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Abstract: The number of patients with central nervous system disorders is increasing. Despite
diligent laboratory and clinical research over the past 30 years, most pharmacologic options for the
prevention and long-term treatment of central nervous system disorders and neurodegenerative
disorders have been unsuccessful. Therefore, the development of drugs and/or functional foods to
prevent the onset of neurodegenerative disorders is highly expected. Several reports have shown
that polymethoxylated flavones (PMFs) derived from citrus fruit, such as nobiletin, tangeretin, and
3,3′,4′,5,6,7,8-heptamethoxyflavone, are promising molecules for the prevention of neurodegenerative
and neurological disorders. In various animal models, PMFs have been shown to have a neuropro-
tective effect and improve cognitive dysfunction with regard to neurological disorders by exerting
favorable effects against their pathological features, including oxidative stress, neuroinflammation,
neurodegeneration, and synaptic dysfunction as well as its related mechanisms. In this review, we
describe the profitable and ameliorating effects of citrus-derived PMFs on cognitive impairment and
neural dysfunction in various rat and murine models or in several models of central nervous system
disorders and identify their mechanisms of action.

Keywords: polymethoxylated flavones; nobiletin; tangeretin; 3,3′,4′,5,6,7,8-heptamethoxyflavone;
central nervous system disorders

1. Introduction

The number of patients with neurodegenerative diseases and neurological disorders
associated with dementia, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and
cerebrovascular dementia, is increasing [1,2]. Currently, approximately 50 million people
worldwide have dementia, and that number is expected to triple by 2050 [1,3]. Because AD
is the most common form of neurodegenerative disease [1,4,5], the development of new
treatments for AD is anticipated. The earliest pathological symptom of AD involves the
accumulation of β-amyloid (Aβ) plaques in the brain [5,6]. Briefly, Aβ plaques reportedly
start to form more than 20 years before the onset of AD symptoms [6]. About 10 years
after the start of Aβ accumulation, tau hyperphosphorylation and aggregation lead to
the formation of neurofibrillary tangles in the brain [6]. A few years later, mild cognitive
impairment develops, and the onset of AD occurs several years after that [6]. Thus, the
mechanism of AD onset is supported by the amyloid cascade hypothesis, which states that
abnormal accumulation of Aβ is responsible for cognitive decline [6]. However, abnormal
accumulation of Aβ/tau in the brain occurs long before AD onset, and thus far, no clinical
trials have successfully treated patients after AD onset. Researchers have recently shown
that neuroinflammation and oxidative stress in the brain play major roles in the develop-
ment of AD [7,8]. Interestingly, Venegas et al. (2017) reported that the overactivation of
microglia in the brain elicits an inflammatory response that triggers Aβ accumulation [9].
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It has also been reported that age-induced oxidative stress promotes Aβ accumulation
in the brain, which suggests that AD onset might be caused by neuroinflammation or
oxidative stress that precedes plaque formation in the brain [10]. Furthermore, studies
have reported that lifestyle-related diseases, such as diabetes, dyslipidemia, and obesity,
increase the risk of developing AD [11–13]. Therefore, preventing neuroinflammation,
oxidative stress, lifestyle-related diseases, and the accumulation of Aβ/tau in the brain is a
promising strategy for the prevention and treatment of AD. Neurodegenerative diseases
and neurologic disorders have some pathological similarities at the intracellular and molec-
ular levels, including oxidative stress, inflammation, and cognitive decline [7,8,14]. It is
widely accepted that oxidative stress and neuroinflammation contribute to the progression
of not only AD but also other neurodegenerative and/or neurological disorders, such
as PD, cerebrovascular dementia, epilepsy, and depression [2,14]. However, therapeutic
agents for these diseases have not yet been elucidated. Consequently, the development
of functional foods to prevent neurodegenerative diseases and neurological disorders is
highly expected.

Numerous natural resources contain bioactive substances, which allows them to func-
tion as treatments and means of preventing geriatric and neurodegenerative diseases [14–19].
Citrus peels are a rich source of polymethoxylated flavones (PMFs) and have been widely
used as a crude drug in traditional herbal medicines. The following compounds are major
PMFs in citrus fruits (Figure 1): nobiletin (3′,4′,5,6,7,8-hexamethoxyflavone, C21H22O8), tan-
geretin (4′,5,6,7,8-pentamethoxyflavone, C20H20O7), and 3,3′,4′,5,6,7,8-heptamethoxyflavone
(C22H24O9, HMF) [20]. Because of their anti-inflammatory and antioxidant effects, these
citrus-derived PMFs have the potential to prevent neurodegenerative and neurological
disorders [21–26]. In addition, these PMFs have shown beneficial effects against hyper-
lipidemia [27,28], obesity [29,30], diabetes [31,32], cardiovascular dysfunction [33,34], and
cancer [35–37]. In this study, we focus on the neuroprotective and ameliorative effects
of citrus-derived PMFs, nobiletin, tangeretin, and HMF, against central nervous system
dysfunction in several rat and murine models of central nervous system disorders and
related diseases as well as their mechanisms of action.
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2. Nobiletin

Nobiletin is abundant in citrus fruits, such as Citrus reticulata and Citrus depressa [14,20].
Nobiletin is particularly abundant in the peel (outer pericarp) and albedo (middle peri-
carp), which are the pericarp parts [20]. The effectiveness of nobiletin in several model
animals such as AD, PD, ischemic brain injury, oxidative stress, inflammation, and aging is
herein mentioned. In addition, we have also investigated the effects of nobiletin on gene
expression associated with oxidative stress and endoplasmic reticulum (ER) stress as well
as protein activities associated with synaptic plasticity.

2.1. AD Model Animals

AD is one of the most commonly diagnosed neurodegenerative diseases [4,5]. The
currently prevailing theory of AD pathogenesis is called the “amyloid hypothesis,” which
suggests that AD is caused by pathological forms of Aβ accumulation in the brain (Aβ

plaques) [4]. Two main Aβ peptides of different lengths (Aβ1-40 and Aβ1-42) are involved
in AD [4,5]. The continuous infusion of Aβ1-40 into the lateral ventricle of the rat brain
results in cognitive impairment [38]. Therefore, it is used widely as an animal model of
AD [38]. The spatial cognitive function of this model was measured using the eight-way
radial maze test [39]. The test results revealed that short- and long-term memory were
impaired based on the increases in working memory error and reference memory error [39].
Nobiletin (10–50 mg/kg, intraperitoneally [i.p.]) was administered for 7 days before and
after Aβ1-40 infusion into the right ventricle. Nobiletin was effective in preventing and
improving Aβ1-40–induced memory impairment, as assessed by the eight-arm radial maze
task [39]. Aβ is known to inhibit the phosphorylation of cAMP response element-binding
protein (CREB) in neurons [40]. Although Aβ inhibited CREB phosphorylation in the
primary hippocampal neurons, treatment with nobiletin significantly restored phosphory-
lated CREB levels [39]. Nobiletin may alleviate memory impairments by preventing the
inhibition of CREB phosphorylation by Aβ.

The effect of nobiletin on Aβ1-42–induced spatial learning and memory impairment in
mice has also been evaluated [41]. The administration of nobiletin (30 mg/kg orally [p.o.])
for 4 weeks prevented Aβ1-42–impaired spatial learning ability as assessed by the Morris
water maze [41]. In addition, acetylcholinesterase activity in the cortex and hippocampus
was improved by nobiletin. Furthermore, nobiletin significantly downregulated the Bax
and cleaved caspase-3 protein expression and upregulated the B-cell lymphoma 2 (Bcl-2)
and Bcl-2/Bax expression in the cortex and hippocampus of Aβ1-42–infused mice [41].
These results suggest that nobiletin induces a neuroprotective effect by regulating anti-
apoptotic mechanisms, including improved acetylcholinesterase activity in the cortex and
hippocampus of the Aβ-infused animals.

Two main enzymes are involved in generating Aβ from amyloid precursor protein
(APP): β-secretase (BACE1) and γ-secretase [42,43]. Another protein called tau may also
contribute to neuronal death during AD when it becomes hyperphosphorylated and ac-
cumulates in neurofibrillary tangles [44]. APP-SL7-5 transgenic (Tg) mice overexpress a
form of APP with two mutations: the London-type and Swedish-type [45]. These mice
show Aβ accumulation in the hippocampus and cortex beginning at nine months of age
and a marked accumulation of Aβ concomitant with cognitive impairment after 12 months
of age [45]. Daily nobiletin (10 mg/kg, i.p.) administration from nine months of age for
four months significantly improved fear-conditioned memory deficits [46]. Immunohisto-
chemical analysis revealed that nobiletin reduces Aβ deposition in the hippocampus [46].
Furthermore, nobiletin significantly reduced guanidine-soluble Aβ1-40 and Aβ1-42 in
the hippocampus [46]. Nobiletin may suppress the accumulation of Aβ in the brain and
improve memory impairment in the hippocampus of the APP-SL7-5 Tg model mice.

The triple-transgenic mouse model of AD (3xTg-AD) have mutations in the genes
for presenilin 1 (PS1), APP, and tau [47]. These mice exhibit AD-like pathologies such as
plaque formation, neurofibrillary tangles, and cognitive dysfunction [47]. Administration
of nobiletin (10–30 mg/kg, i.p.) for three months markedly improved short-term memory
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impairment in these mice [48]. Immunohistochemical analysis and enzyme-linked immuno-
solvent assay (ELISA) revealed that nobiletin administration significantly reduced levels
of soluble Aβ1-40 in the hippocampus [48]. Nobiletin was shown to prevent short-term
memory impairment by decreasing Aβ production and accumulation in the hippocampus
of 3XTg-AD.

Aging is the most strongly-associated additive factor in neurodegenerative disease
pathogenesis [49]. The deteriorated antioxidant function and the enhanced inflammatory
response associated with aging are closely related to the development of neurodegenerative
diseases, such as AD [49]. It is known that senescence-accelerated mouse-prone 8 (SAMP8)
exhibits AD-like pathologies including abnormal expression of anti-aging factors as well as
increased oxidative stress, neuroinflammation, Aβ deposits, tau hyperphosphorylation, ER
stress, and cognitive dysfunction [50–52]. Behavioral studies showed that administering
nobiletin (10–50 mg/kg, i.p.) to SAMP8 mice (~5 months old) for one month markedly
improved object cognitive memory impairment and context-dependent fear memory im-
pairment [53]. Glutathione (GSH) levels decreased in the cortex and hippocampus of
SAMP8 mice; however, nobiletin administration caused significant improvements [53].
Nobiletin administration also decreased oxidized glutathione (GSSG) and carbonylated pro-
teins (PC), which are increased by oxidative stress [53]. Furthermore, nobiletin significantly
increases the activity of antioxidant enzymes, such as superoxide dismutase (SOD) and
glutathione peroxidase (GPx) in the brains of SAMP8 mice [53]. Also, the hippocampus of
SAMP8 mice had increased tau protein phosphorylation levels of serine (Ser) 202, threonine
(Thr) 231, and Ser396 [53]. However, nobiletin significantly suppressed these increases [53].
These results suggest that nobiletin suppresses oxidative stress and tau phosphorylation
while improving memory impairment in SAMP8 mice.

In AD patients, learning and memory are impaired by the degeneration and loss of
cholinergic nerves in the cerebral cortex and hippocampus [54]. The OBX mouse is widely
used as a model of AD-like dementia because it exhibits learning and memory deficits
resulting from degenerating central cholinergic nerves after olfactory bulbectomy [55]. In
OBX mice, intraperitoneal (50 mg/kg) and oral (50–100 mg/kg) nobiletin administration
significantly ameliorated memory impairments according to the Y-maze test [56]. Also,
nobiletin significantly suppressed cholinergic neurodegeneration in the hippocampus [56].
Nobiletin may also improve cognitive impairment by suppressing the degeneration of
cholinergic nerves in the hippocampus of this model mouse.

Dysfunctional N-methyl-D-aspartate (NMDA) receptor-mediated neurotransmission
is linked with AD-induced behavioral changes and cognitive deficits in addition to depres-
sive disorders and suicidal behavior [57]. Administration of the NMDA receptor blocker
(MK-801) to mice causes learning and memory deficits [58,59]. Seven days of continuous no-
biletin (10–50 mg/kg, i.p.) administration significantly improved MK-801-induced memory
impairment, as assessed by fear conditioning and passive avoidance tests [60]. Further-
more, MK-801 inhibited extracellular signal-regulated kinase (ERK) phosphorylation in the
hippocampus, whereas nobiletin significantly restored levels of phosphorylated ERK [60].
Nobiletin may improve MK-801-induced cognitive deuteration by ERK activation in the
hippocampus.

2.2. PD Model Animals

PD is characterized by motor dysfunction due to the degeneration of dopaminer-
gic neurons in the substantia nigra pars compacta [61]. Approximately 2–3% of adults
older than 65 years are expected to be affected by PD [62]. It has been reported that the
degenerative mechanism of dopaminergic neurons involves oxidative stress, neuroinflam-
mation, mitochondrial dysfunction, protein aggregation and misfolding, excitotoxicity,
apoptosis, and deficiency of trophic factors [61,62]. Thus, therapeutic strategies, such as
the administration of antioxidants or anti-inflammatory drugs, activation of intracellu-
lar signal transduction pathways, and induction of neurotrophic factor expression, hold
promise for the treatment and prevention of PD [63]. The intravenous administration of
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1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) selectively kills dopaminergic neu-
rons, causing PD-like symptoms such as motor and cognitive dysfunction [64]. When taken
up by dopaminergic neurons, 1-methyl-4-phenylpyridinium (MPP+), the active metabolite
of MPTP, blocks mitochondrial complex I and thus deteriorates respiration, leading to the
formation of superoxides [65]. In the MPTP model of PD, the administration of nobiletin
(50 mg/kg, i.p.) for two consecutive weeks was found to improve motor impairment
during the rotarod test and beam test [66]. Furthermore, nobiletin was found to signifi-
cantly improve MPTP-induced cognitive impairment during the passive avoidance test
and novel object recognition test [66]. In this model animal, degeneration of dopaminergic
neurons in the striatum and CA1 region of the hippocampus as well as decreased levels of
dopamine, cAMP-regulated phosphoprotein 32, and Ca2+/calmodulin–dependent protein
kinase II (CaMKII) phosphorylation were confirmed. However, nobiletin significantly
improved these functional declines [66]. Studies using several models of PD have also
established that treatment with the neurotoxin MPP+ can damage dopaminergic neurons.
Treatment with nobiletin (10 mg/kg body weight) preserved dopaminergic neurons in
the substantia nigra of rats exposed to MPP+ [67]. Nobiletin also markedly suppressed
microglial activation. This suggests that nobiletin might protect against MPP+-caused
neurotoxicity via suppression of inflammation in the brain. Together, these results suggest
that nobiletin protects dopaminergic neurons from MPTP− and MPP+-induced toxicity
and may help prevent PD.

2.3. Ischemic Injury Models

Cerebral infarction is a cerebrovascular disorder that contributes to the development
of vascular dementia [68]. During cerebral infarction, excessive generation of free radicals
in the brain causes cellular damage, regardless of transient or continuous ischemia [68]. Be-
cause oxidative stress plays an extremely important role in the pathology of acute cerebral
infarction, controlling oxidative stress is crucial for treating acute cerebral infarction [68,69].
Therefore, antioxidants, such as edaravone, are used widely in cerebral infarction treatment
sites [70]. Carotid artery occlusion induces cerebral ischemia, which causes a high degree
of cognitive impairment in mice. Nobiletin’s effect on memory impairment induced by
cerebral ischemia in the occluded common carotid artery mouse model was examined
using a passive avoidance test and a Y-maze test [71]. Continuous nobiletin (50 mg/kg,
i.p.) administration for 7 days before and after occlusion of the carotid artery significantly
improved associative and short-term memory impairment [71]. In the hippocampal CA1
region of mice with cerebral ischemia, the phosphorylation of CaMKII and the expression
of microtubule-associated protein 2 were significantly reduced [71]. However, these reduc-
tions were attenuated by nobiletin treatment [71]. Nobiletin also attenuated the reduction
in long-term potentiation due to ischemic injury [71]. Furthermore, the neuroprotective
effect of nobiletin on rats with middle cerebral artery occlusion (MCAO) was also evalu-
ated [72]. Pretreatment with nobiletin (10 and 25 mg/kg. i.p.) improved brain edema and
impaired activities of Akt, CREB, brain-derived neurotrophic factor (BDNF), Bcl-2, and
claudin-5 in the ischemic cortex [72]. In addition, nobiletin significantly improved brain
edema, neurological deficit score and infarct volume 24 h post procedure [73]. Nobiletin
also increased the Nrf2, HO-1, SOD1 and GSH levels, while decreased the levels of NF-κB,
MMP-9 and malondialdehyde (MDA) [73].

Although blood flow is restored to ischemic brain tissue (ischemia/reperfusion), su-
peroxide and hydroxy radicals are generated, which promotes cerebral edema and neuronal
apoptosis [74]. In a mouse model of ischemia/reperfusion injury, nobiletin (30 mg/kg,
i.v.) administration during occlusion and reperfusion of the rat middle cerebral artery
suppressed cerebral edema and apoptosis [75]. In addition, nobiletin administration im-
proved the motor dysfunction caused by cerebral ischemia/reperfusion [75]. The MCAO
rat model was also established and treated with nobiletin [76]. Nobiletin treatment (5,
10, and 20 mg/kg, i.p.) notably improved neurological deficits, brain water content, and
brain index in an MCAO model, accompanied by a decrease in the infarct area in the
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brain tissue [76]. Apoptosis induced by cerebral ischemia/reperfusion was also improved
by nobiletin administration via the upregulation of Bcl-2 and downregulation of Bax
and caspase-3 [76]. Nobiletin treatment also reduced the levels of the proinflammatory
mediators tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 and increased those
of anti-inflammatory cytokine IL-10. Furthermore, the expression of phospho-p38 and
mitogen-activated protein kinase-activated protein kinase 2 was reduced by nobiletin
treatment in MCAO rats [76]. One study also reported that nobiletin enhances the neuro-
protective effect of propofol on ischemia/reperfusion injury through the suppression of the
Akt/mammalian target of rapamycin and nuclear factor kappa B (NF-kB) signaling cas-
cade [77]. Because nobiletin exerts antioxidant and anti-inflammatory effects, this natural
compound might have a protective effect against nerve cell damage caused by oxidative
stress and/or inflammation generated by cerebral ischemia and reperfusion.

2.4. Lipopolysaccharide (LPS)-Induced Inflammation

Neurodegeneration due to excessive inflammation is involved in the development
of AD and PD [7,8]. Numerous clinical and animal studies report that nonsteroidal anti-
inflammatory drugs (NSAIDs) are effective for the prevention and treatment of AD and
PD [78,79]. LPS is an inflammatory substance derived from Gram-negative bacteria that
activates the mitogen-activated protein kinase (MAPK)/NF-κB pathway [79]. Activation of
MAPK/NF-κB signaling activates microglia and stimulates the production of inflammatory
cytokines, which may lead to cognitive impairment [79]. Nobiletin (100 mg/kg/day, p.o.)
administration for six weeks prevented the increased expression of inflammatory media-
tors, such as nitric oxide (NO), TNF-α, interleukin IL-1, and IL-6 in an animal model of
LPS-induced neuroinflammation [80]. Furthermore, nobiletin attenuated the LPS-induced
activation of microglia and subsequent memory impairment [80]. The anti-inflammatory
effect of nobiletin was also investigated in the BV2 microglia culture system [81]. Nobiletin
(1–50 µM) treatment suppressed TNF-α and IL-1β levels [81]. LPS-induced phosphoryla-
tion of ERK, JNK, and p38MAPKs were also inhibited by nobiletin [81]. Although further
research is needed about preventing neuroinflammation, nobiletin could be expected to
prevent the neuroinflammation that leads to the development of PD.

2.5. Animal Model for Multiple Sclerosis

Multiple sclerosis is a complex chronic inflammatory and degenerative disorder of
the central nervous system [82]. Demyelination and multiple sclerosis comprise the most
common demyelinating condition. Nobiletin (50 mg/kg, i.p., two times/week) was ad-
ministered in a cuprizone-administered demyelination model for three consecutive weeks.
Nobiletin reduced the expression levels of myelin basic protein, a marker for mature oligo-
dendrocytes, and increased immunoreactivity for platelet-derived growth factor receptor
alpha, a marker for oligodendrocyte precursor cells (OPCs) [83]. Moreover, nobiletin en-
hanced the expression of proteolipid protein, a marker for mature oligodendrocytes and
OPCs, and also increased the immunoreactivity to oligodendrocyte transcription factor 2
(OLIG2), a marker for OPCs, and their precursor cells. Nobiletin promoted the production
of OPC in a model animal for demyelination [83]. Therefore, the effects of nobiletin on
patients with demyelinating diseases such as multiple sclerosis may need to be studied in
the future.

2.6. Chronic Unpredictable Mild Stress (CUMS)-Induced Synaptic Dysfunction and
Depression-Like Behavior

Depression is a common among patients with AD, especially during the early and
middle stages [84,85]. Nobiletin administration (25, 50, and 100 mg/kg, p.o.) significantly
reduced the immobility time in both the tail suspension and forced swimming tests without
accompanying changes in locomotor activity in the open-field test in mice [86]. The anti-
immobility effect of nobiletin (50 mg/kg, p.o.) was prevented by the pretreatment of mice
with a serotonin 5-HT(1A) receptor antagonist (WAY-100635, 0.1 mg/kg, subcutaneously
[s.c.]), a serotonin 5-HT(2) receptor antagonist (cyproheptadine, 3 mg/kg, i.p.), an α(1)-
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adrenoceptor antagonist (prazosin, 62.5 µg/kg, i.p.), a dopamine D(1) receptor antagonist
(SCH23390, 0.05 mg/kg, s.c.), or a dopamine D(2) receptor antagonist (sulpiride, 50 mg/kg,
i.p.), respectively [86]. In addition, 5 weeks of nobiletin administration significantly ame-
liorated the CUMS-induced increase in serum corticosterone levels [86]. Furthermore,
CUMS-induced loss of hippocampal BDNF, tropomyosin receptor kinase B (TrkB), and
synapsin I was improved by nobiletin [86]. Nobiletin may have antidepressant effects
through the improvement of the BDNF–TrkB pathway.

2.7. Various Mechanism of Neuroprotective Effect of Nobiletin

Central nervous system disorders have numerous pathological similarities at the sub-
cellular and molecular levels, including oxidative stress, neuroinflammation, and memory
impairment [7,8,87–89]. All these processes increase in the aging brain [90]. Increased
oxidative stress in the brain due to aging is closely related to the development of cen-
tral nervous system disorders, including AD and PD [91,92]. The effects of nobiletin on
oxidative stress and ER stress have been examined in cultured cells such as the HuH-7
human hepatocarcinoma cells, 3Y1 rat fibroblasts, and SK-N-SH human neuroblastoma
cells [93,94]. In the study, nobiletin markedly increased the expressions of endoplasmic
reticulum stress response genes such as DDIT3, TRIB, and ASNS in the SK-N-SH hu-
man neuroblastoma-derived cell line. Meanwhile, the expression of CCNA2, a cell cycle
control gene, and TXNIP, which encodes a thioredoxin-binding protein, decreased [93].
Furthermore, nobiletin suppressed tunicamycin-induced apoptosis as well as TXNIP pro-
tein expression upregulation [94]. These results indicate that nobiletin improves damage
induced by oxidative stress disorder, which may explain its ability to improve cognitive
function in various animal models of dementia. Also, it is plausible that nobiletin exerts
neuroprotective effects by suppressing apoptosis caused by endoplasmic reticulum stress.

Learning and memory demand the formation of new neural networks and synthesis
of new mRNA and proteins in the brain [95]. Intracellular signaling pathways are also
involved in learning and memory [95]. The PKA/ERK/CREB cascade is one of the most
important signaling pathway that regulates a wide variety of cellular processes, including
proliferation, differentiation, learning and memory, development, and synaptic plastic-
ity [96,97]. Memory formation depends upon CREB phosphorylation by kinases, such
as PKA and ERK, and subsequent CRE-dependent transcription in hippocampal neu-
rons [96,97]. Nobiletin significantly promoted CREB phosphorylation and CRE-dependent
transcription as well as PKA activity and ERK phosphorylation in hippocampal primary
neurons and the PC12 cells [98–100]. In addition, phosphodiesterase activity was signif-
icantly inhibited by nobiletin [98]. These results indicate that nobiletin promotes CREB
phosphorylation and CRE-dependent transcription through PKA and ERK signaling, which
enhances memory formation. Also, 4′-demethylnobiletin, a metabolite of nobiletin, also
enhances PKA/ERK/CREB signaling in cultured rat hippocampal neurons [101]. This is
one potential mechanism of action through which nobiletin and its derivatives improve
cognitive function in various animal models of dementia.

The AMPA glutamate receptor contains four subunits (GluR1-R4) and is closely in-
volved in synaptic plasticity, learning, and memory [102,103]. Increased PKA activity in
the hippocampus, and subsequent Ser-845 phosphorylation on the AMPA receptor subunit
GluR1 promotes the translocation of AMPA receptors to the cell membrane and induces
LTP [103]. Nobiletin was found to potentiate AMPA receptor-mediated synaptic transmis-
sion at Schaer collateral-CA1 pyramidal cell synapses in mice hippocampal slices [104].
This potentiation induced by nobiletin was not accompanied by changes in the paired-pulse
ratio, indicating the possible involvement of the postsynaptic mechanism [104]. Taken
together, nobiletin may promote synaptic transmission in the hippocampus, through post-
synaptic AMPA receptors at least partially by stimulating PKA-mediated phosphorylation
of the GluR1 Ser-845.

The NMDA-type glutamate receptor is a heterotetramer composed of the essential
subunit NR1 and a regulatory subunit (NR2A-D) that provides diversity in function [105].
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The distribution of NR1/NR2A and NR1/NR2B in the hippocampal CA1 region plays an
important role in memory formation [106]. It was revealed that 24 h of nobiletin treatment
in PC12 cells increased the gene expression of NR1 and NR2A by 1.4-fold and 1.7-fold,
respectively [107]. Also, the NR2A gene showed a 1.3-fold increase at 3 h after the treat-
ment [107]. An increase in NR2B expression was observed 6 h after treatment with nobiletin,
and a 2.5-fold increase compared to the solvent control was confirmed after 24 h [107].
In particular, NR2B expression was markedly increased by nobiletin stimulation [107].
It is speculated that this is a result of the direct control of PKA/ERK/CREB activity by
nobiletin because NR2B has a CREB binding site in its promoter region [107]. Nobiletin
may enhance the expression of genes involved in learning and memory by activating the
PKA/ERK/CREB signaling pathway, thus accelerating memory formation.

In the brains of AD patients, there are degeneration and loss of cholinergic nerves [54].
Furthermore, dysfunction of the olfactory nervous system appears during the early stages of
AD [54]. There are five subtypes of mACh receptors (M1 to M5); Gq/11-coupled M1 is espe-
cially abundant in the hippocampus, cerebral cortex, striatum, and other regions [108,109].
It has also been reported that ChAT activity is significantly reduced in the brains of AD
patients [110]. In PC12 cells, mACh receptor subtype M1 gene expression was shown to
increase approximately 2.5-fold at 3 h after nobiletin stimulation. Its expression continued
to increase for 12 h [111]. ChAT gene expression increased 1.7-fold and 2.1-fold at 3 and 6 h
after nobiletin stimulation, respectively [111]. As described above, it has been revealed that
nobiletin administration attenuates the decrease in ChAT protein levels observed in OBX
mice. Nobiletin’s effects on the expressions of mACh receptor and ChAT may contribute
to its ability to prevent and ameliorate cognitive dysfunction associated with cholinergic
neurodegeneration.

The Aβ fragment 25–35 (Aβ25–35) is also involved in the pathogenesis of AD [112,113].
Researchers have investigated the neuroprotective effect of nobiletin against Aβ25-35-
induced neuronal cell damage [114]. Nobiletin protected Aβ25-35–induced apoptosis by
restoring abnormal changes in intracellular oxidative stress markers, cell cycle, nuclear
morphology, and activity of apoptosis-related signaling [114]. With regard to the anti-
inflammatory responses, nobiletin markedly inhibited Aβ25–35-induced TNF-α, IL-1β, NO,
and prostaglandin E2 (PGE2) production [114]. Moreover, nobiletin significantly inhibited
Aβ-induced cyclooxygenase-2 (COX-2) and inducible NO synthase (iNOS) expression,
which was attributed to the blockade of NF-κB p65 and phosphorylation of its inhibitor,
IκB-α [114]. Moreover, this natural compound suppressed the phosphorylated c-Jun N-
terminal kinase (JNK) and p38 levels without affecting the ERK1/2 level [114]. Nobiletin
may also have the protective effects against Aβ25-35-induced neuroinflammation and
subsequent cell death.

Recently, it has been reported that neprilysin can degrade Aβ [115,116]. However,
neprilysin levels in the brain are known to decrease with advancing age and AD [117].
Likewise, it is expected that AD symptoms may be relieved by increasing the activity
and expression levels of neprilysin in the brain. Interestingly, Fujiwara et al., found that
nobiletin enhances the gene and protein expression of neprilysin as well as its enzymatic
activity in cultured SK-N-SH cells [118]. Furthermore, nobiletin increased Aβ degradation
through increased neprilysin expression [118]. Nobiletin also decreased the intracellular
and extracellular levels of Aβ in iPS cells derived from AD patients that overproduce
Aβ [119]. Nobiletin may enhance neprilysin expression and activity, thereby promoting
Aβ degradation. Since nobiletin inhibits BACE1 activity [120], nobiletin may also decrease
Aβ levels by interfering with its production.

Thus, nobiletin might be a potential candidate for amelioration of neurological dis-
eases, such as AD, via antioxidative, anti-inflammatory, anti-Aβ pathology and regulation
of signal cascades related to neurotransmission and CRE-mediated transcription (Figure 2).
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3. Tangeretin

Tangeretin is a citrus PMFs with a structure similar to that of nobiletin. Tangeretin
is found in the peel (albedo) of tangerine and other citrus fluits [20]. It appears to be
a very noble phytochemical with many potential health benefits. Tangeretin is readily
absorbed by tissues and has many beneficial properties such as neuroprotective actions
and antidementia activity. The neuroprotective effect of tangeretin against PD, ischemic
injury, epilepsy, chronic kidney disease (CKD), traumatic stress, oxidative stress and
neuroinflammatory models were investigated.

3.1. PD Models

The effects of tangeretin in numerous PD animal models were investigated. Unilateral
injection of 6-hydroxydopamine (6-OHDA), a synthetic catecholaminergic neurotoxin, into
rats’ medial forebrain bundle significantly decreased the number of tyrosine hydroxylase-
immunopositive (TH+) cells in the substantia nigra and declined the striatal dopamine
content [121]. Tangeretin (20 mg/kg, p.o.) for 4 days improved the 6-OHDA–caused
deterioration in TH+ cells and prevented the attenuation of dopamine content in the
striatum [121]. It was also reported that tangeretin can pass through the blood–brain
barrier and serve a neuroprotective effect in the brain.

Another study investigated that the neuroprotective effect of tangeretin in the pre-
vention of neuroinflammation and improvement of dementia in MPTP-infused PD model
rats [122]. Treatment with tangeretin significantly improved memory impairments and
ameliorated motor functions. Histological analysis revealed the protective effects of tan-
geretin against MPTP-caused dopaminergic degeneration and hippocampal neuronal death.



Nutrients 2021, 13, 145 10 of 22

Tangeretin also attenuated the expression of the inflammatory mediators iNOS and COX-2
as well as those of the cytokines IL-1β, IL-2, and IL-6 [122].

ER stress induces a signaling reaction known as the unfolded protein response (UPR),
which aims to restore proteostasis via the induction of adaptive programs when stress is
chronic and/or unrepaired [123]. Abnormal levels of ER stress have been reported in the
postmortem tissue of humans with PD as well as in most cellular and animal models of the
disease [124]. Hashida et al. reported that tangeretin (10 mg/kg, p.o.) to MPTP-infused
mice upregulated the expression of UPR-target genes in both dopaminergic neurons and
astrocytes. Tangeretin treatment also facilitated neural cell survival [125].

In addition, Fatima et al. studied the effect of tangeretin on the symptoms of PD
exhibited by PD model transgenic flies (Drosophila melanogaster) [126,127]. Tangeretin (5, 10,
and 20 µM) was added to the flies’ diet, and the flies were allowed to feed on it for 24 days.
At the same time, another set of PD flies were allowed to feed on a diet with 3–10 µM
of L-DOPA. These authors studied the effect of tangeretin on dopamine content, lipid
peroxidation, GSH, GST, PC, and monoamine oxidase activity, activity pattern, climbing
ability, and the histopathology of the brain of PD model flies. Results indicated that
exposure of PD flies to different doses of tangeretin was associated with a marked delay in
the loss of climbing ability and an increase in dopamine content. Tangeretin also reduced
the expression of various oxidative stress markers [126,127].

3.2. Cerebral Ischemia–Reperfusion Injury Model

Researchers have investigated the protective effect of tangeretin against ischemia–
reperfusion injury in the rat [128]. Ischemia–reperfusion injury was induced in the brain
via transient MCAO (2 h) and reperfusion (20 h). Tangeretin (5, 10, 20 mg/kg) significantly
suppressed infarct volume, brain edema, brain water content, neurological score, and
Evans blue leakage. Nobiletin also remarkably downregulated the inflammatory and proin-
flammatory cytokine levels of PGE2, iNOS, COX-2, IL-1β, toll-like receptor 4, interferon-γ,
TNF-α, and IL-6 and the oxidative stress parameters SOD, GSH, GPx, catalase, glutathione
reductase and MDA, in the serum and brain tissue of experimental rats. Thus, tangeretin
could have neuroprotective and anti-inflammatory effects against ischemia–reperfusion
injury in rats through suppression of inflammatory reaction and oxidative stress [128].

3.3. Epilepsy Model Rats

Epilepsy is a common neuronal disorder characterized by recurrent seizures [129,130].
The protective effect of tangeretin against neural apoptosis and seizure severity in pilo-
carpine (30 mg/kg, i.p.)-induced seizure model rats was investigated [131]. Oral admin-
istration of tangeretin (50, 100, or 200 mg/kg) improved the seizure scores and latency
to first seizure of the rats and improved the pilocarpine-caused inhibition of PI3K/Akt
pathway [131]. In addition, pretreatment of tangeretin reduced the number of TUNEL-
positive cells in the in the hippocampal CA1 and CA3 regions. Tnangeretin also maintained
the expressions of apoptosis-inducing factor in the mitochondria and the expressions of
apoptosis-related proteins, e.g., Bcl-2, Bad, Bax and cleaved caspase-3. Moreover, seizure-
induced elevations in the activities and expressions of matrix metalloproteinase (MMP)-2
and MMP-9 were modified by pretreatment of tangeretin [131]. Tangeretin may have a
neuroprotective effect on pilocarpine-caused seizures through the activation of PI3K/Akt
cascade and regulation of MMPs.

3.4. Nephrectomized Rats

CKD is a progressive loss of kidney function, and a significant health problem with
limited therapeutic options [132]. Both oxidative stress and inflammatory responses have
been associated in the pathology of CKD [132,133]. CKD patients frequently experience
neurological complications that affect both the central and peripheral nervous systems,
resulting in dementia [134]. The identification of effective treatment strategies has high
clinical value in the therapy of CKD. In one study, five of six nephrectomized rats exhibited
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increased levels of MDA and reactive oxygen species [135]. Raised levels of cytokines
IL-6 and IL-1β, and TNF-α, NO accompanied by activated NF-κB/TNF-α/iNOS signaling
cascades were suppressed by tangeretin (50, 100 or 200 mg/kg, i.g.) [135]. In addition,
cognitive dysfunctions and memory impairments observed in nephrectomized rats were
rescued by tangeretin [135]. These data suggest that the antioxidant and anti-inflammatory
effects of tangeretin ameliorated cognitive impairments in CKD model rats [135].

3.5. Posttraumatic Stress Disorder (PTSD) Model Rats

PTSD is a stress-related psychiatric/mental disease [136,137]. Research has shown that
14-day tangeretin (100 mg/kg, i.p.) treatment improves cognitive dysfunctions induced by
a single prolonged stress episode mimicking PTSD induction in rats [138]. Tangeretin also
improved the neurological abnormalities and the single prolonged stress-induced declines
in dopamine and 5-HT levels in the hippocampus and amygdala [138]. These effects could
be attributed in part to the induction of hippocampal genes encoding tyrosine hydroxylase
and tryptophan hydroxylase 1 [139]. The ameliorating effects of tangeretin on memory and
behavioral abnormalities associated with traumatic stress may need further study in the
future.

3.6. Antioxidative and Antineuroinflammatory Effect of Tangeretin

Antioxidative and neuroprotective activity of tangeretin against oxygen–glucose de-
privation (OGD)-induced injury on human brain microvascular endothelial cells (HBMECs)
was studied [140]. The researchers found that tangeretin prevented cell viability in re-
sponse to OGD-induced injury and enhanced the viability of HBMECs. Tangeretin was
able to enhance the activity of SOD and reduce the levels of reactive oxygen species and
MDA as well as improve cell apoptosis in OGD-stimulated HBMECs. It was shown that
these cytoprotective effects of tangeretin are related to the inhibition of the JNK signaling
pathway [140].

On the other hand, the Nrf2 signaling cascade is one of the major pathways involved
in the protection of cells against oxidative stress through upregulation of the expression
of neuroprotective genes such as SOD [139]. Tangeretin was able to regulate the Nrf2
signaling pathway to exert antioxidant and anti-inflammatory activities [139].

To suppress microglial activation-mediated neuroinflammation has become a promis-
ing target for the development of medicates or functional foods to treat neurodegenerative
diseases [141]. Shu et al. reported that tangeretin inhibits microglial activation implicated
in the resulting neurotoxicity after LPS stimulation in cultured rat microglia and BV2 mi-
croglial cell models [142]. The results indicated that tangeretin suppressed the production
of NO, PGE2, TNF-α, IL-1β, and IL-6 in a dose-dependent manner. In addition, it inhibited
the LPS-induced expression of iNOS and COX-2 in microglial cells [142]. Tangerine peel
extract, which abundantly contains tangeretin, suppressed LPS-induced proinflammatory
cytokine expression such as that of TNF-α, IL-1βand IL-6, and NO in the BV2 microglia
culture system [143]. The anti-inflammatory effect of tangeretin was also investigated in
rheumatoid synovial fibroblasts (RASFs) [144]. Tangeretin remarkably suppressed RASFs
proliferation and downregulated the expression of MMP-1, MMP-3, and COX-2 levles
and the phosphorylation of JNK, p38, and ERK. Tangeretin also reduced the elevated
expression levels of PGE2 and NF-κB caused by IL-1 [144]. These results support further in-
vestigation of tangeretin’s therapeutic potential and molecular action mechanism regarding
neuroinflammation and neurological diseases accompanying microglial activation.

4. HMF

HMF is another PMF found in citrus fruits [20]. Although it has relatively low content
compared with nobiletin and tangeretin [20], evidences are accumulating on the neuropro-
tective effects of HMF. The effectiveness of HMF in numerous neural disorder models (e.g.,
cerebral ischemia, neuroinflammation, chronic stress, and epilepsy) has been examined. In
addition, HMF has antioxidant, anti-inflammatory, and neurotrophic functions.
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4.1. Cerebral Ischemia Mouse

The ERK/CREB cascade is one of the most important pathways in the regulation of
synaptic plasticity as well as development of long-term memory [145,146]. After ischemia,
HMF induced the phosphorylation of ERK1/2 and CREB in the hippocampus [147]. In
addition, HMF significantly increased the expression of BDNF in the hippocampal dentate
gyrus, and most BDNF-positive cells were also stained against glial fibrillary acidic pro-
tein [147]. HMF increased the number of doublecortin-positive neuronal precursor cells in
the hippocampus [147]. These results suggest that HMF could promote BDNF production
in astrocytes and enhance neurogenesis after brain ischemia, which may be caused by the
activation of ERK1/2 and CREB.

Another study using a cerebral ischemia mouse model investigated the effects of HMF
on protection against cognitive decline and neural cell death [148]. The authors found that
the HMF administration for 3-day immediately after ischemic surgery improved against
ischemia-induced cognitive impairment, rescued neuronal cell death, enhanced BDNF
production, promoted CaMKII phosphorylation, and inhibited microglial activation in
the hippocampus [148]. These results suggest that HMF has a neuroprotective effect for
ischemic injury by causing BDNF upregulation via activation of the ERK/CREB cascade.

4.2. MK-801–Induced Memory Deficits and Locomotive Hyperactivity

HMF significantly induced the activation of ERK/CREB cascade in cultured cortical
neurons [149]. Researchers have also investigated the administration of HMF in mice
treated with the NMDA receptor antagonist MK-801 and found that it restored the MK-
801–induced deterioration of spatial learning performance in the Morris water maze
task [149]. HMFs may improve MK-801–induced cognitive dysfunction by activating
ERK-related cascade in the cortex [149]. In addition, the improvement effect of HMF on
MK-801-induced locomotive hyperactivity was served by phosphorylation of ERK1/2 in
the hippocampus [150]. Interestingly, intraperitoneally injected HMF were immediately
detected in mice brain. Moreover, the permeability to the brain tissues of HMF was
significantly greater than that of other citrus PMFs such as nobiletin and tangeretin [150].
The permeation of these PMFs into mice brain correlated with their abilities to improve
MK-801-induced behavioral abnormalities, indicating that HMF can cross blood-brain
barrier and directly affectable to the brain [150]. This finding could provide clues to the
structure–activity relationship of PMFs with antidementia and neuroprotective properties.

4.3. Antineuroinflammatory Effect

The effect of HMF on inflammation in the hippocampus was investigated using mice
injected intrahippocampally with LPS [151]. HMF prevented LPS-induced body weight loss
as well as microglial activation in the hippocampus [151]. In addition, HMF suppressed the
mRNA levels of IL-1β and TNF-α and that of COX-2 in the hippocampus [151]. Ihara et al.
also reported that HMF inhibited LPS-induced iNOS protein and mRNA expression by
suppressing the activation of NF-κB and the phosphorylation of the p38 in rat primary as-
trocytes [152]. These results suggest that HMF has the ability to reduce neuroinflammation
in the brain.

4.4. Stress-Induced Depression Models

One study investigated the antidepressive effects of HMF in mice injected subcuta-
neously with corticosterone at a dose of 20 mg/kg/day for 25 days [153]. HMF treatment
ameliorated corticosterone-induced depression-like behavior, as evaluated by the forced
swim and tail suspension tests [153]. In addition, corticosterone-caused BDNF depletions
in the hippocampus were improved by HMF [153]. HMF administration also ameliorated
the corticosterone-induced reductions in neurogenesis in the dentate gyrus subgranular
zone accompanied by reductions in the expression levels of phosphorylated CaMKII and
ERK1/2 [153].
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The effect of HMF on the CUMS model was also investigated [154]. Researchers
found that CUMS-induced depressive-like behavior was ameliorated by HMF [154]. HMF
administration restored the CUMS-induced reduction in BDNF expression, decreased
neurogenesis, and decreased levels of phosphorylated CaMKII in the hippocampus [154].
These effects were inhibited by the pretreatment of U0126, a MAPK inhibitor, suggesting
that HMF exerts its effects as an antidepressant drug by inducing ERK activation and
BDNF expression [154].

4.5. Neurotrophic Effect of HMF

Neurotrophic effect of HMF in vitro using rat C6 rat glioma cells was investigated [155].
HMF enhanced the cAMP level, ERK and CREB phosphorylation, and BDNF expression
in C6 rat glioma cells [155]. In addition, HMF inhibited the phosphodiesterases PDE4B
and PDE4D [155]. HMF induced BDNF upregulation was abolished by U0126. These
findings suggest that HMF might exert its neurotrophic effects by inducing the expression
of BDNF in C6 cells via the activation of cAMP/ERK/CREB signaling [155]. Given that
HMF induce ERK activation in cultured cortical cells [149], this natural compound may
affect both neuronal and glial cells in the brain.

Moreover, 5-hydroxy-3,6,7,8,3′,4′-hexamethoxyflavone (5-OH-HMF), an analog of
HMF, was shown to efficaciously prompt neurite outgrowth of PC12 through the upregu-
lation of growth-associated protein 43, a neural differentiation marker [156]. 5-OH-HMF
also enhanced CREB phosphorylation, CRE-mediated transcription, and c-fos gene ex-
pression [156]. Moreover, both CRE transcription and neurite outgrowth induced by
5-OH-HMF were inhibited by the PKA inhibitor H89 [156]. Thus, 5-OH-HMF might also
have a neuroprotective effect on neural disorders through regulation of gene expression
via CRE-mediated transcription.

5. Shared Functions and New Research Perspectives

The three types of PMFs exerted neuroprotective and neurotrophic effects in various
experimental models. These natural compounds share common mechanisms such as
antioxidant and anti-inflammatory effects. The antioxidant and anti-inflammatory effects
of PMFs may be an important mechanism of neuroprotective effect in various neurological
models. On the other hand, PMFs seem to activate neural function through activation
of several intracellular signal cascade and gene expression. Therefore, structure-activity
relationship studies may be needed in order to understand the precise mechanism of action
of the neuroprotective effects of PMFs.

We further mention herein the facts that there is one exciting discovery of PMFs’ func-
tion which deserve additional discussion. Circadian rhythms are biological activity rhythm
driven by internal circadian clocks and are a fundamental mechanism to regulate various
pathways and pathophysiology [157]. Circadian disruption induces the development
of numerous diseases, including obesity, metabolic syndrome, neuroinflammation and
cognitive impairment [157–159]. In addition, disruption of circadian rhythms is a common
occurrence in elderly individuals, and is more severe in patients with neurodegenerative
diseases, such as AD and PD [158,159]. Interestingly, nobiletin, and to a certain degree also
tangeretin, has been reported to activate circadian rhythms, and confer protection against
metabolic disease, aging and delirium [160–165]. The regulation of circadian rhythms
by PMFs may partly be involved in the improvement of neuronal function in several
neurological disease model animals.

6. Conclusions

In this paper, we reviewed the neuroprotective effect of citrus PMFs, nobiletin (Table S1),
tangeretin (Table S2) and HMF (Table S3), and highlighted their potential action mech-
anisms. PMFs significantly prevent and/or improve cognitive dysfunction and motor
dysfunction in animal models. These action mechanisms involve diverse functions, such as
antioxidant effects, anti-inflammatory effects, inhibition of Aβ pathology, suppression of
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neurodegeneration and neuronal cell death, regulation of neurotrophic signals and synap-
tic plasticity (Figure 3). Furthermore, citrus PMFs exert antidementia effects after oral,
subcutaneous and intraperitoneal administration in animal models of neurodegenerative
diseases and neuronal disorders. Nobiletin, tangeretin, HMF, and its bioactive metabolites
can also cross the blood–brain barrier [150,166,167]. PMFs are generally quite safe, which
is a major advantage. It has been shown that chronic administration of the extract of Citrus
reticulata Blanco, Citrus reticulata or Citrus sinensis, which contain high concentrations of
PMFs, have no harmful effects on animals [168,169], and humans [170,171].
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hepatic steatosis [173] and cancer prevention [174,175]. Although consisting of only a few
cases, one clinical study has demonstrated that PMF-rich citrus peel extract prevents the
progression of cognitive dysfunction in AD patients on donepezil therapy [176]. Based on
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ameliorate central nervous system disorders.
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