine formation is dependent on testosterone
secretion, which is increased by both stress [95,96] and DHA [97].

Several mechanisms, including immune activation, impaired hypothalamic–pituitary–
adrenal axis (HPA) activity, and neuroendocrine dysfunction, have been proposed to
explain the increased risk of anxiety and depression in obese people [98]. For example,
dysregulation of the HPA axis has been suggested to increase the risk of developing stress-
related disorders, such as anxiety and depression [99]. Various studies show that increased
glucocorticoid concentrations during pregnancy alter HPA axis function and modify off-
spring behavior. Glucocorticoids easily pass through the blood-brain barrier and affect
the limbic system, including, for example, the amygdala, which is a major brain region
implicated in the regulation of anxiety-like behavior [25]. Evidence also suggests that
the serotonergic system is involved in glucocorticoid-induced HPA programming [100].
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Bilateral ventral hippocampal leptin injections in mice affect spatial learning and memory
without affecting anxiety-like behavior and locomotor activity in the elevated plus maze
and open field [57]. Individuals with mood disorders have been shown to have altered
membrane fatty acid composition; in this context, societies with high consumption of
fish, which is high inω-3 PUFAs, appear to have a lower prevalence of major depressive
disorders [101]. In addition, new findings suggest that AA status influences depression
pathophysiology via effects on serotonin transport [102]. It has been reported that fish
oil supplementation in male mice with diet-induced obesity suppresses anxio-depressive
behaviors, improves the brain’s anti-inflammatory PUFA lipids, and reduces indices of
brain gliosis [98]. According to the authors of the study, increased brain EPA and docos-
apentaenoic acid and decreased AA from fish oil supplementation contribute to reduced
neuroimmune activity and alleviation of diet-induced anxiety. In our model, we found
that the MO group had higher AA content in milk as well as higher AA consumption in
female and male pups via milk. Maternal supplementation reduced AA milk content in
the MO+DHA group, but interestingly, milk AA intake was only reduced in female pups.
These findings may partly explain some of the gender differences in anxiety behavior.

In conclusion, we observed that maternal DHA supplementation in obese rats prior to
and throughout pregnancy and lactation improves milk composition, reduces theω-6/ω-3
fatty acid intake ratio, and reduces the offspring anxiety type behavior in female but not in
male offspring. Further studies are needed to evaluate the neural mechanisms involved.
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