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Abstract: Plant polyphenols are the main category of natural active substances, and are distributed
widely in vegetables, fruits, and plant-based processed foods. Polyphenols have a beneficial
performance in preventing diseases and maintaining body health. However, its action mechanism
has not been well understood. Foodomics is a novel method to sequence and widely used in nu-
trition, combining genomics, proteomics, transcriptomics, microbiome, and metabolomics. Based
on multi-omics technologies, foodomics provides abundant data to study functional activities of
polyphenols. In this paper, physiological functions of various polyphenols based on foodomics
and microbiome was discussed, especially the anti-inflammatory and anti-tumor activities and gut
microbe regulation. In conclusion, omics (including microbiomics) is a useful approach to explore
the bioactive activities of polyphenols in the nutrition and health of human and animals.

Keywords: polyphenols; foodomics; functional activity; gut microbiota; multi-omics

1. Introduction

Plant polyphenol is a kind of secondary metabolites in plants and can enhance plant
resistance and stress from disease and external environment. Generally, polyphenols are
widely presented in the plant tissues (e.g., stems, roots, leaves, flowers, and fruits) as
the most common plant active substances in nature [1]. Plant polyphenols have various
biological activities, including anti-tumor, anti-cardiocerebrovascular, anti-oxidative, anti-
aging, anti-inflammatory, and anti-viral activities [2–7]. An increasing number of studies
have shown that plant polyphenols play a positive role in improving animal growth
performance and maintaining gastrointestinal health as antibiotics [8–11]. There is evidence
that polyphenols (1000 mg/kg) can improve the intestinal morphology of yellow feather
broilers, increase the body’s antioxidant capacity, and improve the quality of chicken [12].
Moreover, DSS-induced colitis can be prevented and treated by honey polyphenols through
regulating gut microbiota [13,14]. Therefore, polyphenols have a great potential to be a
green antibiotic substitute with a beneficial effect in human and animals.

Currently, the studies on polyphenols from plant extract are mainly focused on their
composition, health benefits, and metabolism [15,16]. The potential health benefits of plant
polyphenols were confirmed by numbers of previous reports [17–19]. In a previous study,
as the intake of green tea increased (≥2 times/day), the incidence of chronic obstructive
pulmonary disease dropped from 14.1% to 5.9%, and it was inferred that consumption of
green tea polyphenol was associated with a reduction in the risk of certain disease [20].
Another study showed that resveratrol (10 and 20 mg/kg) reduced oxidative stress and
inflammation. Therefore, resveratrol may be a potential therapeutic strategy for the treat-
ment and prevention of diabetic encephalopathy [21]. Similarly, supplementing the diet
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with concentrated red grape juice (100 mL/day) can reduce the plasma concentration of
inflammatory biomarkers and oxidized low-density lipoproteins, and may be beneficial
to reducing cardiovascular disease risk [22]. However, their metabolic pathways and
regulating mechanisms have not been fully clarified. Fortunately, foodomics technology
provides a novel option for investigating the functional mechanism of polyphenols [23,24].
Foodomics mainly consist of genomics, transcriptomics, proteomics, metabolomics, and
microbiome, and foodomics has been widely used to study how to maintain gut health and
normal metabolisms by regulating gut microbiota with the influence of polyphenols [25].

Recent years, mono-omics was used widely in polyphenol research. However, owing
to its own limitations, mono-omics cannot fully and systematically explain the action
mechanism of polyphenols. Foodomics has the advantages of diversity, relevance, and
systematicity in multi-omics. For exploring and developing new insights in the molecular
mechanisms of novel biomarkers, foodomics is used to analyze the biological activity of
the effective compounds in food. Therefore, foodomics is an inevitable trend in the devel-
opment of polyphenol study. In this review, the strategies of foodomics were discussed
in investigating the activity of polyphenols and the action mechanisms and application
of polyphenols.

2. Classification, Source and Function of Polyphenols

More than 8000 phenolic substances are commonly distributed in fruits, vegetables,
tea, coffee, cocoa, beans, and grains (Table 1) [26]. Polyphenols have complex structures
and can be divided into phenolic acids, lignans, stilbene, tannins, and flavonoids (e.g.,
isoflavones and anthocyanins). Polyphenols derived from various sources have many
beneficial and specific therapeutic properties (Table 1). Phenolic acid has an extensive
physiological activity, including anti-oxidation, scavenging free radicals, anti-ultraviolet
radiation, and antibacterial and antiviral effects. Stilbene resveratrol has a preventive effect
on atherosclerosis and cancer [27]. Stilbene and flavonoids can be used to prevent and treat
cardiovascular and cerebrovascular diseases [28–30]. As the most common phytoestrogens,
lignans are famous for its high anti-oxidant activity and inhibiting lipid peroxidation [31,32].
Lignans can also bind to estrogen receptors and interfere with cancer-promoting effects;
therefore, it has a preventive effect on breast and colon cancer. As a kind of polyphenols,
tannin can exert various activities, such as anti-oxidative, anti-microbial, anti-cancer, anti-
hypertensive, and anti-inflammatory effects [33,34]. However, complexes can be formed
by polyphenols with starch, protein, and enzymes; therefore, they are considered as anti-
nutrients. Due to their carcinogenic and anti-nutritional effects, it is harmful for human
and animal to have too many tannins [35].

Due to their extensive biological activities, plant polyphenols have become a study
hotspot in the field of human nutrition and health. Similarly, polyphenols also have
various positive effects on livestock and poultry. Plant polyphenol extracts and polyphenol
monomer compounds can effectively improve animal intestinal microenvironment with
various functional activities, such as immune regulation, bacteriostasis, anti-oxidation, and
microbiota regulation [36,37].
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Table 1. Classification, sources, and functions of polyphenols.

Polyphenols Subclass Sources Function Ref.

Phenolic acids Coffee, berries, kiwi,
apple, cherry

Anti-inflammatory, anti-oxidant, antibacterial,
antiviral, antiparasitic [38–40]

Stilbenes Grapes, wine Anti-inflammatory, anti-oxidant, heart protection,
anti-cancer, anti-obesity [41–43]

Lignans Linseed, sesame, wheat Anti-tumor, scavenging free radicals, anti-oxidant [44–46]
Flavonoids

Isoflavones Soy, miso
Estrogenic activity, anti-inflammatory,
anti-obesity, anti-diabetic, anti-oxidant,

cholesterol lowering
[47–49]

Flavones Parsley, celery,
capsicum pepper

Anti-inflammatory, anti-oxidant, regulating
glucose and lipid metabolism, anti-virus,

anti-bacterial, anti-parasitic
[50–52]

Flavanones Grapefruit, lemon,
oranges

Anti-inflammatory, anti-oxidant, regulating
glucose and lipid metabolism, preventing liver
steatosis, anti-bacterial, anti-viral, anti-parasitic,

anti-fungal

[53,54]

Flavonols Berries, onion, broccoli,
leek

Anti-inflammatory, anti-oxidant, anti-virus,
anti-bacterial [55–57]

Flavanols
Grapes, cocoa, wine,
apricots, green tea,

beans

Anti-inflammatory, anti-oxidant, antibacterial,
antiviral, antiparasitic, anticancer [58–60]

Anthocyanins
Berries, black grapes,
aubergine, red wine,

rhubarb

Anti-inflammatory, anti-bacterial, anti-oxidant,
anti-diabetic, anti-cancer, nerve protection,

anti-allergic
[61–63]

Tannins Condensed tannins Cocoa, chocolate,
apples, grapes

Anti-oxidant, eliminating free radicals, enhancing
immunity, preventing cardiovascular and

cerebrovascular diseases, improving hypoxia
[64–66]

Hydrolyzable
tannins Mango, pomegranate Anti-oxidant, anticancer, phytoestrogens activity [67,68]

3. Foodomics Applied in the Study of Polyphenols

As shown in Figure 1, foodomics is a collection of genomics, transcriptomics, pro-
teomics, and metabolomics, and can be used to study polyphenols from multiple angles.
The data obtained from various omics will be integrated to explore the molecular mecha-
nism and novel pathways of plant polyphenols to predict and treat diseases of human and
animals.

3.1. Genomics

Genomics, containing genome sequencing and analysis, is used to explore the interrela-
tionships and impacts on organisms by characterizing collectively and quantifying all genes
of tissue [69]. Up to now, genome sequencing technology has developed to the third or even
fourth generation with various nonnegligible advantages, such as high throughput, fast
speed, and high accuracy. Besides, the sequencing technology of genomics mainly includes
whole-exome sequencing, whole-genome sequencing, and DNA microarray technology.
Genomics has created a precedent in the era of omics and is the foundation of foodomics. It
plays a vital role in exploring the bioactivity of polyphenols via sequencing and explaining
the underlying mechanism at the DNA level. To evaluate the anti-inflammatory function
and targeting genes of polyphenols, macrophages were treated using polyphenols and
their gene expression profile was analyzed using DNA microarrays. It was found that
bilberry polyphenols can decrease the high expression level of inflammatory genes caused
by lipopolysaccharide [70]. Using DNA microarray technology, polyphenols from oolong
tea was found to exert anti-inflammatory effects by regulating molecular networks, such as
cytokines, interleukins and interferons [71].
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Figure 1. The strategy of foodomics to study the bioactivities of polyphenols. 2-DE: two-dimensional gel electrophoresis;
CE-MS: capillary electrophoresis mass spectrometry; EST: expression sequence tags technology; GC: gas chromatography;
LC: liquid chromatograph; MPSS: massively parallel signature sequencing; MALDI-TOF/TOF: matrix-assisted laser
desorption ionization time-of-flight/time-of-flight; MS: mass spectrometry; NMR: nuclear magnetic resonance; RNA-seq:
RNA sequencing; SAGE: serial analysis of gene expression; UPLC-Q-TOF: ultra-performance liquid chromatography to
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Genomics technology can facilitate to understand the action mechanism of polyphenols
and discover novel natural polyphenols. Many genomics technologies are the effective
tools for identifying polyphenol genes, including candidate gene methods, quantitative
trait locus (QTL) detection, and genome-wide association studies (GWAS). As the name
implies, QTL refers to the position of genes that control quantitative traits in the genome.
These QTLs were detected in apples for the first time and represent a novel step in study-
ing the biosynthesis mechanism of proanthocyanidins and the biosynthesis of phenolic
compounds. It was used in the measurement of main phenolic compounds in sensory prop-
erties and main polymerization degree of proanthocyanidins in cider [72]. GWAS involve
the whole-genome resequencing (WGS) of each individual in a population with rich genetic
diversity. The phenotypic data of the target trait is integrated for whole-genome association
analysis, which can quickly obtain chromosome segment or gene locus that affects the target
trait. In a previous study, WGS data were used to perform GWAS analysis on 10 polyphe-
nol components, unearthing key QTLs, screening specific germplasm, and discovering
excellent genes. This analysis greatly accelerated the breeding process of polyphenol-rich
varieties [73]. The WGS combined with bioinformatics analysis was used and discovered
the five-membered angle ring polyphenols with novel structure [74]. Therefore, it can be
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concluded that the combination of GWAS and other genetic technologies represents the
trend of the future research on polyphenols.

3.2. Transcriptomics

Transcriptome is a total number of RNA transcribed from a specific cell or tissue in
a certain functional state. Transcriptomics is used to investigate the transcription condi-
tions and transcriptional regulation rules from the overall level. The definition of time
and space is the difference between the transcriptome and genome. Polyphenols can
change the expression of genes in the inflammation related signal pathway, regulating
the NF-κB signal pathways by inhibiting the activity of IKKs, preventing p50 and p65
from entering the nucleus, and enhancing the expression of a series of inflammatory
cytokines (e.g., iNOS, cyclooxygenase-2 (COX-2), and cytokines) [75,76] (Figure 2). It can
also regulate monophosphate-activated protein kinase (MAPK) pathway by alleviating the
activity of MAPKKKs and prevent a series of transcription factors entering the nucleus to
express a series of inflammatory cytokines [77]. Baicalein can decrease COX-2 expression
via regulating MAPK signal pathway [78]. Similarly, quercetin can also decrease COX-2
expression through regulating the NF-κB signal pathway [79]. COX-2 is a kind of cyclooxy-
genase with very low activity in normal cells. However, when the cells are stimulated by
inflammation, the expression level of COX-2 can be increased to dozens of times, causing
inflammation and tissue damage. Secondly, polyphenols display an anti-oxidant function
through regulating transcription factor level and activating signal channels to enhance the
expression of anti-oxidant proteins. Quercetin can up-regulate the transcription level of
nuclear factor erythroid-2-related factor (Nrf2), post-transcriptional level, and inhibit the
post-transcriptional expression of Keap1, resulting in the enhancement of the expression
of anti-oxidant proteins and detoxification enzymes [80]. Similarly, fisetin and mustard
extracts can up-regulate the expression of reducing coenzyme II-quinone oxidoreductase
through transcriptional activation of the Nrf2-ARE anti-oxidant pathway [81,82].

At present, transcriptomics technology mainly consists of two types: microarray
based on hybridization, and transcriptome sequencing technology based on sequencing
technology, which includes expression sequence tags technology, RNA sequencing, gene
expression analysis, and signature sequencing. cDNA microarray-based transcriptome
technology was used to illustrate the important role of microRNAs in resveratrol-mediated
colon cancer associated with colitis. In detail, resveratrol can mediate anti-inflammatory
properties and inhibit gut tumorigenesis via miRNA regulation [83]. In addition, the
full-length transcriptome sequencing technology was combined to reveal the expression of
olive polyphenol anabolism-related genes, which facilitates to understand the polyphenol
biosynthesis pathway in olives [84]. Due to the characteristics of high anti-oxidant perfor-
mance, good thermal stability, and natural non-toxicity, rosemary polyphenol has been
widely used in health products and cardiovascular drugs. Rosemary polyphenol can regu-
late the metabolic and transcriptional changes in HT-29 cells dominated by the production
of reactive oxygen species and the coordination of the unfolded protein response signaling
pathway under endoplasmic reticulum stress using transcriptomics technology [85]. These
findings indicated that transcriptomics is a useful tool to investigate the mechanism of
polyphenols in cell protection and cancer chemoprevention.
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3.3. Proteomics

Proteomics can provide systematic research on the characteristics, quantity, and func-
tion of all proteins expressed by a certain organism or cell in the treatment of plant
polyphenols. Proteomics technology consists of two-dimensional gel electrophoresis
(2-DE), isoelectric focusing, time-of-flight mass spectrometry (TOF-MS), electrospray
mass spectrometry (ESI-MS), and capillary electrophoresis mass spectrometry [86]. As
an important approach for large-scale study of cellular protein functions, proteomics is
often used in revealing molecular mechanisms of tumor pathogenesis and searching for
biomarkers. With the rise in proteomics technology, it has gradually become a hotspot by
elucidating the anti-tumor mechanism of plant polyphenols in the perspective of protein.
For example, the expression of the HSP27 protein related to the growth and apoptosis of
the breast cancer cell MCF-7 was regulated by polyphenol resveratrol measured using
IFE, SDS-PAGE, and ESI-MS/MS proteomics techniques [87]. The anti-tumor synergistic
mechanism of curcumin and irinotecan were also investigated using proteomics approach,
identifying 54 differentially expressed protein spots involved in the calcium ion, cellular
respiratory chain, and redox pathway in colon cancer [88]. Through SDS-PAGE and LC-
MS/MS technology, it was also found that the expressions of histocompatibility antigen
and β-2-microglobulin were up-regulated in myeloma cells by gossypol treatment, indicat-
ing that gossypol has the function of activating cellular immune response [89]. Through
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2-DE and MALDI-TOF/MS analysis, epigallocatechin gallate (EGCG) may activate adenine
MAPK by inducing ROS production to inhibit FFA-induced lipid aggregation in human
hepatocellular carcinomas (HepG2) cells, leading to inhibiting liver gluconeogenesis [90].
Seventy differential protein expression points were found in HepG2 cells after quercetin
treatment through proteomics. Among them, the expression of Ras GTPase-activating-like
protein involved in cell migration ability was down-regulated by quercetin, indicating that
quercetin can inhibit proliferation and migration of HepG2 cells [91]. In general, proteomics
provides a novel approach to explore the anti-tumor mechanism of plant polyphenols in
cancer cells, including comparing and identifying the differentially expressed proteins, and
clarifying the complex process and molecular mechanism.

3.4. Metabolomics

Metabolomics is an approach that analyzes metabolites (<1 kDa) of human and
animals after polyphenol treatment, and it is a novel “omics” technique proposed after
the emergence of genomics, proteomics, and transcriptomics [92]. Genomics and pro-
teomics tell us what might happen, while metabolomics tells us what had happened
with polyphenol treatment. Metabolomics explores the relationship between metabolites
and physiological changes by analyzing all metabolites in the organism, and applying
liquid chromatograph-mass spectrometry (LC-MS), nuclear magnetic resonance, and gas
chromatography (GC)-MS [93]. At present, the most common used analysis method is a
combined instrument, such as ultra-performance liquid chromatography to quadrupole
time-of-flight-MS (UPLC-Q-TOF-MS) and UPLC-MS/MS.

As a vital direction of foodomics, metabolomics technology was applied to quantify the
polyphenols in food, and to target metabolic pathways to explore the molecular mechanism
of metabolism (Table 2). Metabolomics has been widely used to study the physiological
properties of polyphenols by detecting changes in small metabolites. The effects of green
tea polyphenols on human health were explored using LC-MS and GC-MS, which led
to the finding that metabolic patterns were changed, including decreased thermogenic
carbohydrates as well as increased vitamin synthesis and amino acid metabolism. The
variation of gut microflora-related metabolism may be the underlying mechanism of green
tea polyphenols in preventing obesity [94]. Based on the metabolomics technology of
high-resolution MS, the active polyphenols in litchi decreased serum triglyceride and
cholesterol levels caused by a high-fat diet, confirming that litchi polyphenols have the
inhibiting activity on cardiovascular disease [95]. In addition, anthocyanins in black
soybean seed coats can decrease NO, PGE2, and iNOS and COX-2 expression to exert
anti-inflammatory activity through metabolomics in rats [96]. The metabolomics of aging
mice under the intervention of EGCG was measured using UPLC-Q-TOF-MS, showing that
the metabolic pathway and metabolites was related to the anti-aging effect of EGCG [97].
UPLC-Q-TOF-MS metabolomics was used to study the gastrointestinal defense effect of
polyphenol-rich bee pollen, which was found to inhibit the inflammatory response and
regulate the metabolites and metabolic pathway in Caco-2 cells [98]. Although the numbers
of studies have shown that plant polyphenols have various functions in vivo and vitro, in
fact, the bioavailability of plant polyphenols is low [99], and their mechanism that affects
health is still not fully clear. In the future, the strategy of enhancing the bioavailability of
polyphenols needs to be explored.
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Table 2. Metabolomics used in identifying plant polyphenols of food.

Polyphenol-Rich Foods Polyphenols Identification MS Based Tools Ref.

Strawberry
Cyanidin, ellagic acid derivatives, glycosides of
quercetin, kaempferol, taxifolin 3-O-arabinoside,

peonidin, pelargonidin
UHPLC-HR-MS [100]

Blueberry Anthocyanins, flavonols, flavan-3-ols, resveratrol,
phenolic acids HPLC-IT-TOF-MS [101]

Cherry Hydroxycinnamic acids, anthocyanins, flavonoids LC-ESI-Q-TOF-MS [102]

Berry

Delphinidin-3-O-rutinoside-5-O-glucoside;
5-caffeoylquinic acid, quercetin-3-O-rutinoside,

quercetin-3-O-glucoside,
petunidin-3-O-rutinoside-5-O-glucoside,

3-caffeoylquinic acid,
malvidin-3-O-rutinoside-5-O-glucoside,

4-caffeoylquinic acid

UPLC-PDA-Q-TOF-MS [103]

Grape Anthocyanins, flavan-3-ols, flavonols, stilbenes LC-MS [104]

Apples Procyanidin, chlorogenic acid, quercetin, (+)-catechin,
(−)-epicatechin UPLC/MS [105]

Onions Quercetin-4′-glucoside, quercetin-3,4′-diglucoside LC-MS/MS [106]

Cabbage
Quercetin-3-disinapoyl-triglucoside-7-diglucoside,

kaempferol 3-di(tri, feruloyldi, sinapoyltri,
disinapoyltri)glucoside-7-diglucoside

HPLC-DAD-ESI-MS,
HPLC-DAD-MS

[107,
108]

Beans

Delphinidin-3-O-glucoside, cyanidin-3-O-glucoside,
cyanidin-3-O-sambubioside,

pelargonidin-3-O-glucoside, malvidin-3-O-glucoside,
cyanidin-3-O-galactoside, petunidin-3-O-glucoside

HPLC-ESI-MS [109]

Barley
Caffeic acid, catechin, cereals, ellagic acid, ferulic acid,

gallic acid, isoscoparin-2”-O-glucoside, p-coumaric acid,
procyanidin B2

Q-TOF-LC-MS [110]

Nut
(+)-catechin, (−)-epicatechin, procatechuic acid,

p-hydroxybenzoic acid, quercetin-3-O-rutinoside,
naringenin-7-O-glucoside

LC-MS [111]

Cocoa beans Flavan-3-ols, procyanidins, (+)-catechin, (−)-epicatechin HPLC-DAD, HPLC-FL [112]
Coffee Phenolic acids, flavonoids, secoiridoids HPLC-MS/MS [113]

Green tea
Quercetin-3-O-galactoside, chlorogenic acid, epicatechin,

epigallocatechin gallate, proanthocyanidin B2,
quercetin-3-O-galactoside

LC-MS [114]

Wine

Gallic acid, gentisic acid, protocatechuic
acid-O-hexoside, protocatechuic acid, caftaric acid,

catechin, coumaric-O-hexoside, p-hydroxybenzoic acid,
caffeic acid

HPLC/ESI-LTQ-Orbitrap-MS [115]

Note: ESI-LTQ-MS: electrospray ionisation-linear ion trap quadrupole-Orbitrap-mass spectrometry; HPLC-DAD-ESI-MS: high-performance
liquid chromatography coupled to photodiode-array detection and electrospray ionization/ion trap mass spectrometry; IT-TOF: ion trap
with time-of-flight; Q-TOF-MS: quadrupole-time of flight; UPLC-Q-TOF-MS: ultra-performance liquid chromatography-quadrupole-time
of flight-mass spectrometry; UHPLC-HR: UPLC-high-resolution.

3.5. Multi-Omics

Omics has a great contribution to the study of the action mechanism of polyphenols.
However, the information obtained from the previous reports at a certain level (genome,
transcriptome, and proteome) has certain limitations. Therefore, multiple omics should be
combined to make correlations from a holistic perspective to systematically elucidate the
functions and mechanisms of polyphenols. The regulation of R2R3-MYBs transcription
factor is the key to control the synthesis of flavonoids in angiosperms using the combination
of metabolome and transcriptome [116–118]. Based on multi-omics technology, high-
polymer proanthocyanidins was found to reduce the level of metabolites, influence the
intestinal microbial community, and have a beneficial effect on metabolic homeostasis [119].
By using 2-DE and MALDI-TOF/MS analysis, EGCG can decrease cell apoptosis and inhibit
metastasis of human liver cancer cells [120]. Similarly, it was revealed that resveratrol can
regulate the cell cycle of colon cancer cell using SDS-PAGE and LC-MS/MS analysis [121].
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In conclusion, multi-omics is a useful approach in the study of the functional activity of
plant polyphenols.

4. Microbiomics Involved in the Bioactivity of Polyphenols
4.1. Regulation of Polyphenols on Gut Microbiota

Microbiome refers to all microorganisms and genetic information in a specific environ-
ment and has beneficial effects in nutrition, metabolism, and immunity [122]. Gut micro-
biota mainly consists of Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria, Proteobacteria,
and Verrucomicrobia. Among them, Firmicutes and Bacteroides are the dominant micro-
biota [123]. Like prebiotics, the polyphenols in diet have received widespread atten-
tion for their functional regulatory effects on gut microorganisms, as shown in Figure 3.
Polyphenols can inhibit harmful bacteria proliferation (e.g., Escherichia coli and Salmonella),
while promoting the growth of probiotics (e.g., Bifidobacterium and Lactobacillus).
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diseases. “+” means “enhance”; “−” means “weaken”.

Intestinal disorders can be inhibited by polyphenols via richening the abundance
of beneficial bacteria and microbial diversity. Resveratrol has a promoting effect on
Lactobacillus and Bifidobacterium, which can exert anti-inflammatory effects through re-
ducing pro-inflammatory cytokines and increasing anti-inflammatory cytokines [124,125].
Alpha diversity of gut microbiota was changed, and relative abundances of Bifidobacterium,
Feacalibacterium, Eubacterium, and Coprococcus were increased by the intake of polyphenols
from green tea [126]. The abundance of Bifidobacteria and Lactobacillus in the gut were
increased by the intake of blueberries [127]. In addition, it has been confirmed that inflam-
matory bowel disease (IBD) is influenced by multiple factors, including the host, microor-
ganisms, and the environment, and the occurrence of IBD is related to gut microbes [128].
In our lab, we found that polyphenol taxifolin changed the composition of colonic microbial
community by 16S rDNA sequencing. The change in Bacteroides, Clostridium saccharogumia,
Clostridium ramosum, Sphingobacterium multivorum, and Bacteroidetes/Firmicutes ratio caused
by dextran sulfate sodium was restored by taxifolin to relieve mice colitis [129]. In con-
clusion, plant polyphenols can promote beneficial bacteria in the process of regulating
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intestinal microbes. Once the polyphenols enter the intestinal tract, they will activate the
gut microbiota and regulate gut microecology. Conversely, polyphenols can also be used
by gut microbiota to produce bioactive molecules (e.g., phenolic acids), which may be the
key biologically active effector [130,131], subsequently promoting the health of human
and animals.

4.2. Combination of Microbiome and Metabolomics in Polyphenol Study

Currently, microbiome technologies mainly contain microbial metagenomics,
metametabolomics, macrotranscriptomics, and macroproteomics, allowing us to analyze
the microbiome at different levels (e.g., DNA, RNA, protein, and metabolites). At present,
numbers of studies on polyphenols mainly focus on metagenomics and metametabolomics.
In contrast, their combination to explore the metabolic process of polyphenols is still
lacking. The combination of metabolomics and microbiome is a novel approach to explore
the specific mechanism of polyphenols. Gut microbiota plays a critical role in health and
nutritional status of human and animals [132]. In general, the method of the combination
of microbiome and metabolomics is shown in Figure 4. By sequencing the metagenomics of
gut microbiota, the corresponding microorganisms can be identified and metabolites can be
analyzed using metabolomics technology to discover a novel pathway. In a previous study,
primary bile acids were modified into secondary bile acids by clostridium species using 16S
amplicon sequencing and metabolomics [133]. It has been verified that polyphenols have
various biological activities with a positive influences on gut microbes [134–136]. Therefore,
the combination of metabolomics and microbiome in the exploration of polyphenols is a
trend in the future.
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The combination of microbiome and metabolomics has been used to study the effects
of plant polyphenols on cardiovascular diseases. Through the metabolomics and genomics
analysis of microorganisms in serum, urine, and feces, the risk of cardiovascular disease
can be reduced by pomegranate polyphenols [137]. The influence of green tea polyphenols
on gut microbiota and micronutrient metabolism was analyzed using metagenomics and
metabolomics, and the metabolites of tricarboxylic acid and urea cycle were analyzed
using metabolomics and 16S rRNA sequencing, showing that energy conversion was
enhanced by green tea polyphenols via promoting the metabolism of gut microbiota in
rat [138]. Moreover, the diversity and overall structure of gut microbiota were changed
by polyphenols using 16S rRNA sequencing, indicating that polyphenols have an anti-
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cancer effect. Therefore, it has been speculated that polyphenols can regulate tumor
growth by controlling certain bacteria and subsequently changing the cellular components
and metabolites [139]. In conclusion, the positive effects of polyphenols on human gut
health can be clarified through a microbiome approach. The underlying mechanisms of
polyphenols on gut microbiota and metabolites using microbiomics, metabolomics, and
multiple omics need to be further explored.

5. Conclusions and Further Perspective

In summary, polyphenols are widely distributed in our diet, which mainly come
from vegetables and fruits. It has anti-inflammatory, anti-oxidation, anti-tumor, and
gut health protection properties. Foodomics (genomics, transcriptomics, proteomics,
metabolomics, and multi-omics) emphasized the remarkable efficacy of polyphenols in
preventing and treating diseases, especially the anti-inflammatory and anti-tumor activity
and gut microbiota regulation. Gut microbes are involved in the metabolic processes of
polyphenols. Foodomics and microbiomics have contributed to the study of the mechanism
of polyphenols.

With the continuous development of omics technology, integrated analysis technology
of omics and multi-omics will help to explore the biological activity and gut microbiota
regulation of plant polyphenols. However, the bioactivity, metabolism, and mechanism of
polyphenols have not been fully understood. Due to the physical and chemical stability,
chelation, food interaction, and gastrointestinal absorption and metabolism, the bioavail-
ability of polyphenols is still low in the body of human and animals. Therefore, it is
necessary to combine multiple omics technologies to investigate the biological function
mechanism of plant polyphenols in the future. The strategy of enhancing the bioavailability
of polyphenols also needs to be further explored. The combined analysis of foodomics and
microbiomics is a trend of polyphenol research.
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