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Abstract: Cancer is one of the leading causes of death globally, associated with multifactorial patho-
physiological components. In particular, genetic mutations, infection or inflammation, unhealthy
eating habits, exposition to radiation, work stress, and/or intake of toxins have been found to con-
tribute to the development and progression of cancer disease states. Early detection of cancer and
proper treatment have been found to enhance the chances of survival and healing, but the side effects
of anticancer drugs still produce detrimental responses that counteract the benefits of treatment in
terms of hospitalization and survival. Recently, several natural bioactive compounds were found
to possess anticancer properties, capable of killing transformed or cancerous cells without being
toxic to their normal counterparts. This effect occurs when natural products are associated with
conventional treatments, thereby suggesting that nutraceutical supplementation may contribute to
successful anticancer therapy. This review aims to discuss the current literature on four natural bioac-
tive extracts mostly characterized by a specific polyphenolic profile. In particular, several activities
have been reported to contribute to nutraceutical support in anticancer treatment: (1) inhibition
of cell proliferation, (2) antioxidant activity, and (3) anti-inflammatory activity. On the other hand,
owing to their attenuation of the toxic effect of current anticancer therapies, natural antioxidants
may contribute to improving the compliance of patients undergoing anticancer treatment. Thus,
nutraceutical supplementation, along with current anticancer drug treatment, may be considered
for better responses and compliance in patients with cancer. It should be noted, however, that when
data from studies with bioactive plant preparations are discussed, it is appropriate to ensure that
experiments have been conducted in accordance with accepted pharmacological research practices
so as not to disclose information that is only partially correct.

Keywords: polyphenols; bergamot; oleuropein; quercetin; curcumin; apoptosis; inflammation;
antioxidant property

1. Introduction

To date, it is well-known that cancer is one of the leading causes of death globally.
The report entitled Global Cancer Statistics 2020, produced in collaboration with the
American Cancer Society (ACS) and the International Agency for Research on Cancer
(IARC), confirmed that in 2020 about 17 million people were affected by this disease,
comprising 36 types of cancer in 185 countries around the world [1,2]. As a result, the
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annual global health expenditure is extremely high. For this reason, projections of cancer
incidence and mortality are crucial to understanding the evolving scenario of cancer risk.
Within a population, the number of individuals who are diagnosed or die of cancer is
largely influenced by age, environment, and lifestyle. A very large study considered the
incidence and mortality of 26 types of cancer and highlighted their evolution from 1993 to
2014, and made projections from 2014 to 2035. Obviously, the projections do not include
assumptions about changes in risk factors [3]. Figure 1 shows 6 of the 26 types of cancer
reported in this study.

Figure 1. Incidence and mortality of six types of cancer. Taken and modified from [3].

Cancer is a disease in which some cells grow uncontrollably and can spread to other
parts of the body. In fact, it is important to stress that not all tumors are cancerous: benign
tumors are characterized by cells that do not show signs of transformation and remain
confined to the site of origin. On the contrary, the main characteristic of malignant tumors
(cancer) is the ability of the cells that constitute them to migrate from the original site to a
secondary location and metastasize to adjacent tissues, organs, and/or different parts of the
body through lymphatic or hematogenic diffusion [4]. Cancer has a multifactorial origin,
and its causes are found in genetic mutations, infection or inflammation, unhealthy eating
habits, exposure to radiation, work stress, and/or intake of toxins [5]. Before achieving the
aggressiveness necessary to become life-threatening, a tumor must be able to: (a) replicate
limitlessly; (b) move; (c) evade apoptosis; (d) produce growth signals that are self-sufficient;
(e) be insensitive to anti-growth signals; (f) degrade the extracellular matrix; (g) survive in
the blood; (h) share in the environment of a new tissue [6]. Normal cells can transform into
cancerous cells, but before this happens, they must undergo the phenomena of abnormal
changes known as hyperplasia and dysplasia. In hyperplasia, there is a considerable in-
crease in the number of cells that maintain normal characteristics. In contrast, cells assume
abnormal phenotypic characteristics in dysplasia. It is important, however, to point out that
hyperplasia and dysplasia do not necessarily cause cancer [7]. In general, early detection
of cancer and proper treatment increase the chances of survival and healing. The type of
cancer and the stage suggest the most suitable treatment to use; treatment options may be
chemotherapy, surgery, radiotherapy, hormonal therapy, targeted therapy, etc. Today, it is
particularly appropriate to use a combination of treatment methods to ensure the maximum
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effectiveness and optimal results [8]. However, each treatment has its side effects on the
patient, and the oncologist should choose the most appropriate treatment, considering
the risk–benefit ratio [9]. Chemotherapy is generally accepted as the standard therapy
and remains one of the main strategies in the treatment of primary tumors, although it is
well-known to cause DNA damage and affect both cancerous and non-cancerous cells. In
addition, cardiotoxicity is a complication of this treatment; the severity of cardiotoxicity is
dependent on cumulative dose, the type and combination of drugs used, and the presence
of co-existing pathologies such as diabetes mellitus, cardiac diseases, and other risk fac-
tors [10,11]. Radiation therapy also has side effects, such as neurological deficits caused
by vascular damage and fibrosis of neuronal structures [12,13]. Hormone therapy can
be used to manage hormone-dependent malignant tumors, to manipulate the endocrine
system, and to interfere with hormonal production or the activity of their receptors. In
general, hormone therapy involves the administration of exogenous hormones such as
corticosteroids, selective estrogen receptor modulators, somatostatin analogs, progestins,
gonadotropin-releasing hormone agonists and antagonists, aromatase inhibitors, and an-
tiandrogens. Some of these have antiproliferative and pro-apoptotic effects. Unfortunately,
this treatment can cause a wide range of complications including liver steatosis, thrombosis,
endometrial and osteoporosis hypertrophy, intestinal perforation, pulmonary embolism,
vascular necrosis, and breast and endometrial cancers [14]. Surgical resection is still widely
used in cancer treatment as it effectively relieves the patient’s symptoms. However, much
scientific evidence has shown that cancer recurs in many patients after a short time, owing
to the stress induced by surgery, which at the systemic level, stimulates inflammation,
increased release of cytokines, and the risk of cancer recurrence [15]. In addition, surgical
resection potentially enhances metastatic seeding of tumor cells, spreading cancer cells in
the vascular and lymphatic systems and favoring their migration into distant organs [16].

2. Natural Compounds and Cancer

Since the main purpose of anticancer treatments is to kill cancer cells without damag-
ing normal cells, and these drugs exert their action aspecifically on both cancer and normal
cells, it is necessary to develop an effective treatment with anticancer properties and minor
adverse effects [17]. More and more patients choose a non-traditional anticancer treatment
in addition to conventional chemotherapy and radiation therapy; here we discuss the use
of a complementary medicine that combines conventional and unconventional approaches.
Alternative medicine is the term used when unconventional treatment completely replaces
conventional treatment modes, emphasizing the mental, emotional, spiritual, and social
aspects of the patient [18]. Risk factors related to cancer onset include not only inheritance,
exposure to harmful substances, and hormonal imbalance, but also lifestyle, including diet
and nutrition. Dietary schemes based on regular intake of fruit, vegetables, foods rich in
selenium, vitamins (B-12 or D), folic acid, and antioxidants, along with high intake of fiber-
rich products and moderate consumption of milk and dairy products, play a protective role
in the prevention of cancer. On the other hand, consumption of meat and animal products
or animal fats may increase the incidence of cancer [19]. In particular, the World Health
Organization (WHO) highlights that a balance of energy intake—with a heightened intake
of fruit and vegetables and limited consumption of saturated fats, sugar, and salt—greatly
reduces the risk factors related to the onset of diseases [20]. So, the concept of the “healthy
diet” has been developed, which corresponds to a food plan that is able to guarantee health.
In a healthy diet, macronutrients (carbohydrates, proteins, and fats) are consumed without
excess, in appropriate proportions to support the energy and physiological needs, while
micronutrients (vitamins and minerals) must be absorbed in relatively small quantities
to ensure growth, development, metabolism, and physiological functioning [21]. These
dietary goals are maintained in many diets including the Mediterranean diet, Dietary
Approaches to Stop Hypertension (DASH), and Mediterranean-DASH Intervention for
Neurodegenerative Delay (MIND) [22,23]. In recent years the traditional Asian diets have
been added to the group of healthy diets [24]. The Mediterranean diet is based on the
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consumption of unrefined cereals, legumes, and the high consumption of vegetables and
fruits of different colors and textures with a high content of micronutrients, fibers, and
phytochemicals. Moderate consumption of animal protein (fish, white meat, and eggs) is
recommended, while red meat and processed meat are rarely consumed and then in small
quantities. Dairy products, recommended as a source of calcium and necessary for the
health of the bones and heart, must be consumed in moderation. In the Mediterranean
diet, olive oil serves as a primary source of dietary lipids. In addition, it is recommended
to drink water (1.5–2 l/day) as the main source of hydration, while wine is allowed in
moderation, to be consumed at meals [25]. The DASH diet is based on a model that aims
to keep blood pressure, cholesterol and triglycerides low. The main features are a high
consumption of fruits and vegetables, the intake of low-fat dairy, and a reduced amount
of saturated and total fat and cholesterol. The DASH diet has been shown to reduce car-
diovascular risk factors such as the onset of coronary artery disease, stroke, heart failure,
metabolic syndrome, and diabetes [26,27].

The MIND diet can be defined as a cross between the Mediterranean and DASH diets
and aims to support cognitive health during advanced age. The MIND diet is based on
increased intake of fruit, fresh vegetables, beans, whole grains, fish, poultry, olive oil, and
wine in moderation. In addition, foods considered unhealthy for the brain, including red
meats, butter/margarine, cheese, pastries, sweets, and fried or fast food, are greatly limited.
Interestingly, adherence to the MIND diet reduced the risk of developing Alzheimer’s
disease by 35% [28]. Foods considered healthy or unhealthy in Mediterranean diet, NASH,
and MIND are different, and we must deepen our specific knowledge of these dietary
plans to fully understand their differences [29]. Among traditional Asian diets, the Korean
diet is based on consumption of rice and other whole grains, fermented foods, indigenous
land and sea vegetables, mainly legume and fish proteins compared to red meat, medicinal
herbs (e.g., garlic, green onions, ginger), and sesame and perilla oils [30]. Unlike western
diets, the Korean diet is founded on small portions, derived from seasonal food sources,
and has an absence of fried foods. Epidemiological studies have shown that the relevance
to this diet is related to a reduced risk of metabolic syndrome, diabetes, obesity, and
hypertriglyceridemia [31]. The traditional Chinese diet mainly includes the consumption
of rice or noodles, soups, vegetables, steamed bread or fruit and vegetables, soy, seafood,
and meat [32]. Despite this diet being richer in carbohydrates, as it contains less fat
than a western diet, the traditional Chinese diet does not seem to promote weight gain,
suggesting that the restriction of carbohydrates may not be the only intervention applicable
to combat obesity and cardiometabolic risk [33]. Finally, the traditional Japanese diet is
characterized by small portions of several components, including rice, fish, soups, pickles,
algae, fruits, vegetables, and mushrooms. Adhesion to a traditional Japanese food model
has been associated with favorable effects on blood pressure and a lower prevalence of
hypertension [34,35].

Beside the differences found in the diets described, the common denominator seems
to be the high consumption of fruit and vegetables that is constantly present, and which
guarantees a reduced onset of cancer [36,37]. To date, it is known that several natural
bioactive compounds possess anticancer properties [38,39]. It is important to highlight
that there are more than 100 natural plant-based compounds currently in clinical use as
anticancer drugs [40].

Natural compounds with anticancer properties are capable of killing transformed or
cancerous cells without being toxic to healthy cells. Most fruits and vegetables consumed
with food are made up of bioactive molecules belonging to the family of polyphenols, a
group of natural compounds widely distributed in the plant kingdom; this group is varied,
and to date, more than 8000 phenolic structures are known [41]. Polyphenols are classified
according to chemical structure, and their subdivision is represented in Figure 2.
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Figure 2. Classification of polyphenols.

The main natural compounds currently used against several types of cancer are shown
in Table 1. In this review, among the various natural compounds with anticancer activity,
four bioactive extracts (bergamot, oleuropein, curcumin, quercetin) will be discussed.

Table 1. Natural compounds with anticancer activity.

Target Cancer Compounds Source Biological Activity Ref.

Breast

Fucoxanthin Marine carotenoid Anti-proliferative [42]
Punicalagin Pomegranate juice Apoptosis [43]
Resveratrol Grape skin and seeds Apoptosis [44]
Epigallocatechin-3-gallate Green tea polyphenols Antiangiogenic [45]
Sulforaphane Cruciferous vegetables Apoptosis [46]
Genistein Soy Phytoestrogen [47]
All-trans-retinoic-acid Vitamin A Apoptosis [48]
Parthenolide Tanacetum parthenium Apoptosis [49]
Soy Vegetarian food Antiangiogenic [50]
Garlic Allium sativum Apoptosis [51]

Lung

Apigenin Flavonoids Anti-proliferative [52]
Lupeol Guttiferae Anti-proliferative [53]
Saponin Soapwort plant Apoptosis [54]
Genistein Soy Apoptosis [55]
Luteolin Fruits and vegetables Apoptosis [56]
Taxol Taxus brevifolia Apoptosis [57]

Gallic acid Grape seeds, rose flowers,
sumac, oak, and witch hazel Apoptosis [58]

Caffeic acid phenetyl ester Propolis Anti-proliferative [59]
Gingerol Zingiber officinalis Apoptosis [60]

Pancreatic

Genistein Soy Anti-proliferative [61]
Garcinol Garcinia indica Anti-proliferative [62]
Limonoids Cipadessa baccifera Anti-proliferative [63]
Crocin Crocus sativus Apoptosis [64]

Fisetin Strawberry, apple, onion,
and cucumber Apoptosis [65]

Pomegranate
Urolithin A Fruits Anti-proliferative [66]
Methyl protodioscin Flavonoids Anti-proliferative [67]
Blueberries Flavonoids Apoptosis [68]
Procyanidin Anti-proliferative [69]
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Table 1. Cont.

Target Cancer Compounds Source Biological Activity Ref.

Colorectal

Carotenoids Fruits and vegetables Anti-proliferative [70]
β-sitosterol Prunus africana Apoptosis [71]
Saponin Soapwort plant Apoptosis [56]
Genistein Soy Anti-proliferative [72]
Ellagic acid Medicinal plants Apoptosis [73]

Ferulic acid
Whole grains, spinach, parsley,
grapes, rhubarb, wheat, oats, rye,
and barley

Apoptosis [74]

Prostate

Gallic acid Secondary metabolite in plants Anti-proliferative [75]
Neobavaisoflavone Psoralea corylifolia Apoptosis [76]
Rhodioflavonoside Rhodiola rosea Apoptosis [77]
Luteolin Fruits and vegetables Anti-proliferative [78]

Berberine

Hydrastis canadensis, Berberis
aristata, Coptis chinensis, Coptis
japonica, Phellondendron amurense,
and Phellondendron
chinense Schneid

Anti-proliferative [79]

Ovarian

Corilagin Ellagitannin in a wild of plants; Anti-proliferative [80]
Gallic acid secondary metabolite in plants; Apoptosis [81]
Ellagic acid Medicinal plants; Anti-proliferative [82]
Epigallocatechin-3-gallate Green Tea Polyphenols; Apoptosis [83]

Berberine

Hydrastis canadensis, Berberis
aristata, Coptis chinensis, Coptis
japonica, Phellondendron amurense
and Phellondendron
chinense Schneid

Apoptosis/Anti-
proliferative [84]

Blood

Rosavin Rhodiola rosea Apoptosis [85]
Oleanolic acid Fruits and vegetables Antiangiogenic [86]
Silibinin Milk thistle seeds Antiangiogenic [87]

Kaempferol Flavonoid aglycone in fruits
and vegetables Antiangiogenic [88]

Grape skin and seeds
Resveratrol Withania somnifera Antiangiogenic [89]
Withaferin A Antiangiogenic [90]

Bergamot (Citrus bergamia Risso et Poiteau) is a citrus fruit growing almost exclusively
in the south of Italy in a restricted area of the Calabrian coast, thanks to the particular
environmental conditions that are favorable for its cultivation. This citrus fruit is defined
as a hybrid between a sour orange (C. aurantium L.) and lemon (C. limon L.) or between a
sour orange and lime. Bergamot possesses a unique profile of flavonoids and flavonoid
glycosides [91]. To date, several important properties are recognized in bergamot, including
antioxidant, anti-inflammatory [92–97], neuroprotective, hypoglycemic, and hypolipemic
properties against many metabolic diseases [98–100]. Bergamot fruit is mostly used for its
essential oil (BEO), obtained by rasping the fruit peel, its polyphenolic fraction (BPF), and
its juice (BJ), which is obtained by squeezing the fruits and was initially considered as a
secondary product.

Olive oil is one of the main constituents of the Mediterranean diet and is extracted
from olive drupes that contain known biophenol secoiridoids. Among these, one of the
best known is oleuropein, which was proven to possess numerous beneficial properties
including antioxidant, anti-inflammatory, anticancer, antiviral, hypoglycemic, neuroprotec-
tive, and antiaging effects [101–103]. For this reason, this natural compound is considered
to be a “super functional food”.

Turmeric (Curcuma Longa) is a plant belonging to the ginger family (Zingiberaceae),
native to India but present also in China, Southeast Asia, and Latin America. Turmeric is
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a common spice, but in recent decades has aroused scientific interest for its therapeutic
potential with anticancer, anti-inflammatory, antidiabetic, antiaging, and neuroregener-
ative effects [104–106]. Curcumin, a yellow pigment from Curcuma longa, is the major
component of turmeric, and chemically it is a poliphenol.

Quercetin is a flavonoid ubiquitously present in fruits and vegetables, and for this
reason its intake is very common in the Mediterranean diet. It has also been recognized that
quercetin performs numerous beneficial functions by acting as an antioxidant, anticarcino-
genic, anti-inflammatory, antidiabetic, and antimicrobial [107,108]. Quercetin demonstrates
dose-dependent effects: at low concentrations, it acts as an antioxidant, while at high
concentrations, it is a pro-oxidant compound [109].

Currently, knowledge and experience regarding the anticancer activity of natural
compounds is increasing.

Since the treatment of cancer with a known chemotherapy induces the onset of sys-
temic side effects, such as cardiotoxicity or nephrotoxicity, which frequently require the
early withdrawal or replacement of treatment, the use of natural compounds as adjuvants
of chemotherapy could reduce the necessary doses and treatment times. In this way, the
desired anti-proliferative effect could be achieved by reducing the possibility of developing
systemic side effects. The use of natural compounds has increased exponentially in the last
decades as it is known that plant extracts do not involve side effects at the systemic level.
Nevertheless, it is key to note that it is important that studies in the scientific literature
have been conducted in accordance with best practices of pharmacological research so as
not to disclose information that is only partially correct [110–112].

2.1. Natural Compounds and Cancer: Cellular Viability

The use of natural compounds with anticancer effects has increased thanks to their
low toxicity and lower side effects, which allow their use in the treatment or adjuvant
therapy of cancer. Apoptosis is programmed cellular death, finely regulated at the gene
level, resulting in efficient removal of damaged cells. Induction of apoptosis is crucial in
precancerous lesions since harmful cells are eliminated by preventing uncontrolled cell
proliferation and cancer progression. Deregulation of apoptosis is considered one of the
characteristics of cancer progression, and transformed cells are able to circumvent this
process, although the mechanisms involved are not sufficiently known. For this reason,
therapeutic strategies aimed at restoring the sensitivity of cancer cells to apoptosis are
increasingly tested [113–115]. Citrus fruits represent major sources of flavonoids. Several
experimental studies have strongly indicated that bergamot and its extracts can exert
antitumor effects thanks to the ability of flavonoids to interfere with the main stages of
carcinogenicity: the onset, promotion, and progression of cancer [116]. The anticancerous
action of BEO has been adequately highlighted in several in vitro works. In particular, a
reduction in cell proliferation was triggered by the shutdown of the cell cycle in phase
G0–G1. In addition, intense pro-oxidant activity and cellular DNA damage have been
appreciated [80,116,117]. A very comprehensive work [118] conducted in vitro on human
cancerous cells of the nervous system (SH-SY5Y, PC12), prostate (PC3), and breast (MDA-
MB-231) showed that treatment with BJ at different concentrations (1–5%) arrested cancer
progression. In addition, BJ demonstrated its ability to reduce the growth rate of various
cancer cell lines with mechanisms dependent on the type of cancer [119,120]. Finally, it
has been shown in human colon cancer cells that low concentrations of BJ can induce
inhibition of the mitogen-activated protein kinase (MAPK)-dependent pathways, and
cause cell cycle arrest and alteration of apoptosis, while high concentrations produce
oxidative stress, causing DNA damage [121]. BPF has attracted scientific attention for its
peculiar composition and high content of flavonoids, such as naringin, hesperidin, and
neoeriocitrin [79]. Although few studies on the correlation between BPF and cancer are
available, multiple papers indirectly involving BPF are known. In fact, cholesterol-lowering
drugs are able to reduce cancer incidence and cancer-related mortality [122]. To date, it
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is known that BPF possesses several hypolipidizing properties against many metabolic
dysfunctions [123–126].

Oleuropein is the polyphenol most present in olives and olive leaves, and its anti-
cancer properties are well-known for several types of cancer, including breast, lung, liver,
prostate, and colon [127–130]. Belonging to the secoiridoids, a group of compounds found
exclusively in all 500 species of Oleaceae plants, oleuropein results in a reduction of cell
proliferation mainly by using two mechanisms: on the one hand, it acts by stopping the
cell cycle through the upregulation of cyclin-dependent kinase (CDK) inhibitors, and on
the other, by modulating the genic expression responsible for the induction of intrinsic
and extrinsic pathways of apoptosis through the upregulation of p53 and p21. In addition,
oleuropein can alter the function of key molecules involved in the onset and develop-
ment of cancer such as MAPKs, c-Met proto-oncogene, and the fatty acid synthase (FASN)
enzyme [131]. A recent study [132] conducted in vitro on two genetically different triple-
negative breast cancer (TNBC) cell lines (MDA-MB-231 and MDA-MB-468) demonstrated
the ability of oleuropein to suppress cell proliferation, stimulate apoptosis through S-phase
cell cycle arrest, and express the initiating caspases of the apoptotic process (Caspase1, 4,
and 14). A similar result was also obtained for differentiated thyroid cancer unresponsive
to the current radioiodine-based treatment [133]. In this work, a reduction in the prolifera-
tion of the TPC-1 and BCPAP lines of thyroid cancer was demonstrated, while only mild
effects were detected in the non-tumor thyroid TAD-2 cell line. Once again, the mechanism
involved in the reduced proliferation was a dose-dependent S-phase cycle arrest. In this
paper, the effect of peracetylated oleuropein, obtained by peracetylation reactions that
improved the stability of oleuropein and its ability to permeate within the cells [134,135],
was also evaluated and compared. The peracetylated oleuropein, as expected, responded
better than oleuropein, demonstrating stronger stoppage in the S-phase of the cell cycle.
There are several studies that describe the role of olouropein in reducing the expression
of histone deacetylase II (HDAC2), HDAC3, and HDAC4, thus inducing apoptosis but
also delaying cell migration and invasion [136]. Due to the low concentration of phenolic
secoiridoids in the main foods of our diet, their reduced absorption, and rapid metabolic
transformation, it is difficult to obtain any therapeutic potential from their consumption in
food alone. In addition, difficulties in many human models are also associated with the
enormous variability of nutraceuticals in chemical terms, composition, and preparation, as
well as in the quantification of the dosage and in the choice of appropriate formulations to
be administered. For this reason, in vivo biological effects and human trials still require
further investigation. To date, it is possible to use oleuropein as an adjunct to conven-
tional cancer therapies: recent studies have shown in animal models that the addition of
oleuropein to cisplatin protected against the toxic effects generated by the drug [137,138].

Quercetin is a flavonoid compound normally present in nature in a variety of plants,
fruits, and vegetables that are consumed daily in the diet. The numerous beneficial
anticancer, antioxidant, and anti-inflammatory effects of quercetin have already been
amply demonstrated. The antitumor effects of quercetin, observed both in vitro and
in vivo, are related to its ability to alter cell cycle progression, promote apoptosis, inhibit
cell proliferation, inhibit the progression of metastases, and angiogenesis [139]. Several
in vitro studies have highlighted the antitumor role of quercetin: for example, in ovarian
carcinoma (SKOV3 cell line), quercetin induced a decrease in cyclin D1, with consequent
arrest in the S and G2/M phases of the cellular cycle. In human leukemia (U937 cell line),
quercetin has been shown to induce cell cycle arrest at G2/M following the decrease in
cyclins D, E, and E2F, and in osteosarcoma cells (HOS), quercetin was able to induce changes
in the G0/G1 phase [140–142]. In addition, quercetin modulates the regulation of p53-
related pathways, inhibiting the activity of CDK2 and cyclins A and B. Direct involvement
of p53 was also demonstrated in breast cancer, where the MDA-MB-453 cell line increased
the expression of this protein [143,144]. It was also demonstrated that quercetin induced
apoptotic death of tumor cells (A375SM melanoma cell, HL-60 acute myeloid leukemia
cell, and A2780S ovarian cancer cell), increasing the expression of pro-apoptotic proteins
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and decreasing the level of antiapoptotic proteins [145]. More specifically, quercetin was
able to increase the release of cytochrome c from the mitochondria, activate the expression
of caspase-3, -8, -9, Bax, and Bad, and downregulate the antiapoptotic proteins, including
Bcl-XL, Bcl-2, and Mcl-1 [146,147]. Models of various types of cancer in vivo have also been
studied, and quercetin was shown to inhibit their growth, increase the survival rate of the
animals, and significantly reduce the volume of the tumor [148]. Quercetin was also proven
capable of promoting apoptosis and inhibiting proliferation, angiogenesis, and metastasis.
These effects were found in models of breast, pancreatic, prostate, and lung cancer; the
dosage of quercetin was 50 mg/kg [149–153]. In the last decade, it has been shown that
quercetin is able to increase its antitumor effect when the treatment is associated with other
compounds. For example, the liposomal co-encapsulation of vincristine and quercetin was
shown to be an improved therapy [154,155].

Curcumin is the most representative polyphenol extracted from the rhizomes of
Curcuma longa, with a typical yellow color. Curcumin is notoriously used as a compo-
nent in cosmetics, and as a flavoring for foods, beverages, and dietary supplements. To
date, curcumin has shown numerous therapeutic benefits against inflammation, oxidative
damage, obesity, metabolic syndrome, neurodegenerative diseases, and several cancers.
Furthermore, all these beneficial properties are justified by the chemical structure of cur-
cumin [156]. Curcumin was reported to prevent the growth of many tumors, inhibiting
cell growth, blocking the cell cycle, and stimulating apoptotic death; for example, in the
human colon cancer cell line HCT-116, it inhibited cell proliferation by cell cycle arrest
at the G2/M phase and/or in a small quantity in the G1 phase [157]. In other studies,
curcumin downregulated the genes for p21 and p27 (SMMC-7721 hepatoma cells) [158]
or upregulated the gene for p53 (HCT116 colon, MCF-7 breast, and CNE2, 5-8F nasopha-
ryngeal cancer cells) [159]. In addition, curcumin triggered caspase 8, 3, and 9, inevitably
reaching the activation of apoptotic death [160]. The proinflammatory transcription factor
NF-κB regulates more than 500 different genes expressing for proteins involved in cellular
signaling pathways, so all compounds that interact with NF-κB, inhibiting it, may be used
in cancer therapy. Curcumin was able to downregulate NF-κB in breast cancer cells [161]
and played an important role in hematologic tumors: in leukemia, curcumin stopped
nuclear translocation of NF-κB and the degradation of human myeloid ML-1a cells [162];
moreover, curcumin triggered apoptotic death in B-cell chronic lymphocytic leukemia
(CLL-B) by downregulation of the STAT3, AKT, and NF-κB proteins [163]. The treatment
of gastric cancer indicated the pharmacological efficiency of curcumin, which inhibited
antiapoptotic proteins of the Bcl-2 family and increased the expression of caspases 3, 8,
9, p53, and Bax [164]. The scientific literature offers various examples in other types of
cancer (lung, colorectal, liver, and pancreas), but the mechanisms are always related to
proliferative reduction, the onset of apoptosis, and cell cycle blockage [165]. Curcumin
has been tested on animal models, and the optimal dose to reduce cancer was found to
be 300 mg/kg [166]. In humans, early preclinical studies were conducted to evaluate
the tolerated dose, but further studies should nevertheless be conducted [167]. The data
reported in this section show that the four polyphenolic compounds considered (Bergamot,
Oleuropein, Quercetin, and Curcumin) have the ability to reduce cell viability in cancer. To
achieve this, natural compounds are able to stop the continuation of the cell cycle, induce
apoptotic death, and increase the expression of the tumor transcription factor p53. These
mechanisms are displayed in Figure 3.
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Figure 3. Anti-viability effects exerted by bergamot, oleuropein, quercetin, and curcumin.

2.2. Antioxidant Effect of Natural Compounds on Cancer

The cell metabolism also includes oxidative reactions useful for ensuring survival;
in fact, reactive oxygenated/nitrogenated species are produced and involved in several
regulatory processes, including gene expression, cell proliferation, and apoptosis. When
reactive species are generated in excess of the cellular antioxidant capacity, the main
biological molecules—such as DNA, proteins, lipids, carbohydrates, and enzymes—may be
oxidized, losing and/or altering their functions [168]. For example, reactive oxygen species
(ROS) interact extensively with nuclear DNA, generating mutations and genomic instability;
with proteins, generating protein adducts; with the lipids of cell membranes, altering
their functions. This damage induced by oxidative stress has been found in pathological
conditions and cancer cells [169]. To counteract reactive species, endogenous antioxidants
are physiologically present in the body. However, if the endogenous compounds cannot
provide complete protection, there are also exogenous antioxidants provided by food, food
supplements, and pharmaceuticals. In particular, the capability of natural products to
reduce cellular oxidative stress has been investigated in recent years [170]. Mitochondria are
important organelles of the eukaryotic cells, playing an essential role in energy metabolism.
Mitochondrial dysfunction is known to be associated with cancer. Free radicals produced
by mitochondria as products of their normal metabolism can include the hydroxyl radical
(OH•), superoxide anion (O2•−), hydrogen peroxide (H2O2), hydroxyl ion (OH−), and
nitric oxide (NO•). Most natural compounds have antioxidant activity owing to the
presence of one or more catechol groups in their structure, which are responsible for
eliminating reactive oxygen species, thus inhibiting the formation of free radicals and lipid
peroxidation [171–173]. The catechol also known as 1,2 dihydroxybenzene is characterized
by a brute formula equal to C6H6O2, and two hydroxyl groups are placed in the ortho
position on the benzenic ring [174].

Scientific literature has amply demonstrated that bergamot fruit has a robust antioxi-
dant property, and for this reason, its consumption is encouraged as health-promoting. For
example, BJ has been shown in vitro to possess a significant antiradical property against
superoxide and nitric oxide, O2• scavenging activity, and lipid peroxidation inhibition.
Parallel studies conducted in vivo on subjects fed hearts of mice with BJ or vehicle for
three months showed statistically significant antioxidant responses [76]. Naringenin, a
polyphenol belonging to the class of flavanones and widely distributed in citrus fruits, is
one of the major components of BPF [175]. In fact, this compound has been shown to induce
cytotoxic and apoptotic effects and prevent cell proliferation in different types of cancer
cells [176–178]. Unfortunately, its practical use in vivo is reduced owing to its hydrophobic
nature, short half-life, and poor absorption. For this reason, the use of nanomaterials was
suggested to improve its bioavailability [179].

Numerous scientific studies have highlighted the antioxidant properties of oleuropein
and its ability to promote the activity of ROS-detoxifying enzymes, including superox-
ide dismutase (SOD), catalase (CAT), glutathione S-reductase (GSR), and glutathione
S-transferase (GST). In addition, this compound inhibits lipid peroxidation, and the antiox-
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idant role of oleuropein is beneficial in different types of cancerous processes [180]. There
are several studies describing how oleuropein, in addition to reducing ROS, decreased the
expression of histone deacetylase, induced apoptotic death, and delayed the migration
and invasion of cells in a dose-dependent manner. In addition, oleuropein induced the
downregulation of metalloproteinase genes, which may be involved in the prevention of
breast cancer metastases [113,116,181]. An antioxidant and growth inhibitory effect was
found for differentiated thyroid cancer [115].

Curcumin has also been shown to possess, both in vitro and in vivo, a strong an-
tioxidant activity, and through this peculiarity, is able to reduce some stages of cancer
progression. In addition to increasing the activity of many antioxidant enzymes such
as SOD, CAT, GST, and GSR, curcumin inhibits the direct formation of reactive species
including superoxide radicals, hydrogen peroxide, and nitric oxide radical [182]. It has
been shown that curcumin is also able to increase the activity of detoxifying enzymes in the
liver and kidneys, reducing xenobiotics and protecting against carcinogenic processes [183].
Curcumin also played a radioprotective role and modulated the malondialdehyde levels in
a lung carcinogenesis model induced by benzo(a)pyrene, a major carcinogenic pollutant,
in mice [184]. Finally, it is important to note that curcumin also prevents brain injury,
thanks to the suppression of oxidative stress via the AKT/nuclear factor-E2-related factor
2 pathway, then acting as a neuroprotector [185]. Quercetin acts as an antioxidant by
reducing high-valent iron and thereby inhibiting lipid oxidation and the production of
iron-catalyzed ROS; in addition, it regulates signal transduction pathways such as NRkB,
MAPK, and AMPK [186]. Due to its poor toxicity, quercetin was shown to possess various
inhibitory effects on many steps of carcinogenicity [187]. The antioxidant effect has been
carried out, by polyphenols of interest, thanks to the presence of the catechol group and the
increased expression of antioxidant enzymes. These mechanisms are displayed in Figure 4.

Figure 4. Antioxidant effects exerted by bergamot, oleuropein, quercetin and curcumin.

2.3. Anti-Inflammatory Effect of Natural Compounds on Cancer

Inflammation was associated with the development and progression of cancer by the
end of the 19th century, owing to the discovery of leukocytes in neoplastic tissues. Yet
the clear evidence that inflammation plays a critical role in tumorigenesis is relatively
recent, and over the past 10 years this correlation has begun to have implications for
cancer prevention and treatment [188]. Currently, the correlation between inflammation
and cancer is explained by two pathways that can occur: the intrinsic pathway, in which
genetic events determine the formation of neoplasia and the subsequent and consequent
construction of an inflammatory microenvironment; and the extrinsic pathway, which starts
with an inflammatory process that, after becoming chronic, facilitates the development
of cancer [189]. Chronic inflammation is characterized by prolonged tissue damage, in
which cell proliferation is induced for the purpose of repairing damaged tissues. This
phenomenon, known as “metaplasia”, is normally a reversible process that lasts only for
the time necessary to physiologically reconstitute the damaged segment. In some circum-
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stances, metaplasia can also turn into “dysplasia”, a phenomenon that involves a disorder
of cell proliferation and leads to the production of atypical cells; frequently, dysplasia is
the event preceding cancer formation [190]. The chronic inflammatory microenvironment
is characterized by a cellular component (macrophages, leukocytes, and dendritic cells)
and a molecular component (proinflammatory cytokines, chemokines, adhesion molecules,
and inflammatory enzymes). The combination of both components generates the bino-
mial cancer inflammation [191]. The anti-inflammatory activity of bergamot derivatives
has been demonstrated in both in vitro and in vivo studies: for example, BEO reduced
carrageenan-induced inflammation in rats, an effect that was measured as a reduction
of paw volume [192]. In addition, BEO reduced the levels of the mRNA of IL-8 in cells
treated with TNF-α. Graziano et al. highlighted a significant decrease in skin inflamma-
tion with a reduction of intercellular adhesion molecule 1 (ICAM-1), with inducible nitric
oxide synthase (iNOS), nitric oxide (NO), and ROS after consuming BJ [193]. In addition,
BJ was shown to reduce certain inflammatory cytokines (IL-1β, IL-6, TNF-α, NF-κB) in
activated monocytes [194]. Impellizzeri et al. determined that BJ reduced the levels of
IL-1β, TNF-α, nitrotyrosine, p-JNK, ICAM-1, P-selectin, and NF-κB in an inflammatory
model of colitis [195]. It is also important to mention the scientific work of Currò et al.,
which highlighted an anti-inflammatory effect of BJ and a reduction in IL-1β, IL-6, and
p-JNK in a model of neuroinflammation [196]. Another study by Nisticò and collaborators
highlighted the ability of BPF to reduce UVB-induced photoaging in immortalized human
keratinocytes. In particular, the expression of inflammatory cytokines, changes in telomere
length, and cell viability were examined. The results showed that BPF modulates the
transduction pathways of the basic cellular signal, leading to antiproliferative, antiaging,
and immunomodulating responses [82]. Navarra et al. showed in vivo that BJ generated a
significant dose-dependent reduction in preneoplastic lesions of the colon. Additionally, a
downregulation of inflammation-related genes (COX-2, iNOS, IL-1β, IL-6, and IL-10) was
shown in rats taking BJ [197].

The protective effects of oleuropein against inflammation are multiple: in vivo prelim-
inary studies demonstrated a significant anti-inflammatory effect generated by oleuropein
during lipopolysaccharide-induced sepsis (LPS) in mice. To study an induced inflammatory
effect, LPS has been widely used in both in vitro and in vivo scientific work [198,199]. In
fact, pretreatment with oleuropein ameliorated LPS-induced liver and kidney histological
changes, mitigated the increased levels of malondialdehyde, and reduced the levels of
reduced glutathione and the number of inflammatory biomarkers (TNF-α, IL-1β, and
IL-6) [200]. Scientific works already published have highlighted the protective role of
oleuropein in several cancer cell lines, including leukemia, breast, pancreatic, prostate,
and colorectal [201–203]. It is important to point out that oleuropein proved capable of
discriminating between cancer and normal cells, inhibiting proliferation and inducing
apoptosis only in cancer cells [204–206]. Oleuropein’s mechanism is downregulation of
proinflammatory enzymes IL-6 and interleukin 1β [207,208].

The anti-inflammatory effect of curcumin is mainly related to its ability to inhibit the
activity of certain enzymes directly involved in inflammatory disorders and cancer, such
as cyclooxygenase-2 (COX-2), lipoxygenase (LOX), and inducible nitric oxide synthase
(iNOS). In fact, improper regulation of these enzymes has been associated with the onset of
pathophysiological disorders [209]. In addition, curcumin can suppress proinflammatory
pathways, blocking both tumor necrosis factor alpha (TNF-α) production and cell-mediated
signaling from TNF-α in various cell types. Both in vitro and in vivo studies have shown
that curcumin can direct block TNF-α, binding to this molecule and deactivating it [210].
Growing evidence has shown that curcumin exerts an interesting anticancer property:
for example, several studies demonstrated that curcumin (12 g/day for three months) in-
duces antiproliferation and apoptosis in several cancer cell lines such as breast, pancreatic,
prostate, kidney, and colorectal [211]. Curcumin also acts in the regulation of transcription
factor NF-κB, the expression of which is associated with the progression of several types of
cancer. In fact, NF-κB can be induced by carcinogens, free radicals, endotoxins, cytokines,
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and ionizing radiation. Specifically, curcumin acts as an NF-κB regulator, suppressing the
activation of IκB kinase (IKK), which is responsible for the nuclear translocation and acti-
vation of NF-κB [212]. Due to its anti-inflammatory action, curcumin is expected to exert
chemopreventive effects on carcinogenesis. Emerging preclinical evidence has pointed out
that to reduce the side effects of prolonged treatment with chemotherapy, it is advisable
to use combined therapies that promote anticancer efficacy without increasing the toxic-
ity [213]. Docetaxel, a chemotherapeutic agent belonging to the class of taxan drugs, is used
for the treatment of several neoplasms, in particular, for breast cancer, lung cancer, prostatic
carcinoma, and gastric adenocarcinoma. Banerjee et al. highlighted that combined treat-
ment with docetaxel (10 nM) and curcumin (20 µM) for 48 h significantly inhibited cellular
proliferation and induced apoptosis in prostate cancer, compared to curcumin and doc-
etaxel alone [214]. 5-Fluorouracil (5-FU) is considered a highly important chemotherapeutic
drug and has been widely used in the treatment of colorectal cancer. Unfortunately, patients
treated with this drug often develop a high resistance to it. The combination of 5-FU and
curcumin could overcome these difficulties, however, and pretreatment with curcumin
(5 µM)-enhanced 5-FU (0.1 µM) chemosensitization reversed the resistance [215]. Cisplatin,
an inorganic platinum agent that can induce DNA–protein crosslinks, is widely used as a
standard therapy for metastases and advanced bladder cancer. However, almost 30% of
patients do not respond to initial chemotherapy. Co-treatment with curcumin (10 µM) and
cisplatin (10 µM) displayed a powerful synergistic effect, causing the activation of caspase-3
and overregulating phospho-extracellular signaling of 1/2 Kinase (p-ERK1/2) compared
to curcumin or cisplatin alone [216]. In addition to these described effects, the implication
of curcumin in combination chemotherapy has been tested in several clinical trials.

Quercetin has a strong and long-lasting anti-inflammatory capacity; several in vitro
studies using different cell lines have shown that quercetin inhibits LPS-induced TNF-α
accumulation in macrophages and the production of LPS-induced IL-8 in A549 lung cells.
Quercetin inhibits the production and activity of enzymes that produce inflammation COX
and LOX [217], limits inflammation induced by LPS by inhibiting phosphatidyliinositol-3-
kinase (PI3K), and inhibits the release of proinflammatory cytokines. A study carried out
on human umbilical vein cells (HUVEC) showed a protective effect of quercetin against
inflammation induced by H2O2 and indicated that this effect was mediated by the sub-
regulation of adhesion molecule 1 (VCAM-1) in vascular cells [218]. Quercetin also affected
immunity and inflammation in vitro by acting directly on leukocytes and modulating many
intracellular signaling kinases [219]. Several studies have shown that quercetin decreased
the histological signs of acute inflammation by suppressing leucocyte recruitment, decreas-
ing chemokine levels, and stopping lipid peroxidation in an experimental rat model [220].
There are several studies in humans that have supported the antipathogenic capacities of
quercetin. The co-ingestion of two or more flavonoids increases their bioavailability, which
affects immunity and inflammation. In particular, when taken together, quercetin showed a
successful reduction in illness rates [221]. In addition to the anticancer activity of quercetin
as demonstrated by the induction of apoptotic death and the arrest of the cell cycle, this
natural compound also acts on the process of angiogenesis and formation of metastases in
cancer cells. It was shown in breast and prostate cancer that quercetin exerts an anticancer
action by inhibiting the growth of blood vessels by suppression of the vascular endothelial
growth factor-2 (VEGFR-2), an important signaling protein involved in angiogenesis [222].
In addition, quercetin can also inhibit the onset of metastases by modulating the expression
of caderins, the molecules that mediate cellular adhesion under conditions where the
inflammatory process is switched off [223]. The anti-inflammatory effects of Bergamot,
Oleuropein, Quercetin and Curcumin work by inhibiting the cytokines and cells involved
in the inflammatory process. These mechanisms are displayed in Figure 5.
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Figure 5. Anti-inflammatory effects exerted by bergamot, oleuropein, quercetin and curcumin.

2.4. Bioavailability of Polyphenols

The bioavailability of any compound taken with food varies in relation to its digestion,
absorption, and metabolism. Precisely for this reason, there is no correlation between the
amounts of compounds consumed in food and their bioavailability in the human body.

Polyphenols, once ingested, must also be absorbed and transformed into bioactive
compounds. In general, after ingestion, polyphenols meet an enzymatic cleavage of the
carbohydrate portion (when present) and its aglycones enter the epithelial cells of the small
intestine through passive diffusion [224].

If polyphenolic compounds cannot be absorbed in this district, they reach the colon
where they are metabolized by the microbiota. It is, therefore, likely that an alteration of
the gut microbiota will contribute to a reduction of polyphenol absorption and worsening
of human health [225,226]. However, it should also be noted that polyphenols could
have beneficial effects on the composition of the gut microbiota, acting as prebiotics [227].
Although the molecular mechanisms by which polyphenols can behave as prebiotics have
not been fully clarified, it is assumed that they perform selective antimicrobial activity
against pathogenic bacteria [228].

Subsequently, the final derivatives absorbed are conjugated by methylation, sulfation,
and glucuronidation reactions, and reach the liver through the blood circulation, where
may be subjected to phase II metabolism, transported into the appropriate tissues, and
finally, excreted by urine or feces [229]. With this information, we can conclude that
the beneficial effects of polyphenols for health depend on both the amount taken and
the bioavailability [230]. In fact, a certain quantity of polyphenols should be consumed
through the diet so that the concentrations of their metabolites present in the blood are not
too low, to ensure their beneficial effects. The bioavailability of polyphenols varies between
the different classes and depends on the chemical structure. The studies conducted have
allowed us to build a scale of bioavailability for the different polyphenols that, in order
of size from the largest to the smallest, can be reported as: phenolic acids > isoflavones >
flavonols > catechins > flavanones, proanthocyanidins > anthocyanins [231–233]. Because
of this characteristic of polyphenols, it would be interesting to standardize their extraction,
so as to know the amount of the initial intake, and to quantify the main metabolites present
before their elimination. This way, we would have better knowledge of the quantities of
polyphenols needed to ensure the performance of their activities.

2.5. Epigenetics, Cancer, and Involvement of Polyphenols

Epigenetics deepen the changes that can occur in DNA, affecting gene expression.
These variations are heritable from cell to cell, and once established, are relatively sta-
ble [234]. Although these changes occur during the early development of embryonic and
primordial cells, it is now known that they can also occur over the course of life; the main
causes may be drug use, incorrect diet, or exposure to an unfavorable environment [235].
The various epigenetic mechanisms work in a concerted and interdependent manner to
regulate gene expression.
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Epigenetic alterations often occur in the early stages of cancer development and cancer
cells; therefore, may inadequately activate oncogenes or inactivate tumor suppressors. For
this reason, being able to prevent epigenetic alterations can reduce the proliferation of
cancer cells, the severity of cancer growth, and metastases [236,237].

The major epigenetic modifications studied include DNA methylation, covalent hi-
stone modification, and non-coding RNA modification. DNA methylation is a simple
addition of a methyl group (CH3) in position five on the pyrimidine ring of the cytosine
residue in a cytosine-guanine pair (CG) and is essential for life. Nevertheless, this reaction
on CpG dinucleotides is involved in many point mutations that lead to genetic diseases in
humans and that increase the mutagenic risk [238]. In cancer, DNA hypomethylation can
lead to genome instability, DNA rupture, and the promotion of uncontrolled growth. On
the contrary, DNA hypermethylation usually leads to gene silencing, which is one of the
most common somatic aberrations in cancer [239].

Possible histone modifications include acetylation, citrullination, ubiquitylation, deam-
ination, mono-, di-, and tri- methylation, phosphorylation, and ribosylation. These changes
can affect chromatin density and result in a change in DNA accessibility, altering gene
regulation. It has been shown that most of these changes are found in many tumors [240].
Small non-coding RNAs include microRNA (miRNA), small-interfering RNA, and small
nucleolar RNA, which intervene in various biological processes such as development,
metabolism, and maintenance of homeostasis. The main role of miRNA is to participate
in the regulation of gene expression through translation inhibition and heterochromatin
formation, while their regulation is controlled by epigenetic effects. miRNA genes func-
tion as a genome surveillance mechanism; they can be epigenetically regulated by DNA
methylation or specific histone modifications. Dysregulation of miRNA is associated with
the development of numerous metastatic tumors [241]. It is widely accepted that many
cancers could be avoided by changing the food model and lifestyle. In addition, it has
been demonstrated that food may have epigenetic effects, and polyphenols contained in
fruit and vegetables are included as part of that [242]. Therefore, their consumption is also
highly recommended to understand the implications of diet on epigenetic modifications
and cancer development. Examples are given below: Resveratrol is a natural polyphenol
that is found in peanuts and in the peel of grapes and berries. The epigenetic effects of
resveratrol have been evaluated in numerous cancer models. Resveratrol was able to
induce dysregulation of numerous miRNA in cancer cells, but not in healthy ones [243].
In addition, this natural compound can protect against cancer by regulating transcrip-
tional suppression of a number of genes, including p53 [244]. Green tea polyphenols have
been shown to inhibit the tumor, its invasion, and angiogenesis in a mouse model of skin
cancer [245]. In particular, Epigallocatechin gallate (EGCG), a bioactive polyphenol in
green tea, has demonstrated epigenetic effects in humans through the demethylation of the
promoters of some tumor suppressor genes [246].

Soybean isoflavones can influence the onset of cancer, and it has been demonstrated
that soybean intake during childhood and adolescence has reduced the risk of breast
cancer [247]. The methylation of five cancer-related genes was evaluated in menopausal
women, and was evidenced that consuming a mix of isoflavones induced increased methy-
lation in some genes associated with breast cancer development, and reduced the risk of
developing the disease [248].

In addition to the examples given, numerous other compounds belonging to the
group of polyphenols perform epigenetic functions: it is important to mention lycopene,
curcumin, quercetin, isothiocyanates, genistein, and caffeic acid, among others [249–252].

3. Discussion

Although cancer is one of the world’s leading causes of death, a more optimistic
view for the future stems from the awareness that there have been many improvements in
diagnosis and treatment approaches. In particular, early detection can address the disease
with more satisfactory results, and less invasive treatments aim to increase tolerability in
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patients [253]. The ultimate goal is to reduce the mortality rate of cancer patients by increas-
ing the expectation of quality of life. A total of 90% of cancers are attributable to modifiable
risk factors, including a non-optimal diet, environmental pollution, excessive body weight,
consumption of alcohol or tobacco smoke, physical inactivity, and infectious agents [254].
The diet is an essential element for maintaining health, and it has been estimated that bad
eating habits are responsible for 5–10% of total cancer cases [255]. Several studies in the
scientific literature reported that the healthiest diet is the Mediterranean diet, which is
based on the consumption of high quantities of fruit, vegetables, dried fruits, legumes,
cereals, fish, and extra virgin olive oil, a moderate amount of wine and small amounts of
red meat, eggs, and dairy products [256]. Numerous clinical and epidemiological studies
have shown that the Mediterranean diet is protective against the onset of many diseases
such as diabetes, obesity, cardiovascular diseases, and cancer [257]. Most foods of plant
origin belong to the class of polyphenols, the largest group of phytochemicals, that are
proven to play an important role in the prevention of various diseases, including cancer,
cardiovascular diseases, diabetes, and degenerative neurodegenerative diseases [258].

In this review, the anticancer properties of four of these compounds were explored:
bergamot, oleuropein, curcumin, and quercetin. As reported in the literature, the natu-
ral compounds considered have numerous protective effects and tend to reduce altered
physiological conditions, respecting cellular homeostasis. Conversely, in the case of cancer,
the main purpose is to use substances that may be harmful to cancer cells by exerting
an antiproliferative and pro-apoptotic effect to block their growth [259,260]. A suitable
anticancer drug is a molecule able to distinguish specifically between healthy and trans-
formed cells, so as to be harmless to the first and harmful to the second. Since a molecule
with these characteristics is not yet available, the scientific community is investigating
the action of natural compounds, which generally produce fewer side effects than con-
ventional drugs. Due to concomitant events possibly amplifying tumor transformation
and growth, such as the inflammatory process and oxidant activity, it is necessary to find
a molecule with antiproliferative action and at the same time anti-inflammatory and an-
tioxidant properties [261,262]. The compounds considered and explored in this review
(bergamot, oleuropein, curcumin and quercetin) have demonstrated exactly this behavior
in vitro and in vivo. In particular, cell growth was reduced, triggering antiproliferative
and/or death pathways. At the same time, antioxidant and anti-inflammatory effects were
noted, reflecting the chemical structure of these natural compounds and preventing the
addition of characteristics to the tumor that would exacerbate it. It was also interesting to
note that some mechanisms of these natural compounds acted selectively on cancer cells
but not on their healthy counterparts.

4. Conclusions

In light of the results reported in this review, it will be interesting to increase the
pre-clinical data on the use of these substances in anticancer therapy. Although there is
little information about the bioavailability of natural compounds in vivo, the absence of
systemic side effects developed by polyphenols, and their epigenetic involvement in cancer
biology, make them particularly interesting and encourage scientific research to deepen the
information available, so that they can be considered a valid support in anticancer therapy.

It is important to emphasize, however, that further high-quality studies are needed to
clearly demonstrate the clinical efficacy of plant extracts.
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