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Abstract: Beta-glucans comprise a group of polysaccharides of natural origin found in bacteria, 
algae, and plants, e.g., cereal seeds, as well as microfungi and macrofungi (mushrooms), which are 
characterized by diverse structures and functions. They are known for their metabolic and im-
munomodulatory properties, including anticancer, antibacterial, and antiviral. Recent reports 
suggest a potential of beta-glucans in the prevention and treatment of COVID-19. In contrast to 
β-glucans from other sources, β-glucans from mushrooms are characterized by β-1,3-glucans with 
short β-1,6-side chains. This structure is recognized by receptors located on the surface of immune 
cells; thus, mushroom β-glucans have specific immunomodulatory properties and gained BRM 
(biological response modifier) status. Moreover, mushroom beta-glucans also owe their properties 
to the formation of triple helix conformation, which is one of the key factors influencing the bioac-
tivity of mushroom beta-glucans. This review summarizes the latest findings on biological and 
health-promoting potential of mushroom beta-glucans for the treatment of civilization and viral 
diseases, with particular emphasis on COVID-19. 
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1. Introduction 
Mushrooms (macrofungi) have been a subject of interest to people for centuries. 

Edible mushrooms have been appreciated not only for their taste, but also for medicinal 
properties. The oldest data indicating the use of fungi by humans come from archaeo-
logical excavations dating back to about 8000 years BC. In the 1990s, two species of fungi 
were found by the corpse of an “ice man”, namely, Piptoporus betulinus (Bull.) P. Karst, 
and the Fomes fomentarius (L.) Fr, which may have served “Ötzi”, living 5000 years BC, as 
dressings or, presumably, they could have been treated as a cure for stomach problems. 
Another valued species with medicinal properties was Fomitopsis officinalis (Vill.) Bres 
used by the ancient Greeks and Romans as a cure for many diseases, such as excessive 
sweating during tuberculosis, dizziness, respiratory diseases, digestive problems, and 
even cancer. The therapeutic properties of fungi were earliest and most often used in the 
Far East, i.e., in China and Japan. In Europe, mushrooms were more frequently valued 
for their taste. The oldest text reports on the therapeutic properties of fungi date back to 
around the 1st century BC. They mention the Japanese shiitake (Lentinula edodes (Berk.) 
Pegler, Ganoderma lucidum (M.A. Curtis) P. Karst. Other species with documented me-
dicinal properties in historical reports are Amanita muscaria (L.) Lam., used in the past to 
treat rheumatism and to restore the function of the secretory glands, and the Lycoperdon 
sp., used as an antihemorrhagic agent [1]. 

Apart from their nutritional value [2], mushrooms are attributed with a wide range of 
health-promoting properties [3–9]. They exhibit antioxidant [3], hypotensive [4], hypocho-
lesterolemic [5], and hypoglycemic [6] as well as anticancer [7], immunomodulating [7], 
antiviral [8], and bacteriostatic properties [9]. The health properties of fungi result from 
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the presence of biologically active substances, including phenolic compounds and vita-
mins (A, E, C), antioxidant elements, and amino acids [10–12]. In recent years, the great-
est interest has been focused on beta-glucans, especially on the possibility of their use in 
the treatment of civilization diseases [13] and COVID-19 [14]. 

The aim of this review was to summarize the latest findings on biological and health 
promoting properties of mushroom beta-glucans with a potential to support the treat-
ment of many disorders, including civilization and viral diseases, with particular em-
phasis on COVID-19. 

2. Review 
2.1. Classification and Structure of Mushroom Glucans 

The most common polysaccharides in fungi are chitin, hemicellulose, beta-glucans, 
alpha-glucans, mannans, xylans, and galactans [15,16]. 

Polysaccharides are a very diverse group of macromolecules whose monomers are 
linked by glycosidic bonds. Monomers in polysaccharides can be linked both linearly and 
form branched chains. The basic units forming the fungal polysaccharides may be glu-
cose, fructose, glucuronic acid, arabinose, galactose, xylose, and mannose. Additionally, 
polysaccharides can be combined with peptides and proteins [17,18]. 

Fungal glucans can be linear or branched. The molecules of particular monosaccha-
rides, mainly glucose, are connected by α- or β-glycosidic and also by the various types of 
different glycosidic linkages present in the same molecule. Mushroom D-glucans can 
have different linkage types, branching degrees, molecular weights, and solubility pro-
files [19,20]. 

Heteropolysaccharides, among them, heteropolysaccharides with a homogeneous 
main chain (heterogalactans, heteroglucans, and heteromannans) and heteropolysaccha-
rides with a heterogeneous main chain, are a more diverse group of biologically active 
polysaccharides [17]. Due to the structure of the basic chain of these compounds, they are 
divided into mannans, xylans, galactans, and fructans. The side chains of these macromole-
cules may include arabinose, fructose, mannose, galactose, or glucose [17,19,21–24]. Figure 
1 shows the classification of fungal main polysaccharides. 

 
Figure 1. Classification of fungal polysaccharides [17,23,24]. 
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2.1.1. General Characteristic of β-Glucans 
Beta-glucans are polymers of β-D-glucose. They constitute part of cell walls of bac-

teria and plants, mainly algae and cereals, as well as microscopic fungi and macrofungi 
[25,26]. Beta-glucans have mainly a structure-forming role in the cell. They are divided 
into several different groups according to their structure, i.e., the degree of chain 
branching and the type of glycosidic bonds connecting the glucose monomers. 
β-1,3-glucans, without branches (linear), occur in bacteria. β-1,3-1,4-D-glucans are mainly 
found in cereal grains such as oats and barley, and marine algae such as brown algae [27], 
while β-1,3-1,6-D-glucans occur mainly in yeasts (β-1,3-glucans with long-branched 
chains β-1,6- (Sacharomyces cerevisiae)) and macrofungi (β-1,3-glucans with 
short-branched chains β-1,6-) [28]. 

Bioactivity of beta-glucans depends on the conformation of their molecules. Glu-
cans, like other polymers, can adopt different chain conformations depending on the type 
of solvent, e.g., random coil, single helix, double helix, triple helix, worm-like, rod-like, 
and sphere-like shapes. However, beta-1,3–glucans with beta-1,6 branches or without 
branches make up a triple helix structure in its natural form and in aqueous solutions at 
room temperature. The triple helix structure determines the immunomodulatory and 
anticancer properties of beta-glucans [29]. 

β-glucans are essential components of cell walls in cereal grains, mainly oats, barley, 
rye, and millet. They occur in the outermost layer of grains (aleuronic layer) mainly as un-
branched β-D-glucose chains linked by β-1-3 or β-1-4 glycosidic bonds. Their content, how-
ever, is quite low, ranging from 4–7%. The highest molecular weights among cereal grain 
glucans are observed in β-glucans of oats (3,000,000 Da) and barley (2,100,000 Da) [30,31]. 

Cereal β-glucans show a number of health properties. They lower blood cholesterol 
and glucose [32], support the treatment of obesity, inflammation of the intestine, and 
gastric mucosa, and take part in the microbiota modulation [5,32,33]. 

Beta-glucans are also a part of the inner layer of the yeast cell walls, where their 
content varies widely, ranging from 78% to 84% [33]. The content of glucans largely de-
pends on the method of yeast cultivation. There are several types of glucans in the yeast 
cell wall, differing in the type of bonds and the branching of molecules. Among others, 
there are high-molecular-weight, insoluble 1-3-β-glucans with a few side branches con-
nected to the main chain by a β-1-6 bond, low-molecular-weight, highly branched 
β-1-6-glucans with side branches connected to the main chain by a β-1-3 bond, and 
low-molecular-weight, soluble 1-3-β-glucans with side chains connected by a β-1-6 bond 
[33,34]. 

2.1.2. Mushroom Beta-Glucans 
The beta-glucan content of macrofungi depends on the species, environment, and 

maturity of the fruiting body, ranging between 3.1% and 46.5% [25,35,36]. 
Mushroom polysaccharides contain various types of glycosidic bonds and, thus, are 

grouped as beta-glucans, alpha-glucans, and heteroglycans. Beta-glucan molecules in 
individual species of fungi differ in the structure of the base chain and the number and 
type of bonds, as well as the type and number of side chain branches and structure (e.g., 
triple helix, single helix, or random helix) and in molecular weight [37]. Macrofungal 
beta-glucans are considered natural biological response modifiers (BRMs) [38]. Table 1 
shows examples of the best-studied beta-glucans. 

Table 1. Examples of studied beta-glucans of macrofungi. 

Name of β-Glucan Abbreviation Mushroom Species Glucan Structure Reference 

Krestin 
PSK 
PSP 

Trametes versicolor 

1,3-β-glucan 
1,4-β-glucan 

multi-sugar–protein complex con-
taining mainly 1,3-β-D-glucans 

[39,40] 

Tylopilan - Tylopillus felleus (Bull.) 1,3-1,6-β-glucan [41] 
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Lentinan LNT Lentinula edodes 1,3-1,6-β-glucan [42] 

Pleuran - Pleurotus ostreatus 
1,3-β- glucan with galactose and 

mannose 
[43] 

Schizophyllan SPG Schizophyllum commune 1,3-1,6-β-glucan [44] 
MD-fraction PDF 

Grifola frondosa 
1,6-1,3-β-glucan [45] 

Grifolan GRN 1,3-1,6-β-glucan [46] 

Scleroglucan SSG 
Sclerotium glucanicum 

Sclerotium rolfsii 
1,3-1,6-β-glucan [47] 

2.2. Structural Characteristics of Selected Beta-Glucans from Macrofungi 
2.2.1. Lentinan 

Lentinan is a part of cell walls of Lentinula edodes (shiitake), which was first isolated 
in 1970 by Chihara et al. [48]. This is 1,3-1,6-β-glucan, whose basic unit is a five-molecule 
glucose core with two glucose side chains (one for every three glucose molecules in the 
basic chain) attached to the main chain by β-1,6-glycosidic bonds (Figure 2). Lentinan 
forms a triple helix chain in aqueous solutions. Its molecular weight varies from 300 to 
800 kDa, with the average of about 500 kDa (Daltons). Lentinan primarily possesses an 
immune enhancement effect in tumor patients, as well as the immunomodulatory prop-
erties [49,50]. Polysaccharides extracted from L. edodes have not only the enhancement 
effect, but may also inhibit tumor growth through various mechanisms, such as inducing 
tumor cell apoptosis and directly killing tumor cells [51,52]. Lentinan is considered to be 
one of the most active components in mushrooms (L. edodes). It attracts many researchers 
due to its low toxicity and many medicinal and pharmacological properties. In addition 
to its immunostimulatory and anticancer properties, lentinan demonstrates antioxidant 
and blood lipid-lowering effects [53,54]. The latest research suggests that dietary sup-
plementation of beta-glucans isolated from L. edodes may be an effective nutritional 
support to prevent obesity-associated cognitive decline [55]. 

 
Figure 2. Chemical structure of lentinan [42]. 

2.2.2. Schizophyllan 
Schizophyllan is a beta-glucan isolated from the mushroom Schizophyllum commune. 

Schizophyllan was first isolated by Kikumoto et al. in 1970 [56]. The monomeric unit of 
this polysaccharide consists of three glucose molecules linked by β-1-3-glycosidic bonds 
with one glucose side chain linked to the basic chain by a β-1-6-glycosidic bond (Figure 3). 
The molecular weight of schizophyllan is 100–200 kDa. As lentinan, schizophyllan forms a 
triple helix in aqueous solutions [44,57,58]. The properties of schizophyllan depend on 
several factors, including the monosaccharide composition, molecular weight, and water 
solubility; the extraction methods strongly influence these physicochemical properties [58]. 
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Figure 3. Chemical structure of schizophyllan [44]. 

Recent studies have shown that schizophyllan enhances the anti-inflammatory re-
sponse in mouse macrophages, which may be useful in the formation of inferences dur-
ing inflammatory diseases such as periodontal disease [59]. Schizophyllan has the ability 
to activate the dectin-1 receptor, which contributes to the increased secretion of 
pro-inflammatory cytokines, but at the same time strongly promotes the production of 
IL-10, a key anti-inflammatory cytokine that plays an important role in controlling in-
flammation [59]. 

2.2.3. Krestin 
Krestin (PSK), β-glucan of arboreal fungus, is extracted from Trametes versicolor (L.) 

Lloyd. It is a protein-bound beta-glucan classified as a heteroglycan [40]. The chemical 
structure of the polysaccharide chain is shown in Figure 4. The molecular weight of 
krestin is 100,000 Da on average. Krestin, like lentinan, is a popular drug in Japan. Nu-
merous clinical trials confirm its positive effect on the condition of patients undergoing 
chemotherapy due to breast, liver, stomach, colon, lung, and prostate cancer [60]. The 
antitumor activity of PSK lies in its ability to stimulate T lymphocytes and anti-
gen-presenting cells, which enables proper recognition and destruction of neoplastic cells 
[60,61]. Krestin also shows immune-boosting and antiviral properties and hypocholes-
terolemic and prebiotic activity [40,62]. 

 
Figure 4. Chemical structure of the krestin repeat unit [63]. 

2.2.4. Grifolan 
Grifolan is a 1,3-1,6-β-D-glucan isolated from the edible mushroom Grifola frondosa 

(Dicks.) Gray. The molecular weight of this polysaccharide is about 1,000,000 Da. The 
monomer of grifolan molecule is built from three glucose units in the main chain and one 
side chain attached to the main chain by β-1,6-glycosidic bond (Figure 5). Grifolan has 
proven antitumor properties when administered orally, demonstrated by in vivo an-
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ti-tumor testing and in mouse tumor models [64,65]. It is one of the most effective be-
ta-glucans that can be used in supporting the treatment of diabetes. One study found that 
the oral administration of submerged-culture mycelia and broth of Grifola frondosa im-
proved hyperglycemia and diabetes-induced alterations in cell-mediated and innate 
immunities in T2DM rats [66]. 

 
Figure 5. Chemical structure of the grifolan repeat unit [67]. 

2.2.5. Pleuran 
Pleuran is 1,3-1,6-β-glucan extracted from Pleurotus ostreatus and sold as a dietary 

supplement under the commercial name Immunoglukan. The basic unit of this polysac-
charide consists of four glucose molecules connected by β-1-3-glycosidic bonds, and 
every fourth glucose unit is linked by a side chain with a β-1-6-glycosidic bond (Figure 6). 
The molecular weight of pleuran is between 600,000 and 700,000 Da [49]. 

 
Figure 6. Chemical structure of the pleuran repeat unit [49]. 

Pleuran’s healing properties and the ability to rebuild the epithelium have been 
scientifically proven in infections of the respiratory system [68,69]. It has been also found 
to have anti-viral properties against HSV (Herpes Simplex Virus) [70]. 
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2.3. Mechanisms of Action of Beta-Glucans in the Human Body 
Biological activity of fungal polysaccharides may vary depending on the type of 

structural monomers, the size of the molecule, the degree of its branching, and solubility 
in water, as well as on the structure that beta-glucans adopt in the presence of water. 
Studies show that high-molecular-weight molecules with β-1-3-bonds in the base chain 
have the best anticancer properties [71,72]. 

Most β-1,3-glucans show resistance to gastric juice. In an unchanged form, they pass 
into the small intestine, where they bind to macrophage receptors (dectin-1) in the intes-
tinal wall and are then transported to the spleen, lymph nodes, and bone marrow. In 
macrophages, high-molecular-weight β-glucans are degraded into smaller fragments, 
which are then bound by complement receptors 3 (CR3) found on immune cells, includ-
ing granulocytes. Thus, the immune response directed against tumor cells is stimulated 
[73]. 

A large diversity in the structure of the beta-glucan chain affects their diverse bio-
logical activity. Previous scientific reports attributed immunomodulatory, anticarcino-
genic, hypolipemic, hypoglycemic, and protective effects on the circulatory system to 
beta-glucans. However, most of the properties of mushroom beta-glucans are due to their 
effects on the host immune system [74,75]. Figure 7 shows selected functions of be-
ta-glucans in the human body. 

 
Figure 7. Biological activities of beta-glucans in the human body. SOD, superoxide dismutase; LH, 
polyunsaturated fatty acid; ROS, reactive oxygen species.; L•, alkyl radical; LOO•, superoxide 
radical. 

2.3.1. Immunomodulatory Properties of Beta-Glucans 

Among all the mushroom-derived beta-glucans tested, most showed immunomod-
ulatory activity. The effect on the immune system is based on the ability of beta-glucans 
to bind to receptors such as dectin-1, toll-like receptors (TLRs), complement receptors 
type 3 (CR3), scavenger receptors (Src), and lactosylceramide receptors (LacCer) present 
on immune cells [76]. 
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Dectin-1 is the most abundant receptor present on dendritic cells, monocytes, mac-
rophages, neutrophils, and T lymphocytes. The activation of dectin-1 leads to the stimu-
lation of phagocytosis, endocytosis, and the production of reactive oxygen species (ROS) 
directed against pathogenic microorganisms [77]. Dectin-1 also stimulates the production 
of cytokines (TNF-α, IL-2, IL-10, IL-12) [78]. 

TLRs (toll-like receptors) are very important receptors of the immune system. They 
are essential in the early stages of infection to initiate an effective innate immune re-
sponse. At a later stage of infection, they regulate the adaptive immune response [79]. 
Beta-glucan molecules, after binding to TLR 2 or TLR 4, activate the innate immune re-
sponse [80]. The stimulated TLR 2 via nuclear factor NF-κB induces the production of 
cytokines, among them, TNF-α and IL-12 [81,82]. 

Complement Receptor Type 3 (CR3) is found mainly on neutrophils, monocytes, 
and NK cells (natural killers), but not on macrophages [81,83]. Attachment of β-glucans 
to CR3 increases leukocyte adhesion to microbial cells and activates the cytotoxicity 
pathway directed against tumor cells [81,84,85]. 

Src receptors (Scavenger receptors) are located primarily on endothelial cells [86]. 
Receptors stimulated by beta-glucans, e.g., lentinan, trigger the activation of a number of 
signaling pathways in the human immune system [87]. Among others, they are respon-
sible for the activation of mitogen-activated kinases (MAPK), phosphatidylinositol kinase 
(PI3K), and endothelial nitric oxide synthase (eNOS) [88]. 

Lactosylceramide (LacCer) receptors are located on neutrophils and endothelial 
cells. The receptors on endothelial cells, stimulated by 1,3-β-glucans, contribute to the 
activation of NF-κB and the synthesis of macrophage inflammatory protein (MIP-2) and 
TNF-α [89]. Stimulated receptors on neutrophils cause increased ROS production neces-
sary to inactivate pathogenic microorganisms through activation of the MAPK and PI3K 
cascades [90]. 

Figure 8 shows the possible β-glucan immunomodulatory mechanism of action in 
the human body. 

 
Figure 8. Mechanism of immunomodulatory action of beta-glucans. Authors’ elaboration based on 
[6,8,91]. 

Beta-glucans bind to dectin-1 receptors located on macrophages, dendritic cells, 
neutrophils, and monocytes. This combination results in the activation of many com-
pounds responsible for the immune response, including, among others, nuclear factor 
kappa-B (NF-κB). When NF-κB is activated, it imports to nucleus and binds specific DNA 
sites. In the signaling pathway, NF-κB is downstream of mitogen-activated protein ki-
nases (MAPKs). Additionally, T lymphocytes are stimulated. Chemokines and cytokines, 
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including interleukins, interferon-γ (IFN-γ), and tumor necrosis factor alpha (TNF-α), are 
released. As a result, the cellular and humoral response of the immune system is en-
hanced [6,8,91]. 

Beta-glucans derived from Pleurotus are attributed with the strongest immunomod-
ulatory properties, which include stimulation of phagocytosis directed against patho-
genic microorganisms [92,93]. 

2.3.2. Antitumor and Cytotoxic Properties of Beta-Glucans 
The mechanisms involved in the anticancer effects of beta-glucans are not fully un-

derstood. Until recently, it was believed that beta-glucans do not possess cytotoxic 
properties directed against cancer cells and do not trigger apoptotic activity [37]. So far, 
the described mechanisms of anti-cancer action of beta-glucans have been based on their 
indirect action through activity towards cells of the immune system [94]. However, sci-
entific reports indicate the cytotoxic activity of beta-glucans isolated from Agaricus 
bisporus and the Lactarius rufus, directed against liver cancer cells (HepG2) [95]. 

Currently, the most well-known polysaccharides with anticancer activity are lenti-
nan, schizophyllan, and krestin, which are proposed as complementary therapy for can-
cer treatment, especially in Japan [37,96–99]. 

The anticancer mechanism of beta-glucans shows synergistic effects with monoclo-
nal antibodies used in cancer therapy [81,100]. Apart from those described above, the 
anticancer function of polysaccharides has been observed in many types of mushrooms, 
including Agaricus, Ganoderma, Pleurotus, and Lentinus. The anticancer properties of pol-
ysaccharides have been proven for colorectal [101–103], lung [104], gastric [37,105], and 
cervical cancers [106,107]. 

The increasing number of cancer cases contributes to the search for substances with 
anti-cancer effects. Bioactive substances of natural origin, which are safer and cheaper 
than drugs commonly used in chemotherapy, are receiving increasing attention in the 
scientific community. Extensive research on polysaccharides of fungal origin has been going 
on for several decades. Several of them have already been officially registered as drugs [108–
110]. 

2.3.3. Anti-Inflammatory Function of Beta-Glucans 
The best-studied fungal polysaccharides with anti-inflammatory properties are 

heteroglycans (β-D-glucans with side chains of xylose, mannose, galactose, and glucu-
ronic acid) [111–113]. 

Oral administration of beta-glucans isolated from fungi produced similar effects in 
animal models to those of non-steroidal anti-inflammatory drugs and glucocorticoids. 
Therefore, one of the suggested mechanisms of anti-inflammatory action of beta-glucans 
is inhibition of the production of pro-inflammatory cytokines (e.g., interleukin 1β) [114]. 
Another mechanism suggested for the anti-inflammatory properties of beta-glucans is 
their ability to inhibit the enzymes cyclooxygenase-2 and nitric oxide synthase [115]. The 
anti-inflammatory function of beta-glucans is also important in the prevention and 
treatment of neurodegenerative diseases such as Parkinson disease and Alzheimer dis-
ease [116]. The abovementioned polysaccharides with anti-inflammatory properties have 
been isolated from Agaricus blazei and Lactarius rufus, among others [113,117]. 

2.3.4. Antioxidant Properties of Beta-Glucans 
Pleurotus mushrooms are considered to be one of the most valuable mushrooms in 

terms of health. They are an excellent source of numerous bioactive compounds includ-
ing polysaccharides. Beta-glucans isolated from fungi of the genus Pleurotus possess 
numerous therapeutic properties, including antioxidant effects [118,119]. Mannogalac-
toglucan isolated from the species Pleurotus sajor-caju exhibits free radical scavenging, 
reducing and chelating properties towards iron ions [120]. Antioxidant properties of 



Nutrients 2021, 13, 3960 10 of 24 
 

 

polysaccharides of fungal origin were also observed in two polysaccharide fractions, 
PSPO-1a and PSPO-4a [119,121]. Polysaccharides isolated from Pleurotus ostreatus show 
strong reducing properties against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and 
the superoxide anion radical [119]. Polysaccharides isolated from Armillaria mellea exhibit 
antioxidant properties based on their ability to reduce the DPPH radical, chelate transi-
tion metals, and have strong reducing properties [122]. Polysaccharides isolated from 
Trametes versicolor, Agaricus spp., and L. edodes show significant antioxidant properties 
[123–125]. They have chelating properties that reduce lipid oxidation. Polysaccharide 
extracts from G. lucidum, Ganoderma tsugae, and Polyporus dermoporus have the ability to 
scavenge free radicals as well as to counteract a respiratory burst leading to ROS for-
mation [126–128]. Polysaccharides from Morchella esculenta in laboratory mice showed 
potent antioxidant activity directed against the most potent oxidant in living organisms, 
the hydroxyl radical [129]. The polysaccharide significantly reduced the production of 
malondialdehyde (an indicator of the lipid peroxidation process) in serum and liver cells 
of laboratory animals [129].  

It is worth nothing that mushroom-derived polysaccharide molecules exhibit greater 
antioxidant activity than monosaccharides because the polymeric chains have a greater 
ability to extract anomeric hydrogen and to inactivate free radicals [130]. 

2.3.5. Beta-Glucans in the Treatment of Allergies 
Currently, a large increase in allergic diseases is observed among populations 

worldwide. None of the civilization diseases show such a growth rate. Allergy is called 
an abnormal, excessive reaction of the immune system to various substances present in 
the environment, which we call allergens. Based on the route of entry of the allergen into 
the body, allergies are divided into inhalation, food, contact, venom reaction, and drug 
reaction [131,132]. 

Numerous in vitro, laboratory animal, and clinical studies indicate the anti-allergic 
function of beta-glucans [133–135]. The anti-allergic properties of beta-glucans are mainly 
attributed to 1,3-1,6-β-glucans found in fungi. A study involving the administration of 
beta-glucans to laboratory mice with asthma confirmed the healing effect of beta-glucans, 
which was similar to treatment with dexamethasone [136]. Moreover, one study carried 
out among children with recurrent respiratory infections confirmed the significant an-
ti-allergic function of pleuran [137]. After 6 months of administration of this polysaccha-
ride at 10 mg/kg, a significant reduction in peripheral eosinophilia and stabilization of 
total class E immunoglobulin (IgE) was observed [137]. In the study by Sarinho et al. 
[138], the administration of mushroom-derived beta-glucans to patients with asthma re-
sulted in an increased production of the anti-inflammatory interleukin 10 (IL-10). A 
Japanese clinical trial involving oral administration of lentinan to allergy patients also 
confirmed a reduction in serum levels of immunoglobulin class E (IgE) [139]. 

The majority of studies conducted so far have confirmed that oral administration of 
polysaccharides, mainly beta-glucans isolated from Basidiomycetes, may prevent allergies 
by decreasing the level of immunoglobulin class E (IgE) and increasing the production of 
IFN-γ (interferon-gamma) [134,140,141]. 

2.3.6. Antibacterial, Antiviral, and Antifungal Properties of Mushroom Beta-Glucans 
There are a number of compounds in mushrooms that can inhibit the growth of 

microorganisms in humans. Numerous natural antibiotics and antiviral substances have 
been isolated from mushroom fruiting bodies, including triterpenes, ganodermadiol, 
ganodermic acid, and lucidol, showing activity against herpes virus, influenza, and HIV 
[142–144]. Polysaccharides, mainly β-glucans, are also responsible for their microbial in-
hibitory properties [145,146]. The mechanism of action of glucans against microorgan-
isms mainly involves the activation of several different immunomodulatory mechanisms, 
including phagocytosis, in which the phagocytic cells of the immune system, neutrophils, 
and macrophages participate [134,147]. 
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The first studies on the antimicrobial activity of beta-glucans were conducted in the 
1980s using yeast β-glucans [147]. They found the protective effect of β-glucans against 
infections caused by Staphylococcus aureus [147,148]. An inhibitory effect of lentinan on 
the development of tuberculosis was observed through stimulation of macrophages 
[149]. In the animal studies, the addition of beta-glucans to the food of various fish spe-
cies resulted in an increase in their resistance to pathogenic bacteria of the Aeromonas and 
Vibrio genera [150,151]. A number of studies described the great antiviral potential of 
beta-glucans [152–155]. The first experiments on the antiviral activity of β-glucans were 
performed on tobacco plants, and antiviral effects were observed with lentinan, schizo-
phyllan, and zymosan [156,157]. In the 1990s, a positive treatment effect was observed in 
HIV patients, when lentinan was administered together with the antiretroviral drug 
didanosine [153]. A significant increase in the percentage of helper T lymphocytes (Th) 
was observed, greater than when the drug was administered alone [153]. Similar results 
were obtained by US researchers 16 years later [154]. Studies showed that lentinan also 
exhibits inhibitory effects on the replication of the herpes simplex virus (HSV), mumps, 
polio, measles, and viral encephalitis virus [158]. The evidence shows that β-glucans can 
reduce the incidence of lower respiratory tract infections and decrease the frequency of 
the flu-like diseases in children [68].  

An inhibitory effect of polysaccharides isolated from Auricularia auricula-judae on 
Newcastle disease virus (NDV) was observed in Chinese studies conducted on chicken 
embryos [159]. Dietary lentinan supplementation maintained normal function of piglets 
even when they were infected with rotavirus, as reflected by reduced growth, perfor-
mance loss, and diarrhea prevalence, and maintained gut immunity [160]. 

Currently, opportunistic microscopic fungal infections are very common due to the 
widely used antibiotic therapy. Candidiasis is particularly dangerous in immunocom-
promised patients, e.g., HIV-infected or cancer patients. It has been proven that edible 
mushrooms, due to the presence of numerous bioactive compounds, such as agrocybin, 
ganodermine, pleurostrin, or eryngin, inhibit the growth of microscopic fungi of the 
genera Fusarium, Mycosphaerella, and Physalospora [152,161–163].  

Beta-glucans of macrofungi also play an important role in the protection against 
mycoses. The dectin-1 receptor present on immune cells plays a significant role in their 
activity. It has the ability to bind to certain β-glucans. Thus, β-glucans of edible mush-
rooms stimulate cell phagocytosis, increasing the non-specific cellular response of the 
host immune system directed against pathogens [164]. Another receptor, toll-like receptors 
(TRL) located on phagocytic cells, plays an important role in controlling fungal infections 
[165,166]. 

2.3.7. Potential Role for Beta-Glucans in Decreasing Morbidity and Mortality Due to 
COVID-19 

Since December 2019, coronavirus disease 2019 (COVID-19) caused by the severe acute 
respiratory syndrome corona virus 2 (SARS-CoV-2) has rapidly spread all over the world. A 
significant proportion of patients infected with SARS-CoV-2 develops a mildly symptomatic 
infection, but also a large part of patients experiences serious complications including acute 
respiratory distress syndrome (ARDS). ARDS is characterized by extensive inflammation of 
the lungs, which requires intensive care [167].  

COVID-19 infections are characterized by pro-inflammatory status, with high levels of 
different cytokines, including (IL)-1β, IL-1Rα, IL-2, and IL-10. Critically ill patients requiring 
a stay in the intensive care unit were characterized by noticeably high concentrations of IL-2, 
IL-10, G-CSF, IP10, MCP1, MIP1A, TNFα, and IL-6 [168]. Uncontrolled production of proin-
flammatory interleukins and cytokines that cause inflammatory or cytokine storm (CS) in the 
lungs is induced by the binding of SARS-CoV-2 virus to the Toll-Like receptors (TLR) 
[169,170]. A high increase in proinflammatory factors such as IL-6, IL-8, IL-1β, and GM-CSF 
and chemokines such as CCl2, CCL-5, IP-10, and CCL3, along with reactive oxygen species in 
patients with COVID-19, is closely correlated with ARDS, leading to pulmonary fibrosis and 
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death [168]. All changes in cytokine levels are related to various changes in cellular ingredi-
ents of the immune response, which shows close association between infection with 
COVID-19 and individual response from the immune system, resulting in different clinical 
symptoms [170]. 

Zhang et al. showed that anti-inflammatory therapy (suppression of 
pro-inflammatory interleukins, such as IL-1 and IL-6) can have a therapeutic effect in in-
flammatory diseases including viral infections [167]. This study found that the course of 
infection caused by the SARS-CoV-2 virus largely depends on the functioning of the in-
dividual immune system [167]. The innate immune system plays a crucial role in the 
early recognition of infecting pathogens and activation of a pro-inflammatory response, 
which is the first line of defense in various infections [170]. Recent studies have shown 
that the innate immune system may possess some form of memory called Trained Im-
munity (TRIM) [171]. Cells of the innate immune system stimulated with some factors, 
e.g., BCG vaccine (Bacillus Calmette–Guérin vaccine) or beta-glucans, go through meta-
bolic, mitochondrial, and epigenetic reprogramming, with an outcome in a memory 
phenotype of an enhanced immune responses [172]. Beta-glucans can stimulate the im-
mune responses and can act as a training agent, which leads to increased immune re-
sponse when these trained cells are exposed to a secondary stimulus in the form of 
pathogens [172]. It was shown that β-glucans used as the training factor demonstrate 
protective activity against secondary fungal, bacterial, or viral infections [173,174].  

Figure 9 shows a possible mechanism of action of beta-glucans during infection with 
SARS-CoV-2. 

 
Figure 9. Possible mechanism of action of beta-glucans during SARS-CoV-2 infection. Authors’ 
elaboration based on [172,175]. 

β-glucans activate macrophages and DC (Dendritic Cells) via appropriate receptors 
(Dectin-1, TLR, CR3). This results in an enhanced ability to phagocytose and efficiently 
present antigen on the MHC. Furthermore, β-glucan-induced macrophages can induce 
an enhanced defensive response of neutrophils and NK cells. Beta-glucan-induced DC 
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cells present the virus more efficiently to T lymphocytes, which promotes stimulation of 
B lymphocytes and antibody production. Thus, beta-glucans may favorably influence the 
development of a long-term, specific, adaptive response to SARS-CoV-2 [172,175]. 

Geller and Yan [172] hypothesized that the use of oral administration of beta-glucan 
in a prophylactic setting could be an effective way to boost immune response and abro-
gate symptoms of COVID-19. Beta-glucans as TRIM inducers probably cause increased 
phagocytic capacity of macrophages and dendritic cells, which results in better pro-
cessing and presentation of viral units to MHCs [84]. The 1,3-1,6-beta-glucans are con-
sidered to be the best biological response modifiers and have immunogenic properties 
[176]. Most glucans with this chain structure are derived from macrofungi (mushrooms) 
or yeast [172,177]. The hypothesis posed by Galler and Yan [172] was corroborated by 
other authors, who found that β-glucans from mushrooms demonstrated the potential 
for the treatment of lung injury [178]. In an in vitro study, L. edodes was shown to have 
potential for the treatment of COVID-19 due to its content of beta-glucans, which, 
through its effect on the immune system, reduces cytokine storm and, thus, ARDS [14]. 
This study demonstrated reduced inflammation in a lung epithelial model depending on 
the dose [14].  

Another beneficial implication of the use of beta-glucans among people suffering 
from COVID-19 may be a decrease in the systolic and diastolic blood pressure [172]. In 
recent years, several studies have been published on the use of glucans in the prevention 
and treatment of viral diseases, especially in the context of COVID-19 (Table 2). Because 
of the few scientific reports to date on the function of mushrooms, beta-glucans in 
COVID-19 disease studies on both macrofungi and yeast are included in Table 2 for 
comparison purposes, as well as to highlight the high therapeutic potential of total fungal 
glucans in the prevention and treatment of COVID-19. 

Table 2. Potential of yeast and mushroom glucans for the prevention, course, and complications of 
COVID-19. 

No. Type of Glucan 
Mechanism of Action in Prevention and Treatment of 

COVID-19 
References 

1. 
AFO-202-β–glucan 

(β-1,3-1,6 glucan from black yeast 
Aureobasidium pullulans) 

Potential as a vaccine adjuvant against COVID-19; 
Prevention of COVID-19-associated coagulopathy. 

[179] 

2. 
AFO-202 -β-glucans  

(β-1,3-1,6 glucan from black yeast 
Aureobasidium pullulans) 

Regulation of blood glucose and lipid levels by 
β-Glucans as an indispensable tool of defense against 

COVID-19. 
[180,181] 

3. 
AFO-202-β–glucan 

(β-1,3-1,6 glucan from black yeast 
Aureobasidium pullulans) 

Immune enhancement by 
decreasing hyper-inflammation factors (IL-6) and 

minimizing the likelihood of a cytokine storm; 
increasing IFN-γ, sFAS, and factors like IL-7; 

and enhancing anti-viral cytotoxic immunity, (T cells, 
NK cells, macrophages, antibody production by B cells). 

[168] 

4. 
AFO-202-β–glucan 

(β-1,3-1,6 glucan from black yeast 
Aureobasidium pullulans) 

Immune regulatory and enhancing immune system;  
Immune stimulator that can activate macrophages and 

have positive immune actions on B-lymphocytes, 
natural killer cells, and suppressor T cells in the 

immune system. 

[168,182] 

5. 
1,3-β-D-glucan (from 

Saccharomyces cerevisiae) 

Prevention and treatment of excessive microglia 
activation during chronic inflammation characteristic of 

COVID-19 course. 
[183,184] 

6. 

1,3-β-D-glucan 
(curdlan and fragmentated 

zymozan- proteoglucan from 
Saccharomyces cerevisiae) 

Potentials to enhance microglial function and 
regeneration of CNS axons in COVID-19 neurological 

sequalae. 
[184,185] 

7. 
1,3-1,6-β-D glucans  

(from shiitake mushroom 
Lentinula edodes) 

Immunomodulatory and pulmonary cytoprotective 
effects. 

[14] 

8. β-glucans (from mushrooms as Immunomodulating effects. [170] 
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Lentinula edodes and Pleurotus 
ostreatus) 

9. 
β-glucan 

(from white button mushroom 
Agaricus bisporus) 

Interrupts AR (androgen receptor)-mediated TMPRSS2 
(Transmembrane protease serine 2) expression that is 
involved in viral entry, through its AR antagonistic 

activity;  
Attenuates serum pro-inflammatory cytokines and 
reduces MDSC (myeloid-derived suppressor cells) 

counts that are involved in the host response to viral 
infection, through its immunoregulatory activity). 

[175] 

10. 
1,4-α–glucan 

(from Lentinula edodes) 
Modulation and activation of  

NK-cells, T-cells, and γδ-T (gamma delta T). [186] 

11. 
β-glucans 

(from edible and medicinal 
mushrooms) 

Support the immune system before, during, and after 
COVID-19. 

[187] 

12. Aminated β-glucan (AβG) 
Potential vaccine adjuvant, immunopotentiator for 
simulation of antigen-presenting cells for T cells’ 

activation. 
[188–190] 

13. 
β-glucan 

(from yeast, Saccharomysces 
cerevisiae) 

Decreasing platelet activation by increasing TGF-β1 
production. 

Decreasing the concentration of pro-inflammatory 
cytokines IL-6, which indirectly activates platelets and 

thrombin production. 
Prevention of thrombosis during the course of 

COVID-19. 

[169,177,191] 

The promising results of studies on mushroom β-glucan from Agaricus bisporus and 
Lentinula edodes [14,175] allow us to assume a beneficial effect of these compounds in the 
prevention, course, and counteracting complications of COVID-19 in the era of the pan-
demic caused by SARS-CoV-2. Still, there are only a few studies on the promising func-
tion of mushroom β-glucans in the context of COVID-19; such research needs to be con-
tinued due to the easy availability and significant amounts of beta-glucans in mushrooms 
[35], as well as the safety and ease of administration without significant side effects, even 
in the case of insufficient purification [14,186,187]. The advantage of mushroom glucans 
is that they can be administered orally and have an extremely high safety profile [172]. 

2.3.8. Mushroom Beta-Glucans as Prebiotics and Microbiota Modulators 
Mushrooms owe their prebiotic properties to polysaccharides, which are not di-

gested in the intestine. They create excellent conditions for the growth and activity of 
beneficial bacteria of the digestive tract of the genera Bifidobacterium and Lactobacillus. 
These polysaccharides include β-glucans, chitin, hemicelluloses, mannans, and xylans 
[192]. For example, β-glucan pullulan has proven prebiotic properties. This polysaccha-
ride administered to the test subjects induced the development of the beneficial bacterial 
microflora Bifidobacterium [193]. 

Beta-glucans are resistant to human digestive enzymes and pass through the diges-
tive tract into the intestines, retaining their original structure. Therefore, most mush-
rooms abundant with beta-glucans can be considered potential sources of prebiotics. 
Evidence for the prebiotic properties of mushroom polysaccharides is provided in the 
study by Synytsya et al. [21], who observed that extracts of cultivated mushrooms from 
Pleurotus genus intensively stimulated the growth of probiotic flora. In their latest in vitro 
study, Mitsou et al. [194] found that mushrooms rich in β-glucans may exert beneficial 
effects in gut microbiota and are crucial in the production of short chain fatty acids 
(SCFAs). Other authors emphasize that yeast glucans and mushroom glucan polymer 
complexes are able to stimulate the growth and development of Lactobacillus acidophilus 
and Bifidobacterium bifidum [195–197]. In their study, Mitsou et al. [194] found that all 
tested fungi had a positive effect on increased propionate and butyrate production. This 
indicates the potential of edible mushrooms rich in β-glucans as prebiotics. In addition, 
fungi from the genera Pleurotus and Cyclocybe presented beneficial effects on microbiota 
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composition through the growth of Bifidobacterium spp. and populations of Faecalibacte-
rium prausnitzii [194]. Furthermore, the available scientific evidence has shown that 
non-starch polysaccharides (NSPs) from various products such as oat bran, mushroom, 
seaweed, pectin, etc. exhibit a protective action in the treatment and prevention of in-
flammatory bowel disease (IBD) [198]. A decreased Bifidobacerium/Faecalibacterium (B/F) 
ratio is associated with obesity and type 2 diabetes [199]. Edible mushrooms can increase 
this ratio and maintain the microbial balance in the gut altered by a high-fat diet. Extracts 
of Ganoderma lucidum and Antrodia cinnamomea, polysaccharides from Sarcodon aspratus, 
have been shown to increase the B/F ratio in mice fed a high-fat diet [200–202]. 

Beta-glucans derived from fungi, due to their diversity of structures and physico-
chemical properties, can contribute to the growth of specific groups of bacteria that are 
important for human health. Unlike beta-glucans from other sources, both soluble and 
insoluble mushroom-derived beta-glucans support the growth of probiotic bacteria that 
are beneficial to consumer health [203,204]. 

3. Conclusions 
β-glucans are natural molecules that have great therapeutic potential due to their 

immunomodulatory, antineoplastic, anti-inflammatory, antioxidant, anti-allergic, anti-
bacterial, antifungal, and antiviral properties. Recent reports have indicated great poten-
tial for the use of beta-glucans from fungi in the prevention and treatment of COVID-19. 

Beta-glucan molecules are characterized by a large diversity not only due to the 
source of origin (cereals, mushrooms, yeast), but also within a single species of fungus or 
fruiting body. Their properties can also be modified by different extraction and purifica-
tion conditions. Therefore, it is very important to develop a standardized method for ex-
traction and purification of beta-glucans and evaluation of their structure (number and 
length of branching and presence of amino acids, proteins, or other substituents), in order 
to accurately assess their mechanisms of action and potential therapeutic properties. 

Previous studies indicated the potential of β-glucans in the prevention, treatment, 
and complications of COVID-19 [14,169,170,179–192]. Immunomodulatory, antioxidant, 
neuroprotective, and antithrombotic activities are of particular interest here. There are 
still few studies on the use of β-glucans from edible mushrooms for COVID-19 [14,175]. 
Edible macrofungi appear to be an excellent source of β-glucans for clinical applications, 
due in part to the lack of toxicological risk from fungal toxins. Because of this, edible 
mushrooms can be used to produce both highly purified β-glucan preparations as well as 
less purified cocktails. However, careful studies are needed to determine the desired 
formulation, to determine dosages, and to determine the feasibility of their use at dif-
ferent stages of COVID-19 disease. 

Such data are essential to adequately support the immune system and counter 
COVID-19 complications while not harming it. The growing interest in the role of 
β-glucans in the prevention and treatment of COVID-19 may translate favorably into the 
development of an effective formulation for the prevention and treatment of other vi-
ruses that humanity will face in the future. Therefore, further studies on fungal β-glucans 
in terms of efficient extraction, purification, their activity, and mechanisms of action are 
needed for their most appropriate application. 
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