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Abstract: Blueberry (BB) consumption is linked to improved health. The bioconversion of the
polyphenolic content of BB by fermentative bacteria in the large intestine may be a necessary step
for the health benefits attributed to BB consumption. The identification of specific gut microbiota
taxa that respond to BB consumption and that mediate the bioconversion of consumed polyphenolic
compounds into bioactive forms is required to improve our understanding of how polyphenols impact
human health. We tested the ability of polyphenol-rich fractions purified from whole BB—namely,
anthocyanins/flavonol glycosides (ANTH/FLAV), proanthocyanidins (PACs), the sugar/acid fraction
(S/A), and total polyphenols (TPP)—to modulate the fecal microbiota composition of healthy adults in
an in vitro colon system. In a parallel pilot study, we tested the effect of consuming 38 g of freeze-dried
BB powder per day for 6 weeks on the fecal microbiota of 17 women in two age groups (i.e., young
and older). The BB ingredients had a distinct effect on the fecal microbiota composition in the artificial
colon model. The ANTH/FLAV and PAC fractions were more effective in promoting microbiome
alpha diversity compared to S/A and TPP, and these effects were attributed to differentially responsive
taxa. Dietary enrichment with BB resulted in a moderate increase in the diversity of the microbiota
of the older subjects but not in younger subjects, and certain health-relevant taxa were significantly
associated with BB consumption. Alterations in the abundance of some gut bacteria correlated not
only with BB consumption but also with increased antioxidant activity in blood. Collectively, these
pilot data support the notion that BB consumption is associated with gut microbiota changes and
health benefits.
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1. Introduction

The gut microbiota is a recognized modulator of human health and is shaped by host genetics,
environment, lifestyle, and diet [1,2]. Most studies investigated cohorts representing western populations
and lifestyle and compared healthy subjects and individuals with diverse conditions. Despite significant
inter-individual variations in the gut microbiota composition, a general description of the healthy adult gut
microbiota has emerged [3], but the variation range of phylum proportional abundances in healthy subjects
is still large. Factors working throughout the lifespan such as repeated antibiotic use, significant changes
in dietary habits, and infections may lead to perturbations and reductions in the composition and
phylogenetic diversity of the gut microbiota that are associated with disease [4].

Immuno-senescence, hospitalization, and changes in dietary habits may collectively contribute
to the age-related gut microbiota alterations observed in older individuals and that are linked in
turn to the increase in the inflammatory state of older adults, a known risk factor for mortality
in humans and animal models [5,6]. In conditions characterized by an altered microbiome at any
point in life, gut microbiota manipulation can be a target for prevention, improvement, or even
therapy [7,8]. This could be achieved with the use of probiotics, fecal microbiota transplants (FMT),
live biotherapeutics, or prebiotics [9]. Accumulating evidence suggests that polyphenols are a dietary
component with potential prebiotic activity [10,11].

Polyphenols are plant-derived dietary components that can be grouped into non-flavonoids and
flavonoids [12]. Non-flavonoids include compounds such as tannins, phenolic acids, and lignans [12].
Flavonoids include isoflavones; neoflavonoids; and others such as chalcones, flavones, and flavonols,
which are the building blocks of proanthocyanidins and anthocyanins [13]. Anthocyanins are present in
plants as glycosylated anthocyanidins conjugated with sugars including glucose, galactose, arabinose,
rhamnose, and xylose [14]. The dietary intake of these compounds has been associated with health
benefits based on in vitro and in vivo experimental models and human studies [10,15].

The levels of flavonoid consumption reported for adult populations vary significantly, likely due
at least in part to differences in the analytical methods and associated reference standards used to assess
the flavonoid content in food products, but also because of widely varying dietary habits [14,16,17].
Adults in the US, Europe, and the UK have a daily consumption of flavonoids that ranges from
177 mg/d up to 428 mg/d, and a consumption of anthocyanidins that ranges from 4.2 mg/d up to
19 mg/d [16,18,19].

Unabsorbed phenolic compounds reach the colon, where they may serve as substrates for fecal
microbiota fermentation [20]. Several in vitro [21,22], in vivo [23–27], and human studies [28–30]
indicate health benefits and the potential for polyphenols to modulate the gut microbiota. There is also
scientific interest in the combined effect of dietary polyphenols and fiber on the gut microbiota [31].
In this context, blueberry (BB) consumption may provide adequate amounts of dietary polyphenols
with potential health benefits [32].

To further elucidate the interactions between BB ingredients and the human gut microbiome,
we profiled the compositional changes that occurred in batch fermentations inoculated with the fecal
microbiota of healthy young adults and supplemented with isolated BB polyphenol-rich fractions.
These fractions are individually enriched for different major classes of presumptive bioactive BB
ingredients, and have been tested for their activity in multiple previous publications [33–37]. To detect
microbiota taxa that are responsive to human BB consumption, 17 healthy female volunteers in two
age groups consumed freeze-dried BB for 6 weeks, and their gut microbiota composition was analyzed
before and after the dietary intervention. The data indicate that BB ingredients or whole BB fruit can
affect the microbiota both in in vitro colon model systems and in human consumers, but the effects on
microbiota diversity are greater in older consumers.



Nutrients 2020, 12, 2800 3 of 21

2. Materials and Methods

2.1. Faecal Inocula and the In Vitro Colon Model

A pool of 5 fecal microbiota samples was used to inoculate the fermenter vessels comprising an
artificial colon model. The five fecal samples were collected from healthy young donors (coded as
follows: HYD3 32 years old (yrs), HA4 26 yrs, HA6 29 yrs, HA7 29 yrs, HA8 35 yrs) under a procedure
approved by the local clinical research ethics committee. All the subjects gave their informed consent
for inclusion before they participated in the study. The study was conducted in accordance with the
Declaration of Helsinki, and the protocol was approved by the Ethics Committee/Institutional Review
Board at Cornell University (Protocol ID#: 1706007263).

Fecal samples were collected and transferred to an anaerobic cabinet no later than one hour after
passing. Each fecal sample was homogenized in a reduced sterile solution of PBS containing 20%
glycerol and stored at −80 ◦C. Before each fermentation run, an aliquot of each of the 5 fecal samples
(i.e., microbiota samples) was thoroughly thawed in an anaerobic cabinet and mixed in equal volumes
for the inoculum.

Batch fermentations were used to simulate the colonic bacterial fermentation of the selected
substrates [38]. One percent (w/v) fecal inoculum was prepared to inoculate each of three parallel
single vessels with a 150 mL working volume in each vessel. A continuous flow of NO2 was used to
maintain anaerobic conditions during the 24 h pH (6.8) and temperature (37 ◦C)-controlled fermentation
runs, with continuous stirring and atmosphere monitoring. Adaptation to in vitro media results in
reduced microbiota diversity, as observed in previous studies [39]. To reduce this loss of microbiota
diversity, the basal fermentation medium was supplemented with a mix of prebiotic fibres (referred to
as MIX) (xylan 2 g/L; pectin 2 g/L; arabinogalactan 2 g/L; soluble starch 4 g/L) plus amylopectin (1 g/L),
beta glucan (0.5 g/L), and glucose (2 g/L) [40,41].

The MIX medium was supplemented separately with each of 4 different BB polyphenol fractions:
i. anthocyanins/flavonol glycosides (200 mg/L); ii. proanthocyanidins (200 mg/L); iii. sugar/acid
fraction; and iv. total polyphenolics (333 mg/L). These were prepared as described in Section 2.4.
A fermentation run without any supplementation was performed as a control. Samples from the
fermentation culture were retrieved at 0, 16, and 24 h and centrifuged immediately, and the pellet and
supernatants were kept at −20 ◦C for further analysis.

2.2. Bacterial DNA Extraction for In Vitro and Human Study

A 200 mg quantity of fecal pellet was weighed as instructed in the QIamp Fast DNA Stool
(Qiagen, Manchester, UK) extraction kit protocol. The samples were homogenized mechanically in
sterile tubes containing InhibitEX solution and zirconia glass beads of three sizes—0.1, 0.5, and 1.0 mm
(Thistle Scientific Ltd., Glasgow, UK)—using a Mini-Beadbeader (Biospec Products, Inc., Bartlesville,
OK, USA). The subsequent steps of gDNA extraction were performed as previously described by our
laboratory [39].

2.3. Microbiome Profiling of In Vitro and Human Study Samples

The primers S-D-Bact-0341-b-S-17 (5′-CCTACGGGNGGCWGCAG-3′)/S-D-Bact-0785-a-A-21
(5′GACTACHVGGGTATC TAATC C-3′) 5′ [42] were used to amplify the V3/V4 variable region
of the 16S rRNA gene for the profiling of the bacterial fecal microbiota using the Phusion High-Fidelity
PCR Master Mix (ThermoFisher Scientific, Waltham, MA, USA). After PCR product purification,
the Illumina MiSeq system protocol was used for library preparation. Indexing PCR was performed
to amply the dual-index barcodes to the amplicon (Nextera XT V.2 Index Kits; Illumina, San Diego,
CA, USA). The purification of the barcoded amplicons was performed with the Agencourt AMPure
XP-PCR Purification system (Beckman Coutler, Inc., Brea, CA, USA). The Qubit dsDNA HS Assay Kit
(Thermo Fischer Scientific, Waltham, MA, USA) was used to quantify the products. Equal concentrations
of all the purified amplicons were pooled into a library that was sequenced (2 × 300 bp) on a MiSeq
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Illumina platform in the Teagasc Food Research Centre sequencing facility (Teagasc Moorepark, Fermoy,
Ireland). ENA accession number: PRJEB39031.

2.4. Isolation of Enriched Fractions for Bioassay

Four major ingredient fractions of BB were prepared essentially as previously described in several
previous publications [32–37]. In detail, whole frozen BB, cv. “Coville”, were extracted, and fractions of
total polyphenolics (TPP), proanthocyanidins (PACs), anthocyanin/flavonol glycosides (ANTH/FLAV),
and sugars/acids (S/A) were isolated using solid-phase chromatography according to Howell et al.,
2005 [43]. Briefly, BBs were homogenized with water in a blender and applied to a C18 column
(Waters Corp., Milford, MA, USA) preconditioned with MeOH followed by dH2O. The S/A fraction
was collected as the column was washed with dH2O then dH2O:MeOH (85:15) (v/v), followed by
elution with acidified aqueous methanol. Solvents were removed from the S/A fraction under reduced
pressure. The TPP fraction containing anthocyanins, flavonol glycosides, and PACs (confirmed using
reverse-phase HPLC with diode array detection) was eluted with 1% HOAc in MeOH (v/v). All the
fractions were dried under reduced pressure to remove the solvent. The TPP fraction was then
suspended in 50% EtOH, and applied to a Sephadex™ LH-20 (Sigma Chemical Co., St. Louis, MO)
column that was pre-equilibrated overnight in EtOH:dH2O (50:50) (v/v). The ANTH/FLAV fraction
was eluted with 50% EtOH and dried to remove the solvent. The PAC fraction was eluted from the
LH-20 column with 70% aqueous acetone, and monitored for purity using diode array detection at
280 nm. The absence of absorption at 360 nm and 450 nm confirmed that flavonol glycosides and
anthocyanins, respectively, were removed. Acetone was evaporated under reduced pressure, and the
resulting purified PAC fraction was dried. Analytical tools, including mass spectrometry and NMR
spectrometry, have been routinely utilized to confirm the composition of these BB fractions using the
method of Schmidt et al. (2004) and others [44–46].

2.5. Human Study Design

This study was approved by the Cornell University institutional review board and complies with
the Helsinki Declaration. This trial is registered at clinicaltrials.gov (NCT04262258). All the participants
provided written informed consent prior to participation in the study.

Seventeen healthy young (aged 21–39 yrs, n = 11) and old (aged 65–77 yrs, n = 6) women
participated in the study. Potential participants were screened using an online survey to assess
eligibility. After initial eligibility was established, the participants came to the Human Metabolic
Research Unit at Cornell University to complete a health history questionnaire and provide information
on current and recent medications. Inclusion criteria were females between the ages of 21 and
40 yrs y and 60 and 79 yrs. Participants were excluded if they had a musculoskeletal disease (e.g.,
rheumatoid arthritis) or other disorder that would impact skeletal muscle function (e.g., diabetes or
cancer), were taking immunosuppressive medication, were pregnant or breastfeeding, had a high
alcohol intake (>11 drink per week), had an allergy or intolerance to blueberries, and had antibiotic
use within the past 6 months.

After the participants were enrolled in the study, they began a 2-week washout period in which they
were asked to avoid foods rich in polyphenols and anthocyanins. Following the 2-week washout period,
the participants began the blueberry enriched diet (BED); the participants were instructed to consume
38 g (two packages of 19 g) of freeze-dried BBs (Vaccinium virgatum (ashei)/Vaccinium corymbosum) with
water daily for 6 weeks. Compliance was monitored through a supplement compliance log and empty
BB packets returned by the participants to the study personnel.

Fasting stool and blood samples were obtained at four time points (washout, week 2, week 4,
and week 6) throughout the BED study. The participants were given pre-labelled stool sample collection
kits, and samples were collected outside of the lab. The participants transported samples to the lab
with an insulated bag that contained an ice pack. The samples were immediately placed in −80 ◦C
freezer until they were processed. To obtain plasma, venous blood samples (~10 mL) were collected in
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ethylenediaminetetraacetic acid (EDTA) tubes (Becton Dickinson Vacutainer system; Becton Dickinson,
Franklin Lakes, NJ, USA) and then immediately centrifuged (4 ◦C at 1200× g for 10 min) to obtain
plasma. Plasma was transferred to a new tube (volume ~500 uL) and stored in a −80 ◦C freezer until
all the participants had completed the study and the samples were ready for analysis.

The participants BED_001, 002, 003, 006, 007, 008, 009, 011, 013, 015, and 016 belonged to the
young age group and the participants BED_004, 005, 010, 014, 018, and 020 belonged to the older age
group (Table 1).

Table 1. Human study participant demographics.

Young (n = 10 a) Old (n = 6)

Age (yrs) 28 ± 2 69 ± 2
Weight (kg) 64.31 ± 2.33 62.44 ± 3.84
Height (cm) 166.3 ± 1.5 161.3 ± 2.9
BMI (kg/m2) 23.3 ± 0.9 24.2 ± 2.0

Glucose (mg/dL, Range: 74–106) 89.5 ± 2.44 98.0 ± 1.7
CRP (mg/L, Range: <1.1) 1.21 ± 0.33 0.76 ± 0.28

All values are presented as means ± standard error. BMI: body mass index; CRP: C-reactive protein. a One outlier
value excluded.

2.6. Plasma FRAP Assay

The ferric-reducing antioxidant power (FRAP) was determined in plasma from the BED donors
following established methods [47]. Briefly, a solution of sodium acetate (EMDMillipore, Burlington,
MA, USA), 2,4,6 tripyridyl-S-triazine (TPTZ, ACROS Organics, Geel, Belgium), and ferric chloride
(Fisher Scientific, Waltham, MA, USA) was incubated with plasma samples or ferrous sulfate
(assay standard, Fisher Scientific, Waltham, MA, USA) for 4 min at 37 ◦C. The absorbance was
measured at 593 nm and standardized to the absorbance of the ferrous sulfate standard to derive the
FRAP value (µmol/L). Four technical replicates were measured. The absorbance of the blank was
subtracted from each measurement, and the FRAP value of each sample was determined using the
following formula: (sample absorbance)/(assay standard absorbance) * (assay standard concentration
(1000 µmol/L)).

2.7. Plasma Glucose and CRP Measurements

Routine panels were conducted on stored fasting plasma samples (glucose and C-reactive protein)
at Cornell University’s Human Nutritional Chemistry Service Laboratory. Glucose was analyzed on
a Dimension Xpand chemistry analyzer (Siemens Healthineers, Malvern, PA, USA), and CRP was
measured on an Immulite 2000 immunoassay system (Siemens Healthineers, Malvern, PA, USA).

2.8. Microbiota Composition and Statistical Analysis

The pipeline for the microbiota composition analysis was described before [48] and comprised the
following steps. Paired-end reads were joined with FLASH [49] and quality filtering was performed in
Qiime (v.1.9.1) using the split_libraries_fastq.py script [50]. The forward and reverse primers were
removed using cutadapt [51] and the script truncate_reverse_primer.py, respectively. For additional
quality filtering and de novo operational taxonomic unit (OTU) clustering, USEARCH was used.
Filtering by length and size was performed before single unique sequences were excluded. Clustering in
OTUs was performed using 97% identity for the sequences after the various filtering steps.
Chimeras were removed based on the use of UCHIME with the GOLD reference database. The OTUs
were used to map sequences initially filtered for quality (97% identity). The mothur suite of tools
(v1.36.1) and the RDP (trainset 14) were used for the OTU classification (classify.seqs) with a 80%
confidence threshold [52]. The OTUs were classified down to the species level with SPINGO [53].
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The PyNast tool [54] in Qiime (along with the diversity function of the vegan package version
2.4.3 of the R programming interface v 3.5.4) was used to align the sequences and calculate the alpha
(α) diversity indices—i.e., Shannon, Simpson, Chao1, Phylogenetic Diversity (PD), Observed Species,
and beta (β) diversity indices (i.e., Weighted Unifrac and Unweighted Unifrac). Weighted Unifrac and
Spearman distances were used for principal coordinates analysis (PCoA) (ade4 package) using the R
programming interface (v 3.5.4). PERMANOVA analysis was performed using the adonis function
implemented in the vegan package (version 2.4.3) of the R programming interface. The reads assigned
to taxa at various levels (OTU, species, and genus) were cumulated and divided by the total number of
reads per sample.

For the artificial colon reactor analysis, the differentially abundant taxa in the different
supplementations were identified by Kruskal–Wallis H-test followed by Dunns’ test, and the p values
were adjusted for multiple testing by Benjamini Hochberg (BH) (padj). Significant results were
indicated with * (padj < 0.05), and marginal differences with # (padj < 0.1). The dunn.test package of
the R programming interface was used for this purpose (run with the method = “bh” argument to
specify adjustment procedure to Benjamini Hochberg-BH). For this analysis, supplementation-specific
abundances of the various taxa at 16 h and 24 h were combined. For each of these taxa, we also checked
whether their abundances exhibited significant variations in their abundances at 16 h and 24 h using
Wilcoxon Signed Rank Tests. The same approach (as described above) was also adopted for testing
differences in the α diversity measures. The microbiota profiles resulting from the supplementation
regimes were grouped into two groups (G1 and G2), as described in the results. The “Within G1”
and “Within G2” distances were obtained as follows. For each microbiota resulting from a given
supplementation, the median of the Weighted Unifrac distances of the microbiota with all the other
microbiotas belonging to the same supplementation (that is, all the other microbiotas belonging to
either G1 or G2 at 16 h and 24 h) was obtained. These median distances represented the microbiota
variations within that given supplementation group. For the “Across G1 and G2” variations, for each
sample belonging to a given supplementation, the median of the Weighted Unifrac distances of the
microbiota with all the other microbiotas belonging to the other supplementations (that is, all the other
microbiotas belonging to either G1 or G2 at 16 h and 24 h) was obtained. The wilcox.test function
of the R programming interface v 3.5.4 was then used for comparing the within and across-group
median distances.

For the human study, the OTU co-abundance groups (CAGs) demonstrating similar mean
abundance pattern trends across time points were identified. The identification of taxa CAGs and their
distinct taxonomic/temporal abundance profiles was conducted as follows. The mean abundance of
each OTU was obtained for W0, W2, W4, and W6, providing a mean temporal trend of each OTU
across time points. Subsequently, the Kendall correlations (taus) across all pairs of OTUs were obtained
and then converted to Kendall distances. The Kendall distance between any two pairs of OTUs was
calculated as 1—(Kendall tau)/2. The OTUs were clustered into CAGs based on their mutual abundance
pattern (Ward-D2 method). The heatmap.2 function of R v 3.5.4 was used to visualize the clustering
of the CAGs with the colors assigned using the RColorBrewer function. The Kruskal–Wallis H test
followed by Dunns’ test was used for a CAG abundance comparison across time points (using the
dunn.test function, as described earlier for the differentially abundant taxa analysis in colonic reactor
models). The OTUs were classified using SPINGO (0.65 threshold). For each CAG, OTUs with defined
species classifications were obtained, and the frequency of each species in a given CAG was computed.
The representation of the different species in the various CAGs were depicted using word clouds using
the “wordcloud” module of the R programming interface v 3.5.4. A PERMANOVA analysis (Spearman
distances at OTUs and CAG abundances level) was performed for the association between the taxa
abundances (OTU and CAG level) and CRP, glucose, and FRAP.

For the FRAP values, the associations were further validated using Random Forest models
(using the combination of the rfcv and randomForest functions of the randomForest module of
R v 3.5.4). A total of 100 iterations of the Random Forest models were performed, each time taking
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50% of the samples for training and testing on the other 50%. For each sample, the mean predicted
FRAP values were then correlated with the actual FRAP values to ascertain the strength of the
association. A key advantage of the Random Forest models is that they can not only be used to
predict a given trait (either quantitative or categorical; in this case, the quantitative FRAP values)
from a dataset of multiple predictor features (in this case, the OTUs), but they can provide the relative
importance of each of the features to predict the given trait. This enables the identification of the
most optimal set of associated features for predicting a given trait. Using these scores, the core list of
FRAP-positive and FRAP-negative marker OTUs was identified, as described in detail in the Results
section. The enrichment of the different CAGs in the two FRAP-associated marker OTUs was observed
using Fishers’ exact test. Spearman correlations (and the associated p values) were computed using the
corr.test function of the psych package of the R programming interface (run with the adjust = “fdr”
argument for p value correction-false discovery rate FDR). The volcano plots showing the positive and
negative associations of the various taxa with the clinical metadata were using the ggplot and ggrepel
modules of R v 3.5.4.

3. Results

3.1. A Prebiotic MIX, PACs, or ANTH/FLAV Have a Similar Effect on Microbiota Structure in the In Vitro
Colon Model

The fecal microbiota α diversity (Shannon and Observed Species) was reduced over the
24 h of fermentation (observed at the 16 h and 24 h time points) compared to the baseline
0 h (Supplementary Materials Figure S1), which is a typical feature of in vitro colon models [43].
Supplementation with ANTH/FLAV, PACs, and prebiotic MIX resulted in microbiota communities
displaying similar Shannon and Observed Species diversity index values that were noticeably higher
than in the fermentations with either S/A and TPP supplementation (significant for PACs/MIX versus
S/A with padj < 0.5) (Figure 1a; Figure S2). Thus, in the in vitro colon model used in this study, isolated
BB components such as the polyphenol-rich fractions ANTH/FLAV and PACs were more efficient in
promoting microbiota diversity than the other polyphenol-rich fractions used in this study—i.e., TPP or
the S/A fraction.

To visualize the global effect of supplementing the fecal fermentation with BB polyphenol-rich
fractions, we performed Principal Coordinate Analysis (PCoA) based on weighted and unweighted
Unifrac distance measures (Figure 1b; Figure S3). Unweighted Unifrac analysis, where the taxa
presence/absence is taken into account, showed that TPP supplementation led to a separation of the
microbiota at 16 h that was not sustained through the 24 h (Figure S3). Weighted Unifrac analysis,
in which the abundance of dominant taxa is more impactful on β diversity measurement, showed that
TPP and S/A supplementation led to a microbiota profile separate from that of the other supplementation
regimes at both 16 h (marginal but not significant variation; PERMANOVA p < 0.06) and 24 h (significant;
PERMANOVA p < 0.03) (Figure 1b). Supplementation with the ANTH/FLAV and PACs fractions
resulted in a microbiotaβ diversity close to that promoted by MIX (Figure 1b). Thus, the BB polyphenols
tested had distinct effects on the fecal microbiota. The PCoA analysis showed that the supplementations
could be grouped into G1, consisting of ANTH/FLAV, MIX, and PACs; and G2, consisting of S/A and
TPP. The relatedness of samples within G1 and G2 and across G1 and G2 are shown in Figure 1c.
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Figure 1. Differential fecal microbiota structure patterns due to the blueberry (BB) polyphenol-rich
fraction supplementation in the in vitro colon model. (a). Boxplots showing the Shannon α diversity
index in different supplementation regimes at 16 h and 24 h. (b). Principal Components Analysis
(PCoA) based on the weighted Unifrac distances of the fecal microbiota for 16 h and 24 h in vitro
fermentations. PERMANOVA p values for each time point are indicated. (c). Boxplots showing the
microbiota variation within in each group “Within G1” and “Within G2” (16 h and 24 h microbiotas
combined) and “Across G1 to G2”. Horizontal bar plots highlight the significant differences across
the supplementation regimes: * padj < 0.05; ** padj < 0.01. Marginal differences are also noted:
# padj < 0.10. ANTH/FLAV: anthocyanin/flavonols glycoside supplementation; MIX: prebiotic fibers mix
supplementation; PACs: proanthocyanidins supplementation; S/A: sugar/acid fraction supplementation;
TPP: total BB polyphenols.

The differences in α diversity observed between ANTH/FLAV, PACS, and MIX and TPP and S/A
supplementation could be partially attributed to certain taxa dominating in relative abundance in
the microbiota at 16 h and 24 h; non-significant microbiota differences were observed between the
two time points per supplementation (Table S1; Figure S4). The supplementation-specific differences
in various taxa were investigated by first performing a descriptive analysis and comparison of the
supplementation-specific taxa at the family level (Figure S4), followed by a statistical comparison
of the taxa abundances (genus and family level) (across supplementation combining the 16 h and
24 h time points) (Figure 2; Figure S5). The decrease in α diversity observed in the fecal microbiota
fermented with TPP and S/A supplementation could be explained by the comparatively higher
abundance of Enterobacteriaceae (49.77% and 47.49% average relative abundance, respectively) observed
by compositional analysis of the fecal microbiota after 16 h and 24 h of fermentation (Figure S4).
The lowest Enterobacteriaceae abundance was observed upon ANTH/FLAV supplementation and
MIX (average relative abundance of 31.46% and 29.11%, respectively) (Figure S4). ANTH/FLAV
supplementation resulted in a significantly lower Escherichia/Shigella (Enterobacteriaceae) relative
abundance compared to the prebiotic MIX (padj < 0.05), S/A fraction (padj < 0.05), and TPP (padj < 0.05)
supplementation (Figure 2). Lachnospiraceae was a major microbiota family that was reduced in
abundance compared to baseline (34.4% average relative abundance) across fermentation regimes,
potentially due to the in vitro conditions (Figure S4). Supplementation with ANTH/FLAV, PACs,
or prebiotic MIX sustained the highest Lachnospiraceae (average relative abundance of 14.52%) in the
microbiota (Figure S4). Similarly, the Bacteroidaceae relative abundance was higher upon ANTH/FLAV,
PACs, and prebiotic MIX supplementation (16.61%, 15.1%, and 12.95% average relative abundance,
respectively), and overall increased in abundance from baseline (average relative abundance of 6.89%)
across supplementations (Figure S4).

The abundance of the health-relevant genus Bifidobacterium spp. (Bifidobacteriaceae; 2.54% average
abundance at 0 h (Figure 2; Figure S4) was significantly increased upon TPP supplementation
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(1.95% average relative abundance) compared to MIX (0.85% average relative abundance; padj < 0.05)
and ANTH/FLAV supplementation (0.54% average relative abundance; padj < 0.05) (Figure 2).
The health-relevant taxon Faecalibacterium was present at an average relative abundance of 6.04%
(median abundance of 4%) upon MIX supplementation, which was marginally higher compared to
PACs (padj < 0.1), and significantly higher compared to the TPP (padj < 0.05) and S/A (padj < 0.05)
fraction supplementation (Figure 2).Nutrients 2020, 12, x FOR PEER REVIEW 9 of 21 
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Figure 2. Differentially abundant taxa (genus level) in the fecal microbiota after in vitro supplementation
with blueberry (BB) polyphenol-rich fractions. The results of relative abundance (>1%) from 16 h and 24 h
fermentations are shown in pink and green color, respectively. Significant differences for comparisons
combining the 16 h and 24 h data (post-hoc Dunn’s test with Benjamini-Hochberg (BH) padj) between the
corresponding pairs per supplementation across supplementations are indicated in horizontal bas plots:
* padj < 0.05. Marginal differences are also indicated: # padj < 0.10. ANTH/FLAV: anthocyanin/flavonol
glycoside supplementation; MIX: prebiotic fibers mix supplementation; PACs: proanthocyanidin
supplementation; S/A: sugar/acid fraction supplementation; TPP: total BB polyphenols.

Apart from the aforementioned supplementation effects on the dominant taxa, the low abundance
taxa (<1% average relative abundance) were also differentially abundant in the microbiota depending
on the supplementation of the fermentation medium (Figure S5). Supplementation with ANTH/FLAV
resulted in an increased relative abundance of Phascolarctobacterium compared to MIX (significant;
padj < 0.05), S/A (marginal; padj < 0.1) and TPP (significant; padj < 0.05) supplementation, and of
Gemmiger compared to MIX and PACs (padj < 0.05 for both supplementations). The Clostridium
cluster XIVb relative abundance was increased with PACs supplementation (padj < 0.05 compared
to ANTH/FLAV, S/A, and TPP). The Sutterella relative abundance was increased upon ANTH/FLAV
supplementation (padj < 0.05 compared to S/A and TPP). The Oscillibacter and Flavonifractor
relative abundance was significantly increased with MIX and PACs supplementation, whereas the
Burkholderiales relative abundance was highest after the PAC supplementation (significantly higher:
padj < 0.05 compared to TPP; marginally higher: padj < 0.1 as compared to ANTH/FLAV) (Figure S5).
The unclassified Erysipelotrichaceae had the lowest relative abundance after S/A supplementation,
whereas Parasuterella had the lowest relative abundance after the ANTH/FLAV and TPP supplementation
(Figure S5).
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3.2. A Trend Towards Increased Microbiota α Diversity in Older Women Consuming BB

The α diversity of the fecal microbiota in the human trial subjects did not show significant
difference across time points for any of the α diversity indices measured (Shannon, Simpson, Chao1,
PD, and Observed Species) (Figure S6). The lower sample size, especially of the group of older women,
reduced the statistical power of the comparisons. However, investigating the time point-specific
distributions of the diversity measures separately for the young and the older women indicated that,
for the older group, for most of the measures (with the exception of Shannon) the α diversities at
time points W4 and W6 were observed to be similar and higher than that at the pre-intervention W0
time point, indicating an increasing albeit non-significant trend for the elderly (Figure S6). We then
investigated this further to check if any differences in the microbiota α diversity were observed by
comparing the pre (W0) and post (W4 and W6) intervention time points on a per-individual basis
(separately for each age group) (Figure S7a). In the fecal microbiota of five out of six older subjects,
the Shannon diversity was increased during the intervention (mean of W4 and W6 aggregated) from
the baseline W1 (Figure S7a). Similar results were not observed for the young subjects (Figure S7b).

3.3. Distinct CAGs Represented by Health-Promoting Taxa Were Associated with BB Consumption at Each
Time Point

Based on β diversity, the fecal microbiota of the older subjects formed a distinct cluster at W4,
albeit with high intra-sample variation (Figure S8a). Given the lower sample size and high intra-sample
variability, the trends were not significant (PERMANOVA R2 = 0.03). The fecal microbiota of the
younger women showed no β diversity shifts throughout the intervention (PERMANOVA R2 = 0.002)
(Figure S8b).

Despite the lack of clearβdiversity in the BB consumption-associated signatures, a significant lower
intra-sample microbiota variability at intervention time points was observed for both sub-groups (at W4
versus W2 and W6, and at W6 compared to W2 and W4, respectively) (Figure S8c). This observation
could indicate that, in spite of the high inter-individual variability, specific taxa groups may have
changed across time points concurrently (enriched or depleted), resulting in a significantly lower
inter-individual variability [55].

Microbiome configuration analysis offers a more refined approach to monitor microbiota changes
compared to individual taxa analysis, because OTUs that co-occur at similar proportions may have
trophic and functional interactions relevant for gut ecology [55]. In an analysis of the aggregated
microbiota data from all study participants and based on the aforementioned variability trends,
six CAGs of OTUs were identified (C1 to C6) (Figure 3a). Interestingly, while the abundance of each
of these CAGs exhibited significant differences at W2, W4, and W6 (Figure 3b; Figure S9) when
investigating for variability trends in old and young women, no significant differences in the OTUs’
(of the six CAGs) cumulated abundance variation were observed. This indicated that, while the
individual constituents may show a high inter-individual variability, the CAGs as a whole exhibit
significant time point-specific trends (irrespective of the age group of the participants), even at the
individual level (thereby indicating their reliability).

CAG-level PERMANOVA analysis at the different time points revealed significant differences
(Figure 3c). The analysis revealed a distinct gut microbiome composition at W4, while W2 and W6
clustered closer; this was observed for both the old and young sub-groups. No significant differences
in the cumulated abundances variation in the OTUs belonging to the six CAGs separately within the
old and the young were observed (Figure S9).

The C1, C3, and C6 CAGs’ cumulated abundances increased significantly with BB consumption
(at W4 and W6). C1 increased from W0 to W4 and decreased at W6, whereas C3 and C6 progressively
increased from W0 to W6 (Figure 3b). Several health-relevant species were abundant in these
CAGs—e.g., Faecalibacterium prausnitzii, Barnesiella intestinihominis, Eubacterium halii, Anaerostipes
hadrus, and Ruminococcus bromii (Figure 3d). These results indicate the putative beneficial effect of BB
consumption on the gut microbiota.
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Figure 3. Associations of blueberry (BB) consumption with the enrichment of specific co-abundance
taxonomic groups (CAGs). (a). Heatmap showing the Kendall tau between the different operational
taxonomic units (OTUs) (that is, the OTU to OTU correlations) obtained based on their mean abundances
across the different time points. Based on their association patterns, the OTUs were categorized into
6 co-abundance groups or CAGs. The 6 CAGs (C1 to C6) are indicated in colors on the left and top panels.
(b). Boxplots showing the variation in the OTUs’ cumulated relative abundances (y axis) belonging to
the 6 CAGs across the four time points (x axis). padj values showing the significant differences in the
CAG abundances (Dunn’s post-hoc test) across time points are indicated: *: padj < 0.05; **: padj < 0.01.
Marginal differences are also noted: #: padj < 0.1. (c). Principal Coordinates Analysis (PCoA) showing
gut microbiota grouping based on the abundances of the 6 different CAGs. The PCoA plots are shown
for all the microbiotas aggregated and separated for the old and young sub-groups. The PERMANOVA
R2 and p values are indicated in each plot. (d). Word clouds showing the species’ enrichment in the
CAGs C1, C3, and C6 dominant at either W4 or W6 or both. The species name is proportional to the
frequency of that species.

3.4. Antioxidant Activity (FRAP) Is Significantly Associated with the Faecal Microbiota

The levels of plasma CRP, glucose, and FRAP assay measures were collected at W0 and W6 for
10 young and 5 old women. Using PERMANOVA analysis, the association of the gut microbiota at
both OTU and CAG level with CRP, glucose, and FRAP was investigated (Table 2). No association
between the gut microbiota composition with either the CRP or glucose levels was observed. However,
the FRAP assay measures showed significant association with the gut microbiota at both the OTU and
CAG level (Table 2).
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Table 2. Gut microbiota composition was significantly associated with ferric-reducing antioxidant
power (FRAP). R2 and p values of the PERMANOVA analysis associating the clinical parameters with
the gut microbiota at the operational taxonomic unit (OTU) and co-abundance group (CAG) level are
shown in the table.

Clinical Indicator
OTU-Level Microbiota CAG-Level Microbiota

R 2 p Value R 2 p Value

CRP 0.03 0.95 0.02 0.81

Glucose 0.03 0.54 0.02 0.79

FRAP 0.04 0.01 0.06 0.05

Random Forest models were built to predict the FRAP assay measure of an individual (at a given
time point) based on their gut microbiota composition (at the OTU level) (as described in Materials and
Methods). The validation of these models using an iterative leave-one-out-strategy (i.e., excluding from
the training model the sample to be predicted) indicated a marginally positive Spearman correlation of
0.32 (p < 0.07), further indicating an association of the microbiome with plasma antioxidant activity
(Figure 4a). Thus, in the current study the OTUs were initially ranked in increasing order of their
feature importance scores, and subsequently the variation in these feature importance scores across
them was investigated.

An exponential increase in scores for the last 150 taxa (or OTUs) as compared to the rest was
observed (Figure S10a). The list of the 150 taxa was filtered by selecting only those OTUs that showed
significant association with FRAP measures with BH-corrected FDR < 0.1 (Figure S10b). This provided
the 30 top predictors of FRAP measures at the OTU level (Figure 4b). While 25 of these top markers
were positively associated with FRAP (FRAP-positive markers), five were negatively associated with
FRAP (FRAP-negative markers).

The efficacy of these top 30 markers was further evaluated using two variants of iterative Random
Forest models, one using only these top 30 and the other using the remaining OTUs (Table S1).
A comparison of the performances of the two variants indicated that models created using only these
30 top markers could still predict FRAP measures with a median Spearman Rho of 0.76 (p < 1 × 10−5),
which was significantly higher than those created using the remaining 983 non-marker OTUs (median
Rho = 0.02) (p < 2.2 × 10−16) (Figure 4c).

Distinct changes in the markers of FRAP assay measures during the intervention time points
were as follows. The FRAP assay measures increased for 9 of the 15 subjects (4 out of 5 old, 5 out of
10 young) (Figure S10c). An overlap between some of the species that were positively associated with
FRAP measures and those enriched during BB consumption was observed (Figure 4b). These included
gut bacterial species such as F. prausnitzii, E. halii, E. siraeum, C. catus, and A. hadrus.

The representation of the different previously identified CAGs in the subset of FRAP-positive
markers was explored. Seventeen out of the 25 FRAP positive markers belonged to either the C1
or the C6 CAGs that were significantly enriched in W4 and W6 time points, respectively (Figure 3b;
Figure 4b) Thus, a subset of taxa that were identified as belonging to reportedly beneficial microbial
groups enriched in the later stages of BB consumption also showed positive associations with the
antioxidant activity. This indicates that BB consumption is associated with microbiome changes that
are positively associated with antioxidant activity.

Interestingly, the across-time point changes in FRAP assay measures showed negative associations
with the corresponding changes in the plasma glucose levels (Spearman Rho = −0.46; p < 0.05)
(Figure S10d). A similar negative association was also observed between the FRAP positive-markers
and the plasma glucose levels. Thus, these results overall seem to suggest a step-wise association
between BB consumption and plasma glucose levels, wherein the consumption of BBs is associated
with the enrichment of specific taxonomic groups, and a subset is positively associated with



Nutrients 2020, 12, 2800 13 of 21

circulating antioxidant activity, which in turn is negatively associated with the plasma glucose
levels. The associations of these OTUs with FRAP were both sample-specific and distinct for time points.Nutrients 2020, 12, x FOR PEER REVIEW 13 of 21 
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Figure 4. Fecal microbiota components were associated with increased ferric-reducing antioxidant
power (FRAP) measures and with the co-abundance groups (CAGs) enriched upon blueberry
(BB) consumption. (a). Scatter plot showing the correlation between the actual and the Random
Forest-predicted FRAP values. (b). Violin plot showing the association of the top 30 operational
taxonomic unit (OTU) markers with the FRAP assay measures. X axis: Spearman Rho between
the OTU abundances and the FRAP assay measures. Y axis: log of the Benjamini-Hochberg (BH)
false discovery rate (FDR) with base 10. OTUs on the left: negatively associated; OTUs on the right:
positively associated. Green color: the top 30 OTU markers showing significant association with
FRAP measures (with FDR < 0.2) (positively associated); red color: negatively associated markers.
(c). Bean plots showing the Spearman Rho measures distribution obtained for the predicted and the
actual FRAP across the 100 iterations of the two variants of Random Forest models. (d). Stacked bar
plots showing the relative representation of the different CAGs in the FRAP positive OTUs and the
other non-marker OTUs. Seventeen out of the 25 FRAP-positive OTUs belonged to either CAG C1 (8)
or C6 (9). Fishers’ exact test showed a significant association between C6 and the FRAP-positive OTUs
(indicated in the Figure). (e). Scatter plots showing the correlation between the FRAP-positive and
FRAP-negative OTUs’ mean abundances change across time points with the corresponding changes in
FRAP measures.

4. Discussion

We have previously reported the reduction in the fecal microbiota α diversity due to the loss
of fastidious taxa while the microbiota is adapting to the in vitro conditions of the artificial colon
model [39,56]. To retain much of the stool diversity throughout the fermentation period, the basal
fermentation medium was supplemented with a mix of indigestible and prebiotic carbohydrates
often used in continuous in vitro systems [57]. Importantly, the supplementation of the fermentation
medium with the polyphenol-rich fractions ANTH/FLAV, PACs, or prebiotic MIX substrates resulted in
a favorable (i.e., health-associated) microbiota profile. Although the content of these fractions was not
yet investigated by chromatographic separation, the fractions tested were prepared in the same way as
in multiple previous publications, and so they are directly comparable in terms of evaluating their
bioactive properties. The α diversity and the abundance of the major microbiota families Lachnospiraceae
and Bacteroidaceae were comparatively higher, whereas the Enterobacteriaceae relative abundance was
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lower compared to TPP and S/A supplementation. The sugar content of the S/A fractions and potential
residual sugars in the TPP fraction, which would be expected to be absorbed in the small intestine
in humans, may have resulted in the significantly increased relative abundance of these organisms
that are potent utilizers of simple sugars [58]. Apart from this explanation, Enterobacteriaceae have
been reported to be involved in the metabolism of polyphenols in the gut [27,59]. Importantly, not all
Enterobacteriaceae are harmful, with some playing an important role in the “healthy” gut microbiota [9].

Bifidobacteria residing in the colon may be utilizing the polyphenolic sugar content that reaches
distal gastrointestinal parts [60,61]. TTP followed by PACs (but not ANTH/FLAV) supplementation
were the most efficient additives to maintain the Bifidobacterium abundance levels in the suboptimal
in vitro environment. Previous in vitro fermentation studies have yielded conflicting results on
the effect of polyphenol-rich fractions on Bifidobacterium spp. abundance in the microbiota [21,62].
Limitations of the in vitro systems and baseline microbiota variations may have contributed to these
discrepancies. Human studies have confirmed some effect of polyphenols on bifidobacteria [63].

We observed a trend for microbiotaαdiversity increase in the group of older women consuming BB,
and although the β diversity did not change throughout the intervention period, health-relevant taxa
were significantly enriched with BB consumption in subjects of both age groups. We acknowledge the
limitations of the small sample size in this study, due in part to the complexity of running a human
dietary intervention trial in which the primary objective was to test the effect of BB consumption
on the human muscle progenitor cell (hMPC) function [64]. Nevertheless, the current study serves
adequately as a pilot study to investigate the potential of regular BB consumption to improve the
microbiota diversity in older healthy people. Maintaining microbiota diversity is relevant throughout
the lifespan. Risk factors for non-communicable disease are associated with a Western lifestyle [65–67].
Decreased gut microbiota diversity as in low species richness and low counts of bacterial genes may
correlate to metabolic disease, and therefore global microbiota modulations can promote health in the
general population [68,69].

The enrichment of the fecal microbiota in Anaerostipes hadrus, F. prausnitzii, and to a lesser
extent Ruminococcus bromii (CAG C1)—all taxa of the “healthy” microbiota [70]—two weeks after BB
intervention indicated a potential microbiota adaptation to BB consumption. Enrichment in the major
fibrolytic taxon R. bromii [71,72] may represent an adaptation to the regular fibre derived from whole
BB fruit. Ruminococcus bromii releases substrates from complex polysaccharides that other microbiota
members such as A. hadrus and F. prausnitzii can metabolize [73]. Anaerostipes hadrus is a butyrate
producer previously reported to be stimulated by prebiotic fibres [74,75]. The ecological context is
important when evaluating the health benefit of taxa that are “prebiotically” stimulated. In the case
of A. hadrus, it was reported that it exerted beneficial outcomes in “healthy” microbiota and adverse
in dysbiotic microbiota in a mouse model [76], potentially involved in energy harvesting and blood
glucose [77]. Faecalibacterium prausnitzii is a key butyrate producer with anti-inflammatory properties,
and its reduced abundance in the microbiota has been associated with various gastrointestinal
conditions [9,78]. A few studies in mice and humans have shown Faecalibacterium responsiveness to
polyphenols, accompanied by metabolism improvement [79–81].

Taxa such as E. hallii, B. intestinihominis, and Butyrisimonas virosa (CAG C6) and B. intestinihominis
and F. prausnitzii (CAG C3) showed a gradual increase in abundance from baseline towards
later intervention time points. The increased abundance of E. hallii, a butyrate producer of the
Lachnospiraceae family [70], identified here to be associated with BB consumption, may contribute to
improved insulin sensitivity according to in vivo and human studies [82,83]. Other Eubacterium spp.
taxa of the Lachnospiraceae family (e.g., E. ramulus and E. rectale) may be involved in the metabolism of
polyphenolic compounds (e.g., flavonols, flavanols, and lignans) [84,85]. Similarly, intervention with a
polyphenol-rich diet was associated with enrichment in B. intestinihominis and improved metabolism
in mice and humans [86,87].

There was some moderate albeit significant correlation of OTUs and CAGs with the FRAP
measurements that, in turn, positively correlated with BB consumption, especially in the older
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group. Conversely, FRAP measurements were negatively correlated with plasma glucose. Many studies
on healthy adults have contributed evidence for the antioxidant and anti-inflammatory benefits of
the regular consumption of polyphenol-rich foods, such as BB and other berry fruits [88]. There is
evidence from cohort and clinical studies of reduced all-cause mortality, lower risk of CVD, improved
insulin sensitivity, and lower type 2 diabetes (T2D) risk associated with BB and specifically anthocyanin
intake [32]. Importantly, in older age groups anthocyanins appear to lower the risk of cognitive
decline [32]. However, there is a lack of human studies investigating the consumption of polyphenol-rich
berries, metabolic improvement, and the microbiota, with the majority of relevant data derived from
animal studies [27,89–92]. Importantly, we recognize critics of FRAP assays and that, according to
the literature, more oxidative damage markers should be added to allow robust conclusions to be
drawn [88].

Here, we report taxa that not only were associated with BB consumption forming distinct CAGs
(i.e., E. hallii, B. intestinihominis, A. hadrus, F.prausnitzii) as discussed, but that taxa that mostly belong to
the significant CAGs were associated with improved FRAP measurements. In this part of the analysis,
we found that E. siraeum (Clostridium cluster IV Ruminococcaceae taxon) and the phylogenetically
close F. prausnitzii and G. formicilis [70] were positively associated with FRAP. Interestingly, in humans
serum markers of insulin resistance were associated with reduced E. siraeum and Butyrivibrio crossotus
abundance [93]. Conversely, G. formicilis and C. catus, identified in this study to be positively associated
with FRAP, were associated with obesity [94–97].

5. Conclusions

In vitro conditions place constraints on microbiota responsiveness to supplementation tests [98].
Notwithstanding this, the investigational studies as presented here offer a straightforward experimental
model to test the initial hypothesis and provide insight into informed in vivo study design [99]. In future
studies, the potential of the in vitro-identified microbiota response to BB polyphenol-rich fractions can
be extended to the development of next-generation symbiotics.

The human study contributed evidence for specific microbiota modulation due to BB consumption
in correlation with antioxidant activity in healthy adults. The association of fibrolytic taxa with whole
BB consumption may indicate that the BB can contribute to health by both its polyphenolic content and
its fibre content that, in effect, may render the fibre-bound polyphenols more accessible to microbiota
fermentation [100]. In the context of healthy ageing, BB consumption may increase colonic short chain
fatty acid (SCFA) production through fiber contribution to the fibrolytic members of the microbiota and
promote health [101]. Importantly, non-pathobionts in the “healthy” microbiota, such as the taxa C.
catus or A. hadrus mentioned in our study, may play a variant role within a different health context and in
response to external dietary stimuli [102,103]. Strain-level identification is important in order to explain
why individuals may respond differently to microbiota modulation [101,104]. Interindividual variation
can be of relevance in the way dietary polyphenols impact health, given the fact that their bioavailability
largely depends on the gut microbiota enzymatic armor [105]. Future large-scale clinical studies
including both women and men and examining the metabolic impact of BB consumption in correlation
with microbiota changes, inflammatory markers, and gender will allow for a deeper understanding of
the role of BB consumption in human health. At the same time, a detailed chromatographic analysis
of the BB fractions described here is desirable to generate greater granularity and detail on what
individual compounds are present in each starting fraction, and what they are metabolized into, in the
context of the microbiome changes described already in this report.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/12/9/2800/s1:
Figure S1: Boxplots showing the supplementation-independent significant decrease in α diversity measures
(a. Shannon and b. Observed Species) for 24 h fermentation. Figure S2: Observed Species α diversity of the
fecal microbiota after different BB polyphenol-rich fractions supplementations at 16 h and 24 h. Figure S3:
Principal Component Analysis (PCoA) based on Weighted Unifrac distances of microbiota after in vitro
fermentation with BB polyphenols. Figure S4: Fecal microbiota compositional description at Family level
during 24 h in vitro fermentation with BB polyphenol-rich fractions. Figure S5: Differentially abundant taxa
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(genus level) in the fecal microbiota after in vitro supplementation with BB polyphenol-rich fractions (average
relative abundance < 1%). Figure S6: Alpha diversity of the fecal microbiota of a. young and b. older women of
the human trial across all time points. Figure S7: Shannon diversity showing the fecal microbiota α diversity
development pre (W0) and post (mean of W4 and W6) BB consumption intervention. Figure S8 Variation in within
cohort beta diversity for the Young and Old women. Figure S9: Variation in the cumulated abundances of the
OTUs belonging to the six CAGs specifying for old and the young women. Figure S10: Identification of FRAP
responsive taxa, their variation across time points and their association with glucose levels. Table S1: padj values of
Wilcoxon Signed Rank tests comparing the abundances of the various taxa in fermenter samples belonging to the
various supplementation groups. Table S2: Taxonomic classifications of (A) FRAP-positive and (B) FRAP-negative
OUT markers obtained using SPINGO.
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26. Fotschki, B.; Juśkiewicz, J.; Jurgoński, A.; Kołodziejczyk, K.; Milala, J.; Kosmala, M.; Zduńczyk, Z.
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