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Abstract: Alzheimer’s disease (AD) is a neurodegenerative disease conceptualized as a clinical-
biological neurodegenerative construct where amyloid-beta pathophysiology is supposed to play a
role. The loss of cognitive functions is mostly characterized by the rapid hydrolysis of acetylcholine by
cholinesterases including acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Moreover,
both enzymes are responsible for non-catalytic actions such as interacting with amyloid β peptide
(Aβ) which further leads to promote senile plaque formation. In searching for a natural cholinesterase
inhibitor, the present study focused on two isocoumarines from hydrangea, thunberginol C (TC) and
hydrangenol 8-O-glucoside pentaacetate (HGP). Hydrangea-derived compounds were demonstrated
to act as dual inhibitors of both AChE and BChE. Furthermore, the compounds exerted selective and
non-competitive mode of inhibition via hydrophobic interaction with peripheral anionic site (PAS) of
the enzymes. Overall results demonstrated that these natural hydrangea-derived compounds acted
as selective dual inhibitors of AChE and BChE, which provides the possibility of potential source of
new type of anti-cholinesterases with non-competitive binding property with PAS.

Keywords: Alzheimer’s disease (AD); cholinesterase; molecular docking; thunberginol C; hy-
drangenol 8-O-glucoside pentaacetate

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by severe
cognitive impairment [1]. Cholinergic deficit underlying the memory and cognitive decline
is connected with decreased levels of the neurotransmitter, acetylcholine (ACh). Acetyl-
cholinesterase (AChE), an important component of cholinergic synapses, is responsible
for the hydrolysis of ACh [2]. The enzyme is found principally at neuromuscular junc-
tions and cholinergic synapses in high concentrations. However, butyrylcholinesterase
(BChE) is a non-specific type of cholinesterase involved in the hydrolysis of ACh, which
is ubiquitously expressed in liver, blood serum, pancreas and associated with glial and
endothelial cells in the brain [3]. Because of low expression in brain, the importance of
BChE was underestimated in neurodegenerative diseases such as AD [4].

Along with AChE, BChE appears to be a co-regulator of ACh level in the brain [5]. In
normal brain, AChE primarily hydrolyzes ACh while BChE plays only a supportive role.
However, the level of AChE declined in the cortex and hippocampus of progressive AD
patients, whereas that of BChE is substantially increased [6]. Furthermore, BChE main-
tained the cholinesterasic function in AChE knockout mouse models [7]. It is possible that
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these alterations are associated with the loss of cholinergic synapses and neurons, which
demonstrates that the inhibitory action of both enzymes may become more significant as
AD progresses [8].

Recent research has shown that AChE and BChE participate in AD progression.
Amyloid-β peptide (Aβ), a major component of extracellular senile plaques, is a charac-
teristic hallmark of AD [9]. Numerous studies demonstrated that Aβ fibrils are highly
toxic causing additional downstream damage such as oxidative stress, mitochondrial dys-
function, calcium dyshomeostasis, inflammation and neuronal death. It is noteworthy
that AChE accelerates Aβ assembly, where the peripheral binding site of AChE might be
involved in amyloid fibril formation [10–12]. It was demonstrated that AChE constitutes
a main co-factor in Aβ fibril complex, further leading to the conformational change of
Aβ [13,14]. Moreover, these AChE-Aβ complexes have shown to be more neurotoxic than
Aβ fibrils alone [12,15].

Although the role of BChE in AD is still not clear enough, several studies revealed
the association of BChE and Aβ plaques that are of the fibrillar, β-sheet form of Aβ.
Histochemical analysis of AD brain tissues indicated that BChE is present in Aβ plaques
playing an important role in the subpopulation and maturation of Aβ plaques in transgenic
AD mouse model [16]. Mesulam and Geula exhibited that BChE reactivity in Aβ plaque of
demented brains was about five to six times higher than those of non-demented elderly
ones [17]. BChE changed the life cycle of amyloid plaque by participating in the Aβ
transformation from an initial benign to malignant form [18].

Cholinergic abnormalities have complex reciprocal interactions with other pathologi-
cal hallmarks of AD including Aβ and tau. Previous study suggested that the cholinergic
deficit triggered Aβ deposition and tau hyperphosphorylation in ways that contribute to
the cognitive impairment [19]. Mori et al. demonstrated that anti-cholinesterase down-
regulated amyloidogenic and tau-generating pathways via stimulation of cholinergic
receptors [20]. In addition, muscarinic acetylcholine receptor (mAhR) agonists have been
associated with elevated soluble amyloid precursor protein α (sAPPα) release, suggesting
that these agents activate a pathway that cleaves amyloid precursor protein (APP) within
the Aβ domain and hence might prevent amyloid formation [21].

Hydrangeae Dulcis Folium (Hydrangea) has long been used as both traditional tea and
medicine in the Asian countries, such as China, Japan and Korea [22]. The plant has been
reported to possess anti-diabetic, anti-allergic and anti-bacterial activities [23–27]. The major
active chemical constituents of the plant are isocoumarins, secoiridoids and stilbenes [28].
In searching for natural cholinesterase inhibitors, 50 natural plant extracts have been
screened and Hydrangea displayed a potential inhibitory activity. The present study
investigated the anti-cholinesterase effects of two major Hydrangea-derived compounds,
thunberginol C (TC) and hydrangenol 8-O-glucoside pentaacetate (HGP), focusing on
enzyme inhibition via both in vitro and in silico approaches.

2. Materials and Methods
2.1. Materials and Chemicals

TC (≥98% purity) and HGP (≥98% purity) were obtained from ChemFaces (Wuhan,
China). Galantamine, 5,5’-dithiobis-(2-nitrobenzoic acid) (DTNB), AChE, BChE, trypsin,
chymotrypsin, elastase and their substrates were obtained from Sigma-Aldrich (St. Louis,
MO, USA). A beta-site APP cleaving enzyme 1 (BACE1) fluorescence resonance energy
transfer (FRET) assay kit was purchased from Pan Vera (Madison, WI, USA).

2.2. Cholinesterases Inhibition Assay, Enzyme Selectivity and Kinetic Study

Cholinesterases, trypsin, chymotrypsin, elastase and BACE1, assays were performed
according to the previous methods [29]. AChE, BChE, trypsin, chymotrypsin and elastase
were assayed according to the manual depicted in the reference using ACh iodide, bu-
tyrylthiocholine chloride, N-benzoyl-L-Arg-pNA, N-benzoyl-L-Tyr-pNA and N-succinyl-
Ala-Ala-Ala-pNA as substrates, respectively. BACE1 assay was achieved using a Rh-
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EVNLDAEFK-Quencher as a substrate. To prove the kinetic mechanisms of hydrangea-
derived compounds towards cholinesterases, both Dixon plot and Lineweaver–Burk com-
plementary methods were performed. The inhibitory constant (Ki) was obtained by Dixon
plot, and Vmax and Km were defined by Lineweaver–Burk plots. These kinetic parameters
were calculated using the SigmaPlot™ (version 12.3, Systat Software, Inc., San Jose, CA,
USA) [30].

2.3. In Silico Docking Analysis

X-ray crystal structures of human AChE (PDB code: 4PQE) and BChE (PDB code:
1P0I) were inquired from the Protein Data Bank. Compound identification number (CID)
of TC and HGP were obtained from PubChem (10333412 and 13962966). The Autodock
Vina program version 1.1.2 (The Scripps Research Institute, San Diego, CA, USA) was used
to conduct protein-ligand docking simulation.

2.4. Statistics

All results were representative of three independent experiments and expressed as the
mean ± SD. All statistical analysis was performed using statistical analysis system (version
9.3, Cary, NC, USA). Duncan’s multiple range test was used to determine significant
differences.

3. Results
3.1. Cholinesterase Inhibitory Activity of Hydrangea-Derived Compounds

To evaluate the ability to inhibit target enzymes, inhibitory effects of TC and HGP
against in vitro AChE and BChE were determined (Table 1). The structures of the com-
pounds were shown in Figure 1. TC and HGP had an IC50 value of 41.96 ± 1.06 µM
and 22.66 ± 1.63 µM against AChE, respectively. In addition, two compounds showed
anti-BChE activity with IC50 value of 42.36 ± 3.67 µM and 41.02 ± 3.03 µM, respectively.

Table 1. Cholinesterases inhibitory activities, inhibition type, and dissociation constants (Ki) of TC and HGP.

Compounds
AChE BChE

IC50
1 Ki Value 2 Inhibition Type 3 IC50

1 Ki Value 2 Inhibition Type 3

TC 4 41.96 ± 1.06 45.6 Non-competitive 42.36 ± 3.67 49.2 Non-competitive

HGP 5 22.66 ± 1.63 36.1 Non-competitive 41.02 ± 3.03 44.9 Non-competitive

Galantamine 6 1.72 ± 0.13 - 7 Competitive 12.21 ± 0.55 - Competitive
1 IC50 (µM) was expressed as mean ± S.D. of triplicate experiments. 2 Ki value (µM) showed the binding affinity for enzyme-inhibitor
complex. 3 Inhibition type of inhibitor determined by Dixon and Lineweaver–Burk plots. 4 HGP, hydrangenol 8-O-glucoside pentaacetate.
5 TC, thunberginol C. 6 Galantamine was used as a positive control in the cholinesterases assays. 7 - not tested.
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Both AChE and BChE belong to a family of serine hydroxylases with sequence homol-
ogy. To check the enzyme selectivity and specificity, the inhibitory activities on other serine
proteases such as trypsin, chymotrypsin and elastase, and BACE1 were evaluated (Table 2).
The results demonstrated that TC and HGP did not exhibit significant inhibition against
serine proteases and BACE1, indicating that both compounds selectively inhibit AChE and
BChE.

Table 2. Inhibitory activities (%) 1 of TC and HGP against BACE1 and serine proteases.

Compounds (µM) BACE1 Trypsin Chymotrypsin Elastase

TC
50 25.81 ± 3.11 −0.27 ± 1.51 6.04 ± 2.42 1.89 ± 1.09

100 28.68 ± 1.87 0.07 ± 2.00 8.50 ± 1.40 0.42 ± 0.36

HGP
50 20.02 ± 0.52 1.26 ± 3.36 7.16 ± 3.38 3.77 ± 1.66

100 25.21 ± 1.60 3.12 ± 1.69 5.15 ± 3.70 1.47 ± 1.31
1 The inhibitory activity (%) is expressed as mean ± SD of triplicate experiments.

3.2. Evaluation of Inhibition Kinetics of Hydrangea-Derived Compounds

The kinetic studies of TC and HGP against cholinesterases were conducted with differ-
ent concentrations of substrates and inhibitors (Table 1, Figures 2 and 3). The Lineweaver–
Burk plots exhibited that the intersections of fitting lines with various concentrations of TC
and HGP were neither on the Y axis, suggesting that both compounds were non-competitive
AChE inhibitors, with Ki values of 45.6 µM and 36.1 µM, respectively. Furthermore, the Ki
values of two compounds against BChE were 49.2 µM and 44.9 µM, respectively. Since the
Ki value shows the concentration needed to form an enzyme-inhibitor complex, lower Ki
values may therefore, represent more effective cholinesterase inhibition, which is essential
for the development of prevention candidates in AD.
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Figure 2. Kinetic plots of (a,c,e) acetylcholinesterase (AChE) and (b,d,f) butyrylcholinesterase (BChE)
inhibition by TC. (a,b) In the Dixon plots, each symbol displays the substrate concentration: 250 µM
(•); 500 µM (#); and 750 µM (H). (c,d) In the Lineweaver–Burk plots, the concentrations of TC were
as follows: 0.3 µM (•); 3 µM (#); 50 µM (H); and 100 µM (5). (e,f) Km values as a function of the
concentrations of TC (Inset) dependence of the Vmax values on the inhibitor concentrations.
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3.3. Molecular Interaction Mechanism of Cholinesterases and Hydrangea-Derived Compounds

Molecular docking study was performed to gain insights into the targeted enzyme-
inhibitor interaction and binding energy. AChE-TC and BChE-TC complexes had free
energies of −6.78, and −7.87 kcal/mol, respectively (Table 3). As shown in Table 3 and
Figure 4, the binding sites for AChE-TC complex were formed by van der Waals interaction
with the residues TRP286, LEU289, SER293, VAL294, PHE295, PHE297, PHE338 and
TYR341. BChE-TC complex formed by one hydrogen bond with interacting residues
GLN67. In addition, BChE residues including ASP70, TRP82, ASN83, PRO84, THR120,
GLU197, GLY439 and ILE442 were found to be responsible for hydrophobic interactions
with TC. In particular, hydrophobic interaction was involved on both AChE and BChE
applying with peripheral anionic site (PAS) residues of AChE-TRP286 and TRY341 and,
BChE-ASP70, respectively, suggesting TC inhibits both cholinesterases activity in allosteric
modes.

Table 3. Binding interaction of TC and HGP with cholinesterases.

Enzymes Ligands Free Energy
(kcal/mol)

No. of
H-Bond Residues Bond

Distance (Å)
van der Waals

Residues

AChE

TC −6.78 -
TRP286, LEU289, SER293, VAL294,

PHE295, PHE297, PHE338,
TYR341

HGP −9.77 3 TYR124,
TYR337

3.16/3.34
3.15

TYR72, ASP74, THR83, TRP86,
GLY121, GLY122, TYR124, SER203,

TRP286, PHE295, PHE297,
TYR337, TYR341, PHE338, HIS447

BChE

TC −7.87 1 GLN67 2.99 ASP70, TRP82, ASN83, PRO84,
THR120, GLU197, GLY439, ILE442

HGP −0.96

ASN68, LEU274, GLU276,
ALA277, PHE278, THR284,
VAL280, PRO281, SER287,

GLY283, ASN289

AChE, aceylcholinesterase; BChE, butyrylcholinesterase; TC, thunberginol C; HGP, hydrangenol 8-O-glucoside pentaacetate; -, not detected;
TYR, tyrosine; GLN, glutamine; TRP, tryptophan; LEU, leucine; SER, serine; VAL, valine; PHE, phenylalanine; ASP, aspartate; THR,
threonine; GLY, glycine; HIS, histidine; ASN, asparagine; PRO, proline; GLU, glutamate; ILE, isoleucine.
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Figure 4. The best docking poses between (a) acetylcholinesterase (AChE), (b) butyrylcholinesterase (BChE) and thun-
berginol C (TC). Hydrogen and hydrophobic interaction diagram of (c,e) AChE and (d,f) BChE. TRP, tryptophan; LEU,
leucine; SER, serine; VAL, valine; PHE, phenylalanine; THR, threonine; GLN, glutamine; ASP, aspartate; ASN, asparagine;
PRO, proline; GLU, glutamate; GLY, glycine; ILE, isoleucine.

As illustrated in Table 3 and Figure 5, HGP interacts with the residues TYR124, and
TYR337 of AChE via hydrogen bond interaction. Moreover, hydrophobic interactions
between HGP and 15 residues of AChE (TYR72, ASP74, THR83, TRP86, GLY121, GLY122,
TYR124, SER203, PHE295, TRP286, PHE297, TYR337, TYR341, PHE338 and HIS447) were
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demonstrated to be crucial for binding to the PAS (TYR72, TYR124, TRP286, TYR337 and
TYR341). In the formation of BChE-HGP complex, ASN68, LEU274, GLU276, ALA277,
PHE278, THR284, VAL280, PRO281, SER287, GLY283 and ASN289 were involved in
hydrophobic interactions with HGP.
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Recently, kinetic studies for AChE propose the existence of two substrate-binding
sites, the PAS, and catalytic active site (CAS). The PAS of AChE is composed of several
aromatic residues including TRY72, TRY124, TRY337, TRY341 and TRP286, located at an
entrance to the active site gorge. Tacrine, the first AChE inhibitor permitted by the FDA,
interacted with the CAS of AChE. However, due to its side effects including acute liver
toxicity, tacrine has been gradually withdrawn from the market [31]. To overcome this
disadvantage, research on new type of AChE inhibitors has been elevated.

The PAS of AChE traps its substrate ACh and transfers it to the deep catalytic site,
so when an inhibitor binds to PAS, it can block entry of the substrate into the gorge. In
addition, this PAS site plays a crucial role in polymerization of Aβ, involving AChE-Aβ
complexes, which accelerate fibril formation [12,15]. BChE also was found to associate
with β-pleated sheets of amyloid fibrils [16,32].

The pathological hallmarks of AD have multifaceted and reciprocal interactions with
the cholinergic lesion. Regarding the cholinergic-amyloid-axis hypothesis, several com-
pelling evidences supported the synergistic interaction between cholinergic system and Aβ
metabolism. Selective BChE inhibitor not only increased ACh level but also decreased that
of Aβ in APP/presenilin (PS) transgenic mice [33]. Cisse et al. demonstrated that mAhR
M1 agonists stimulated sAPPα release via protein kinase C (PKC)-dependent α-secretase
activation without interrupting BACE1 [21]. Activation of mAhR decreased Aβ level by
augmented α-secretase activity, implying APP process shift toward the non-amyloidogenic
pathway [34]. Furthermore, activation of nicotinic acetylcholine receptor α7 attenuated
Aβ-caused toxicity by upregulation of the phosphatidylinositol-3-kinase (PI3K)-protein
kinase B (Akt) and downregulation of glycogen synthesis kinase-3 (GSK-3) [35]. Chu et al.
demonstrated that reducing GSK-3 activity via PI3K/Akt signaling pathway prevented
hyperphosphorylation of tau in transgenic mouse model of AD [36].

Natural compounds are considered as a potential source of new type of cholinesterase
inhibitors due to their structural diversity, moderate to high biological activity and low tox-
icity. Several studies have been carried out toward discovery of natural anti-cholinesterase
obtained from plants, fungus and marine organisms with IC50 values ranging from at a
range from 2 to 200 µM [37,38]. Multi-targeted approach may provide better advantage
than a single-targeted one for multifactorial diseases such as AD. The present study demon-
strates the potential anti-cholinesterase property of TC and HGP as novel dual inhibitors
of both AChE and BChE via non-competitive binding with PAS.

4. Conclusions

Hydrangea-derived compounds showed novel and dual inhibitory effect toward
both AChE and BChE, that is selective and specific. In addition, kinetic and docking
analysis demonstrated that TC and HGP act as non-competitive anti-cholinesterase through
interaction with PAS of enzymes. This novel finding suggests that hydrangea-derived
compounds may act an alternative symptomatic treatment for Alzheimer’s cognitive
and behavioral symptoms and potentially associated with better clinical outcomes than
available single-ligand inhibitors. Further and in-depth human study is required in near
future.
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