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Abstract: Persistence of Gulf War illness (GWI) pathology among deployed veterans is a clinical
challenge even after almost three decades. Recent studies show a higher prevalence of obesity and
metabolic disturbances among Gulf War veterans primarily due to the existence of post-traumatic stress
disorder (PTSD), chronic fatigue, sedentary lifestyle, and consumption of a high-carbohydrate/high-fat
diet. We test the hypothesis that obesity from a Western-style diet alters host gut microbial species
and worsens gastrointestinal and neuroinflammatory symptom persistence. We used a 5 month
Western diet feeding in mice that received prior Gulf War (GW) chemical exposure to mimic the
home phase obese phenotype of the deployed GW veterans. The host microbial profile in the Western
diet-fed GWI mice showed a significant decrease in butyrogenic and immune health-restoring bacteria.
The altered microbiome was associated with increased levels of IL6 in the serum, Claudin-2, IL6, and
IL1β in the distal intestine with concurrent inflammatory lesions in the liver and hyperinsulinemia.
Microbial dysbiosis was also associated with frontal cortex levels of increased IL6 and IL1β, activated
microglia, decreased levels of brain derived neurotrophic factor (BDNF), and higher accumulation of
phosphorylated Tau, an indicator of neuroinflammation-led increased risk of cognitive deficiencies.
Mechanistically, serum from Western diet-fed mice with GWI significantly increased microglial
activation in transformed microglial cells, increased tyrosyl radicals, and secreted IL6. Collectively,
the results suggest that an existing obese phenotype in GWI worsens persistent gastrointestinal and
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neuronal inflammation, which may contribute to poor outcomes in restoring cognitive function and
resolving fatigue, leading to the deterioration of quality of life.

Keywords: dysbiosis; Western diet; metagenomics; bacterial species; whole genome sequencing;
neuroinflammation; peroxynitrite; symptom persistence

1. Introduction

Persistence of Gulf War illness (GWI) among deployed veterans is a clinical challenge to diagnose
and treat. Though there is strong epidemiological evidence of an association of Gulf War exposures to
chronic fatigue, metabolic syndrome, gastrointestinal (GI) disturbances and obesity, the persistence
or worsening of the symptoms even long after the war has ended and our troops have returned
home remains a challenge for clinicians in numerous health centers nationwide [1–5]. A recent
epidemiological study highlighted that overweight and obesity are highly prevalent among Gulf
War and Gulf Era veterans [6,7]. Persistence of symptoms in ~47% of examined Gulf War (GW)
veterans was linked to obesity [7,8]. There was also a strong association of post-traumatic stress
disorder (PTSD) in GW veterans with metabolic syndrome and obesity [7]. The study implied that
advancing age and lifestyle factors (Western diet, physical inactivity) are augmenting the development
of obesity, metabolic syndrome, and other chronic diseases. It is interesting to note that PTSD can lead
to physical inactivity and may increase this risk in aging veterans to develop age-related diseases [7].
Interestingly, a recent preliminary report in mouse models of GWI showed that a high-fat diet leads to
dysbiosis, with a different microbiome signature than GWI mice fed a standard chow diet [9]. With the
passage of 28 years since the GW, and the GW veterans reaching the age range of 50–60 years, physical
inactivity/weight gain would likely lead to longstanding and exacerbated pathological changes in
the brain, liver, and the gastrointestinal (GI) tract. A recent longitudinal study suggests that there
is an immediate need to consider the relationship between persistently increasing symptoms and
long-term morbidity, especially as veterans age [1]. The carefully designed longitudinal study showed
that chronic fatigue (likely from metabolic dysfunction/mitochondrial dysfunction), headaches and
pain (as a consequence of inflammation), flatulence or burping (due to GI disturbances), and loss of
concentration (owing to neuronal dysfunction) increased or persisted in GW veterans 20 years after
their return.

In agreement with the above findings, the preclinical data demonstrated that mice exposed to
pyridostigmine bromide and permethrin (PB + PER) exhibited persistent neurobehavioral deficits
and neuroinflammation until 22.5 weeks post-exposure [5]. Notably, the adverse health effects
of chemicals such as PER and chlorpyrifos associated with GWI also showed an association with
obesity and metabolic complications [10]. In a recent study, we have shown that persistence of GWI
even after 5 months of exposure largely depends on an altered microbiome and its association with
increased damage-associated molecular pattern release from the GI tract, especially the epithelial
cells [11]. We have also shown that the enteric glial cell activation resulting from of a sustained
microbial dysbiosis in the gut plays a significant role in the release of damage-associated molecular
patterns (DAMPs) that further influence an exacerbated neuroimmune response [12]. Interestingly,
intestinal inflammation associated with irritable bowel syndrome (IBS), alcoholic steatohepatitis,
obesity, non-alcoholic fatty liver disease, or metabolic syndrome has been strongly linked to alterations
in the gut microbiome [13–20]. There are at least 3000 species of bacteria residing in the human gut,
and there is a unique prototype of bacterial diversity in every individual [21]. The last decade saw
a tremendous increase in our understanding of how gut bacteria participate in health and disease.
Significant disorders where gut bacteria have been found to play a role include obesity, metabolic
syndrome, and IBS [21].
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GWI is also characterized by neuroinflammation and systemic inflammation with elevated levels
of pro-inflammatory cytokines, including TNF-α and IL1β [22–25]. Recent literature shows important
connections between microbiome, obesity, and central nervous system disorders with gut microbiome
referred to as “second brain” [26–29]. Interestingly, IBS and obesity have a significant proinflammatory
component that includes macrophage activation and triggering of toll-like receptor pathway [30,31].
Several studies have found strong evidence of a decrease in expression of gut junction proteins,
leading to portal endotoxemia [32–35]. With dysbiosis, obesity, and metabolic syndrome being closely
associated, it is not uncommon to find a low systemic inflammation causing significant modulation
of gut-immune axis. Since a significant number of veterans presenting persistent GWI symptoms
are also obese, it is likely that an underlying inflammatory condition due to obesity or metabolic
syndrome contributes to the persistence and exacerbation of symptoms. However, the mechanisms
by which obesity or metabolic syndrome leads to persistence of the GWI symptoms remain unclear.
Thus, a significant knowledge gap exists about the relationship between GW chemical exposures,
weight gain, metabolic syndrome, GI disturbances, and neuroinflammation among GW veterans,
especially concerning an altered microbiome. Therefore, the present study investigated the combined
effects of GW exposures and the consumption of the Western diet. Such a study is germane to
a significant percentage of veterans with GWI because veterans have aged since the exposure to
GW chemicals in the 1990s, are inactive physically (owing to incidences of PTSD, disabilities, and
chronic fatigue) and likely to consume a standard American Diet (i.e., the Western diet, rich in fat
and carbohydrates) [36]. The study addresses the paradigm that obesity potentiates persistence of
GW chemical exposure-induced GI disturbances marked by alterations in tight junction protein levels,
site-specific inflammation, metabolic syndrome, and neuroinflammation. Using an established mouse
model of chronic GWI where animals received a Western diet for 5 months after GW chemical exposure,
and shotgun metagenomics, we show that the alterations of species-specific microbiome persisted
and worsened with obesity. The persistent microbiome alterations were strongly associated with GI
inflammation, higher serum levels of proinflammatory levels of IL6, and insulin, which caused liver
inflammation. Western diet-induced obesity was also associated with microglial activation that led to
persistent neuroinflammation—a pathology correlated with altered microbiome.

2. Materials and Methods

2.1. Materials

Pyridostigmine bromide (PB) and permethrin (Per) were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Primary antibodies including anti-Claudin-2, anti-Occludin, anti-CD68, anti-α-
Smooth Muscle Actin (α-SMA), anti-transmembrane protein 119 (TMEM119), anti-3-nitrotyrosine
(3-NT) and anti-phosphorylated Tau (p-Tau) were purchased from Abcam (Cambridge, MA, USA).
Anti-3-nitrotyrosine, anti-IL1β, anti-IL6, anti-brain-derived neurotrophic factor (BDNF), anti-CD40,
and anti-β-actin primary antibodies were purchased from Santacruz Biotechnology (Dallas, TX, USA).
Anti-insulin receptor substrate 1 (IRS1) primary antibody was purchased from Cell Signaling Technology
(Danvers, MA, USA). Anti-glial fibrillary acidic protein (GFAP) and anti-S100β primary antibodies were
purchased from Proteintech (Rosemont, IL, USA). Species-specific biotinylated secondary antibodies
and streptavidin-HRP (Vectastain Elite ABC kit) were purchased from Vector Laboratories (Burlingame,
CA, USA). Fluorescence-conjugated (Alexa Fluor) secondary antibodies and ProLong Diamond antifade
mounting media with 4′,6-diamidino-2-phenylindole (DAPI) were purchased from Thermofisher
Scientific (Grand Island, NY, USA). All other chemicals used in this study were purchased from Sigma
unless otherwise specified. Animal tissues were sent to AML laboratories (Baltimore, MD, USA) and
Instrument Resources Facility, University of South Carolina School of medicine (Columbia, SC, USA),
for paraffin embedding and sectioning. Microbiome analysis was performed at Cosmos ID (Rockville,
MD, USA).
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2.2. Animals

C57BL/6J adult wild-type male mice (10 weeks) were purchased from the Jackson Laboratories
(Bar Harbor, ME, United States) and used in this study. Mice were implemented in accordance with
National Institutes of Health (NIH) NIH guidelines for human care and use of laboratory animals
and local Institutional Animal Care and Use Committee (IACUC) standards. The animal handling
procedures were approved by University of South Carolina, Columbia, SC, United States. Upon
arrival, all mice were housed at 22–24 ◦C with a 12 h light/12 h dark cycle and ad libitum access of
food and water. According to our experimental design, all mice were fed either with normal chow
diet from Teklad (Madison, WI, USA) or Western diet from Research Diets (New Brunswick, NJ, USA).
On completion of animal experiments, all mice were sacrificed. Organs including liver and distal part
of small intestine were collected and fixed in 10% neutral buffered formaldehyde, whereas frontal
cortex was collected and fixed in Bouin’s solution (Sigma Aldrich St. Louis, MO, USA). Preparation of
serum samples was performed using fresh mice blood collected by cardiac puncture immediately after
anesthesia of mice. Fecal pellets were obtained from the colon and preserved for microbiome analysis.

2.2.1. Mouse Model of Gulf War Illness (GWI)

Mice were exposed to GW chemicals (PB + PER) as described in our previous studies [11,37].
After 1 week of acclimatization, all mice were randomly distributed into four treatment groups.
The first and third groups of mice were given only vehicle (0.6% dimethyl sulfoxide (DMSO) ) for two
weeks and denoted as CHOW (n = 6) and WD (n = 6), respectively. The second and fourth group
of mice were treated with a combination of GW chemicals PB (2 mg/kg body weight and diluted
in PBS) and Per (200 mg/kg body weight, diluted in DMSO and PBS) tri-weekly for two weeks by
oral gavage and denoted as CHOW+GWI (n = 6) and WD+GWI (n = 6), respectively. All the mice
groups were fed with chow diet during the initial two weeks of GW chemical exposure. Following GW
chemical exposure for 2 weeks, both the WD and WD+GWI mice groups were shifted to Western diet
continuously for 20 weeks, whereas both the CHOW and CHOW+GWI mice groups were continued
with normal chow diet. The Western diet (Research Diets, Cat#12079B) used for this study has 17% kcal
protein, 40% kcal fat, and 43% kcal carbohydrate distribution. Fecal pellets from these mice were sent
for microbiome analysis. Blood, distal small intestine segments, liver tissue and frontal cortex tissue
segments were collected following sacrifice 5 months post-GW chemical exposure. Enzyme-Linked
Immunosorbent Assay (ELISA) was performed from serum of 4–5 mice samples per group.

2.2.2. Microbiome Analysis

Fecal pellets from each experimental mouse were collected in a sterile environment and snap
frozen in liquid nitrogen for microbiome analysis at CosmosID (Rockville, MD, USA). Briefly, total DNA
isolation and purification were performed using the ZymoBIOMICS Miniprep kit. Library preparation
and quantification were performed using Qubit dsDNA HS assay (ThermoFisher, Waltham, MA, USA)
and qualified on a 2100 bioanalyzer instrument (Agilent, Santa Clara, CA, USA) to show a distribution
with a peak in the expected range. Further, whole-genome shotgun sequencing (WGS) was performed
using the next-generation sequencing (NGS) platform and according to the vendor-optimized protocol.
The unassembled sequencing reads for each sample were analyzed by the CosmosID bioinformatics
platform. The Diverging bar charts were generated using the phylum- and species-level relative
abundance matrices from the taxonomic analysis. All values were converted to their Log2 distance
from the organism’s average across all groups. Linear Discriminant Analysis Effect Size (LEfSe) figures
were generated using the LefSe tool from the Huttenhower lab, based on phylum- and species-level
relative abundance matrices from taxonomic analysis [38]. LefSe is calculated with a Kruskal–Wallis
alpha value of 0.05, a Wilcoxon alpha value of 0.05, and a logarithmic Linear Discriminant Ananlysis
(LDA) score threshold of 2.0. In the LefSe figures, red bars to the right convey that the organism
in that group is more abundant in the “WD+GWI” group than the “CHOW+GWI” group. Green



Nutrients 2020, 12, 2764 5 of 27

bars to the left convey that the organism is more abundant in the “CHOW+GWI” group. Stacked
bar figures were generated from the phylum- and species-level relative abundance matrices from the
taxonomic analysis. Stacked bar figures for each group were generated using the R package ggplot2.
Heat maps were creating using the NMF R package, based on the relative abundance information from
the taxonomic analysis. A hierarchically clustered heat map is provided. Alpha diversity boxplots
were calculated from the species-level abundance score matrices from the taxonomic analysis. Chao,
Simpson, and Shannon alpha diversity metrics were calculated in R using the R package Vegan. Beta
Diversity Principal Coordinate Analyses were calculated from the species-level relative abundance
matrices from the taxonomic analysis. Bray–Curtis diversity was calculated in R using the R package
Vegan with the function vegdist. Beta diversity PCoA tables were generated using Vegan’s function
PCoA. PERMANOVA tests for each distance matrix were generated using Vegan’s function Adonis2.

2.2.3. Mouse Microglial Cell Culture and Treatment

Immortalized mouse microglial cells SIM-A9 were purchased from ATCC (ATCC® CRL-3265),
subcultured and grown on Dulbecco’s Modified Eagle Medium/F12 (DMEM/F12), 10% fetal bovine
serum (FBS) and heat-inactivated 5% horse serum. The cells were incubated at 37 ◦C using a humidified
CO2 incubator (5% CO2 concentration).

Approximately 0.05 × 106 number of cells were seeded onto a 24-well tissue culture plate and
growth was permitted to reach 70% confluency before the experiment. Serum starvation was achieved
using DMEM/F12 media, supplemented with 1% FBS for at least 18 h. Following sera starvation, cells
were treated with serum (25 µL/mL) obtained from the CHOW, CHOW+GWI, WD, and WD+GWI
mice groups, respectively, or PBS (VEH), or LPS (1 µg/mL) for 24 h. Cells were harvested for in vitro
immunofluorescence experiments and supernatants were collected for measuring IL6 by enzyme-linked
immunosorbent assay (ELISA) and cellular cytotoxicity assay.

2.2.4. Immunohistochemistry

Deparaffinization of paraffin-embedded small intestine, liver, and brain tissue sections was
performed following the standard laboratory procedure. Briefly, tissues were immersed successively
in 100% xylene, 1:1 solution of xylene and ethanol, 100% ethanol, 95% ethanol, 70% ethanol, 50%
ethanol, and deionized water for 3 min each. Following deparaffinization, antigen epitope retrieval
was performed using the epitope retrieval solution and steamer (IHC-World, Woodstock, MD, USA).
Endogenous peroxidase activity was blocked using 3% H2O2 solution for 20 min, followed by serum
blocking (5% goat serum) for 1 h. After serum blocking, primary antibodies for IL1β, IL6, CD68, α-SMA,
and BDNF were diluted (1:300) in blocking buffer and applied on the tissue sections. All sections
were kept at 4 ◦C for overnight incubation in a humidified chamber. After overnight incubation,
the tissue sections were washed with 1× PBS-T (PBS + 0.05% Tween 20) 3 times. Biotinylated secondary
antibodies (species specific) were probed at 1:250 dilution, followed by incubation with streptavidin
conjugated with horseradish peroxidase at 1:500 dilution. Finally, the chromogenic substrate solution
of 3,3-diaminobenzidine (DAB) (Sigma-Aldrich) was applied on the sections and counterstaining was
performed using Mayer’s hematoxylin (Sigma-Aldrich). Mounting of all tissue sections was performed
using Simpo mount (GBI Laboratories, Mukilteo, WA, USA). Reactivity of the applied antibodies in the
sections was observed under 10× and 20× objectives and images were captured using an Olympus
BX43 microscope (Olympus, Center Valley, PA, USA). Morphometric data analyses were performed
using CellSens Software from Olympus America (Center Valley, PA, USA).

2.2.5. Immunofluorescence Staining

Deparaffinization and epitope retrieval procedures of paraffin-embedded small intestine and
brain tissue sections were performed as described previously. Following the epitope retrieval process,
the tissue sections were permeabilized using PBS-T (PBS + 0.1% Triton X-100) solution for 1 h. Blocking
was performed using 5% goat serum and the sections were incubated with primary antibodies of
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anti-Occludin, anti-Claudin-2, anti-GFAP, anti-S100β, anti-CD40, and anti-TMEM119 (at 1:300 dilution)
and kept at 4 ◦C overnight. Anti-IgG secondary antibodies (species specific) conjugated with Alexa
Fluor 488 or 633 (Invitrogen) were used at 1:250 dilutions. Tissue sections were mounted using ProLong
Gold antifade reagent with DAPI (Life Technologies, Carlsbad, CA, USA). Images were taken under
40× (for in vivo experiments) and 60× magnifications (for in vitro experiments) with an Olympus
BX63 microscope.

2.2.6. Western Blot

Western blot was performed using the proteins extracted from liver and frontal cortex of mice
tissues. Protein samples were extracted using RIPA lysis buffer containing protease and phosphatase
inhibitors, followed by estimation of the extracted tissue proteins by the BCA assay kit (Thermo
Fisher Scientific, Rockford, IL, USA). Approximately 30 µg of proteins extracted from each sample,
were added to a mixture containing 1× NuPAGE™ LDS Sample Buffer (Thermo Fisher Scientific,
Rockford, IL, USA) and 10% β-mercaptoethanol, and then boiled for 5 min for denaturation purposes.
The protein samples were subjected to standard SDS-PAGE using Novex 4–12% bis-tris gradient gel
and nitrocellulose membrane transfer of resolved protein bands was performed using the Trans-Blot
Turbo transfer system (Bio-rad, Hercules, CA, USA). Following Ponceau S staining, membrane blocking
was performed with 5% bovine serum albumin (BSA) for 1 h. Primary antibodies including anti-IRS-1,
anti-p-Tau, and anti-β-actin were diluted (1:1000) and probed overnight at 4 ◦C. Compatible horseradish
peroxidase-conjugated species-specific secondary antibodies were used to tag the primary antibody.
For the development of the blot, Pierce ECL Western blotting substrate (Thermo Fisher Scientific,
Waltham, MA, USA) was used. Finally, the blots were captured by G: Box Chemi XX6 and densitometry
analysis was performed using Image J software.

2.2.7. Serum ELISA

Serum collected from the CHOW, CHOW+GWI, WD, and WD+GWI mouse groups was used to
quantify IL6 and insulin concentration using commercially available ELISA kits from Thermo Fisher
Scientific (Waltham, MA, USA) and Crystal Chem (Elk Grove Village, IL, USA). IL6 ELISA was also
performed using supernatant collected from mouse microglial SIM-A9 cells. The ELISA procedures
were performed according to the manufacturer’s protocol.

2.2.8. Cell Cytotoxicity Assay

Cell cytotoxicity was determined using 100 µL of supernatant from the sera-treated SIM A9
cells by the LDH-Cytotoxicity Colorimetric Assay Kit (BioVision, Milpitas, CA, USA) following the
manufacturer’s protocol. The cytotoxicity was calculated using the formula (supplied with the kit):
Cytotoxicity (%) = (Test Sample − Low Control)/(High Control − Low Control) × 100. Low control was
cells in DMEM/F12 media with 1% serum and high control was cells in DMEM/F12 media with 1%
serum along with 1% Triton X-100.

2.3. Statistical Analyses

All experiments were performed with 5–6 mice per group and each individual mouse was treated
as a single sample. The statistical analysis was carried out by unpaired t-test (two-tailed tests with
equal variance) and one-way analysis of variance (ANOVA) for assessing the difference between
multiple groups. For all analyses, p ≤ 0.05 was considered statistically significant, and data were
presented as the mean ± SEM. Statistical significance was measured by Bonferroni–Dunn post-hoc
analysis for all intergroup comparisons.
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3. Results

3.1. Shotgun Metagenomics Show Alteration of Species Composition and Abundance in Western Diet-Fed Mice
with GWI and Obesity

Shotgun metagenomic analysis of fecal contents was performed using next-generation sequencing
to discern whether Western diet-induced obesity caused an altered species profile in the host of GWI
mice. Results showed a marked observed difference in the species profiles and relative abundance
among the Chow, Chow+GWI, WD, and WD+GWI groups (Figure 1A). Species diversity, richness,
and abundance were also studied. Results show that several species and clusters were differentially
altered between groups (Figure 1B). Detailed analysis of species diversity, richness, and abundance
(via LEfSe analysis) showed that at p = 0.01, the species Lactococcus lactis and Streptococcus thermophilus
were significantly increased in the WD+GWI group when compared to the Chow+GWI group
(Figure 2B). However, at p = 0.05, the species Akkermansia muciniphila and Staphylococcus xylosus
were also significantly increased in the WD+GWI group when compared to the CHOW+GWI group
(Supplementary Figure S1). Sixteen bacterial species, including Lachnospiraceae species, Clostridium,
and Enterorhabdus, dominated the abundance in the Chow+GWI group over and above the WD+GWI
group (Figure 2A). Results also showed that the relative abundance of Lactococcus lactis, Akkermansia
muciniphila, and Lachnospiraceae bacterium 28-4 showed an observed difference in the WD+GWI group
over and above the Chow+GWI group (Supplementary Figure S1). Shannon diversity analysis, which is
used to describe species evenness and richness using abundance scores, showed a marked difference in
the WD+GWI group when compared to the Chow+GWI group though the results were not significant
at the p < 0.05 level. Interestingly, Shannon diversity indices were significantly different between
the Chow and WD groups (Figure 2C). Beta diversity shows the difference in microbial species-level
composition in an environment or treatment group and can be represented by Bray–Curtis distance.
PERMANOVA testing showed that the Bray–Curtis beta diversity of WD+GWI compared to the
Chow+GWI group was significantly different (Figure 2D). To show whether bacterial species that are
known to exert a beneficial association to gut and neuronal health are present, analyses of the most
abundant, seven such species were performed (Figure 2E,F). Results showed that butyrogenic bacteria,
bacteria which contributes to good immune health, such as Lachnospiraceae Bacterium A2, COE-1, 3-1,
10-1, Eubacterium species, Ruminococcacae, Enterohabdus sp, and Hungatella, decreased significantly in the
WD+GWI group when compared to the Chow+GWI group. However, Dorea sp, a bacterial species
known to be associated with bloating, constipation and bad gut health, was significantly decreased
in the WD+GWI group when compared to the Chow+GWI group (Figure 2E). The direct species
comparison of individual bacteria among these two groups suggested strongly that a prolonged
Western diet feeding and the resultant underlying obesity decrease bacterial species that are known to
improve gut, neuronal and immune health [39–42] (Figure 2E,F).Nutrients 2020, 12, x FOR PEER REVIEW 8 of 30 
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abundance (LEfSe analysis) among all study groups (CHOW, CHOW+GWI, WD and WD+GWI) is 
calculated using three methods: the Kruskal–Wallis sum-rank test, the Wilcoxin rank-sum test, and 
Linear Discriminant Analysis (LDA). p ≤ 0.01 for Kruskal–Wallis and Wilcoxon tests; LDA score ≥ 2.0 
or ≤ −2.0. (C). Box plot showing α diversity (Shannon) in all experimental groups. The left box (control) 
includes both lean (CHOW) and obesity (WD) control groups. However, the right box (GWI) includes 
both GWI persistence in the lean mice (CHOW+GWI) and in the obese mice (WD+GWI) groups. (D). 
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(CHOW+GWI) and in the obese mice (WD+GWI) groups. (E,F). Bar graphs showing the percent 
relative abundance of beneficial bacterial species. Data were presented as the mean of percent relative 

Figure 2. Obesity induces microbial dysbiosis at the species level in Gulf War illness (GWI) persistence.
(A): Diverging bar (centroid) graph showing organisms’ log2 relative abundance at species levels in the
CHOW (lean), CHOW+GWI (persistence Gulf War illness), WD (obese) and WD+GWI (persistence
Gulf War illness underlying obesity) groups. (B). Differential species abundance (LEfSe analysis) among
all study groups (CHOW, CHOW+GWI, WD and WD+GWI) is calculated using three methods: the
Kruskal–Wallis sum-rank test, the Wilcoxin rank-sum test, and Linear Discriminant Analysis (LDA).
p ≤ 0.01 for Kruskal–Wallis and Wilcoxon tests; LDA score ≥ 2.0 or ≤ −2.0. (C). Box plot showing α

diversity (Shannon) in all experimental groups. The left box (control) includes both lean (CHOW) and
obesity (WD) control groups. However, the right box (GWI) includes both GWI persistence in the lean
mice (CHOW+GWI) and in the obese mice (WD+GWI) groups. (D). Bray–Curtis β diversity plot with
95% confidence ellipse in in all experimental groups including both the lean (CHOW) and obesity
(WD) control groups, and both GWI persistence in the lean mice (CHOW+GWI) and in the obese mice
(WD+GWI) groups. (E,F). Bar graphs showing the percent relative abundance of beneficial bacterial
species. Data were presented as the mean of percent relative abundance with SEM. t-test analyses were
performed. * denotes a significant level at p < 0.05 and ** denotes a significant level at p < 0.001.
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3.2. Western Diet-Fed Mice with GWI Show Increased Serum Levels of Proinflammatory Cytokine IL6
and Hyperinsulinemia

To show whether WD feeding and underlying obesity worsened serum levels of IL6, a reliable
indicator of GWI pathology, serum ELISA was performed in mice. Results showed that IL6 levels were
significantly increased in the WD+GWI group compared with the Chow+GWI group (Figure 3A).
Notably, alpha diversity representing species abundance was strongly correlated (Pearson’s R) with
increased IL6 levels in the blood of the WD+GWI group when compared to the chow+GWI group,
suggesting a probable role of the microbiome diversity observed in WD+GWI mice in elevated serum
IL6 (Figure 3C) (r = 0.6). Aging, an underlying obesity phenotype, and chronicity of GWI pathology,
can often lead to increased insulin levels in the blood, signifying underlying metabolic disease. Insulin
levels in WD+GWI mice showed a significant increase in its levels when compared to the Chow+GWI
group (Figure 3B), and microbiome dysbiosis represented by alpha diversity was strongly associated
with the insulin level increase in the blood of the WD+GWI group (Figure 3D). The results suggested
that proinflammatory levels of IL6 and hyperinsulinemia were higher in underlying obesity with
microbial dysbiosis represented by alpha diversity and might be a probable cause of such pathology.
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Figure 3. Obesity-induced microbial dysbiosis is associated with systemic IL6 levels and insulin
resistance Gulf War illness (GWI) persistence. (A). Bar graph showing serum IL6 level (pg/mL) in all the
CHOW (lean), CHOW+GWI (persistence Gulf War illness), WD (obese) and WD+GWI (persistence Gulf
War illness underlying obesity) groups, and (B). Serum insulin level (pg/mL) in all groups—CHOW,
WD, CHOW+GWI, and WD+GWI. Data in A and B were presented as the mean and SEM. t-test
analyses were performed. * denotes a significant level at p < 0.05. (C,D). Correlation plot of microbiome
α diversity index (chao) by serum IL6 (C), and by serum insulin (D). Results of multivariate analyses
for association with serum ELISA measurements are shown. Pearson’s linear regression is shown in
red with 95% confidence bands. IL6, Interleukin 6.
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3.3. Western Diet-Fed Mice with GWI Show Altered Tight Junction Protein Expression and Enteric Glial Cell
Activation, Thus Worsening GWI Intestinal Pathology

We determined whether underlying obesity caused an alteration of tight junction proteins in the
distant ileum by Claudin-2 and Occludin immunofluorescence analysis. Results showed that GWI
mice that were fed with the Western diet showed significantly increased levels of Claudin-2 when
compared to chow-fed mice (Chow+GWI) (Figure 4A,D) (p < 0.01). The WD+GWI group also showed
significantly decreased levels of Occludin when compared to the Chow+GWI group (Figure 4B,E)
(p < 0.01). Activation of enteric glial cells has been shown to be aiding in the proinflammatory events
in the intestine and contribute to GWI intestinal pathology [12]. Activation of these cells, as shown by
the co-localization of GFAP/S100B, was significantly increased in the WD+GWI group when compared
to the Chow+GWI group (Figure 4C,F) (p < 0.01). The co-localization events are shown by yellow
pointed arrows. To show whether the microbial diversity was associated with the intestinal changes
in pathology, a correlation analysis was carried out. Results showed that microbial diversity was
strongly correlated with an increase in Claudin 2 levels in the WD+GWI group (r = 0.7) (Figure 4G).
However, both Occludin levels and activation of enteric glial cells were not correlated with microbial
species diversity and abundance in the WD+GWI group (Figure 4H,I). The results suggested that
the underlying obesity following Western diet feeding was responsible for altered expression of tight
junction protein, especially Claudin-2 and Occludin and concomitant activation of enteric glial cells,
but microbiome diversity was only able to influence Claudin-2 protein levels in the obesity phenotype.Nutrients 2020, 12, x FOR PEER REVIEW 13 of 30 
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Figure 4. Tight junction protein levels, enteric glial cell activation, and their correlation with
microbial species diversity in Gulf War Illness (GWI) following an obesogenic diet feeding. (A–C).
Immunoreactivity of Claudin 2 (red) in (A), Occludin (red) in (B) and co-localization of GFAP/S100B
(yellow) in (C) as shown by immunofluorescence microscopy in intestinal tissue sections from CHOW
(lean), CHOW+GWI (persistence Gulf War illness), WD (obese) and WD+GWI (persistence Gulf War
illness in underlying obesity) mice. Immunoreactivity of Claudin 2, Occludin, and co-localization of
GFAP/S100B was indicated as yellow arrows. All images were taken at 40× magnification (50 µm).
(D–F). Bar graphs showing immunoreactivity of Claudin 2 in (D), Occludin in (E) and GFAP/S100B
co-localization (F). Results were displayed as the mean ± SD of ROI% of three different areas (n = 6).
Significance was tested by unpaired t-test; *** p < 0.001, NS = non-significant. (G–I). Correlation plot of
α diversity (Chao) of bacterial species index by immunoreactivity obtained from immunofluorescence
of Claudin 2 as (G), Occludin as (H), and co-localized GFAP/S100B as (I) of the WD+GWI mouse group.
Pearson’s linear regression is shown in red with 95% confidence bands. GFAP, Glial fibrillary acid
protein; S100B, S100 calcium binding protein B.

3.4. Western Diet-Fed Mice with GWI Show Altered Tissue Proinflammatory Mediators IL1β and IL6,
Thus Worsening GWI Intestinal Pathology

To show whether the underlying obesity worsens the release of proinflammatory cytokines from
the intestinal segments, immunoreactivities of IL1β and IL6 were studied using immunohistochemistry.
Results showed that IL1β tissue levels were increased significantly in the WD+GWI group when
compared to the Chow + GWI group (Figure 5A,C) (p < 0.01), while IL6 tissue levels also followed
a similar pattern when compared similarly (Figure 5B,D) (p < 0.01). Notably, both IL1β and IL6
tissue levels were positively correlated with microbiome diversity in the gut (Figure 5E,F) (r = 0.68;
0.78). The results suggested that the underlying obesity following Western diet feeding worsened the
GWI intestinal inflammation, as shown by increased levels of IL1β and IL6. Further, the microbiome
diversity evident from abundance scores positively correlated with the increased levels of the above
proinflammatory mediators.

3.5. Western Diet-Fed Mice with GWI Show Altered Hepatic Kupffer Cell Activation and Profibrotic Phenotype,
Thus Worsening GWI Hepatic Pathology

GWI patients hardly report liver abnormalities in the clinics owing to the silent nature of liver
pathology especially related to fatty liver or its most progressive inflammatory form though obstructive
liver disease cases have been documented [43,44]. We have shown previously that underlying liver
inflammation is prevalent in mice models with the absence of any liver inflammatory foci and fibrotic
pathology, a situation similar to early non-alcoholic fatty liver disease [44]. We determined whether a
Western diet feeding would worsen liver pathology in GWI mice by examining CD68 (a Kupffer cell
activation marker), and a-SMA (a myofibroblast phenotype marker) immunoreactivity. Results showed
that CD68 levels were significantly increased in the livers of the WD+GWI group when compared
to the Chow+GWI group (Figure 6A,C) (p < 0.01). Results also showed that α-SMA levels were
significantly increased in the livers of the WD+GWI group when compared to the Chow+GWI group
(Figure 6B,E) (p < 0.01). Notably, hepatic levels of insulin receptor substrate 1 (IRS-1), an important
mediator in insulin resistance, were significantly decreased in the WD+GWI group when compared to
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the Chow+GWI group, suggesting that Western diet feeding worsened insulin resistance (Figure 6G,H).
The data for IRS-1 also corroborated the increased hyperinsulinemia in the WD+GWI group observed
earlier. The increased diversity of the microbial species in the WD+GWI group correlated positively
with increased CD68 and α-SMA (Figure 6D,F) (r = 0.74 and 0.9, respectively), suggesting that increased
hepatic inflammation and stellate cell activation for a probable profibrotic phenotype is strongly
associated with increased species diversity. However, there was a negative correlation between
increased species diversity and IRS-1 protein levels, suggesting that microbiome changes may be
aiding in the observed insulin resistance (Figure 6I) (r= −0.6).

Nutrients 2020, 12, x FOR PEER REVIEW 14 of 30 

 

3.4. Western Diet-Fed Mice with GWI Show Altered Tissue Proinflammatory Mediators IL1β and IL6, thus 
Worsening GWI Intestinal Pathology 

To show whether the underlying obesity worsens the release of proinflammatory cytokines from 
the intestinal segments, immunoreactivities of IL1β and IL6 were studied using 
immunohistochemistry. Results showed that IL1β tissue levels were increased significantly in the 
WD+GWI group when compared to the Chow + GWI group (Figure 5A,C) (p < 0.01), while IL6 tissue 
levels also followed a similar pattern when compared similarly (Figure 5B,D) (p < 0.01). Notably, both 
IL1β and IL6 tissue levels were positively correlated with microbiome diversity in the gut (Figure 
5E,F) (r = 0.68; 0.78). The results suggested that the underlying obesity following Western diet feeding 
worsened the GWI intestinal inflammation, as shown by increased levels of IL1β and IL6. Further, 
the microbiome diversity evident from abundance scores positively correlated with the increased 
levels of the above proinflammatory mediators.  

 
Figure 5. Gastrointestinal inflammation and its correlation with microbial species diversity in Gulf 
War illness (GWI) following obesogenic diet feeding. (A,B). Immunoreactivity of inflammatory 
markers IL1β (A) and IL6 (B) proteins was shown by immunohistochemistry in intestinal tissue 
sections from the CHOW (lean), CHOW+GWI (persistence Gulf War illness), WD (obese) and 
WD+GWI (persistence Gulf War illness underlying obesity) mice groups. Immunoreactivity was 
indicated by black circles. Images were taken at 20× magnification (scale 100 µm). (C,D). Bar graph 
showing immunoreactivity of IL1β as (C), and IL6 as (D). Results were displayed as the mean ± SD of 
ROI% of 3 different areas (n = 6). Significance was tested by unpaired t-test; ** p < 0.01, and *** p < 
0.001. (E,F). Correlation plot of α diversity (Chao) of bacterial species index by immunoreactivity 
obtained from immunohistochemistry of IL1β as (E) and IL6 as (F) of the WD+GWI mouse group. 

Figure 5. Gastrointestinal inflammation and its correlation with microbial species diversity in Gulf War
illness (GWI) following obesogenic diet feeding. (A,B). Immunoreactivity of inflammatory markers
IL1β (A) and IL6 (B) proteins was shown by immunohistochemistry in intestinal tissue sections from
the CHOW (lean), CHOW+GWI (persistence Gulf War illness), WD (obese) and WD+GWI (persistence
Gulf War illness underlying obesity) mice groups. Immunoreactivity was indicated by black circles.
Images were taken at 20×magnification (scale 100 µm). (C,D). Bar graph showing immunoreactivity of
IL1β as (C), and IL6 as (D). Results were displayed as the mean ± SD of ROI% of 3 different areas (n = 6).
Significance was tested by unpaired t-test; ** p < 0.01, and *** p < 0.001. (E,F). Correlation plot of α
diversity (Chao) of bacterial species index by immunoreactivity obtained from immunohistochemistry
of IL1β as (E) and IL6 as (F) of the WD+GWI mouse group. Pearson’s linear regression is shown in red
with 95% confidence bands. IL1β, Interleukin 1 beta; IL6, Interleukin 6.



Nutrients 2020, 12, 2764 14 of 27

Nutrients 2020, 12, x FOR PEER REVIEW 16 of 30 

 

 
Figure 6. Kupffer cell and stellate cell activation in the liver and their correlation with microbial 
species diversity in Gulf War Illness (GWI) following obesogenic diet feeding. (A,B). 
Immunoreactivity Kupffer cell activation marker CD 68 (A) and stellate cell activation marker α-SMA 
(B) proteins were shown by immunohistochemistry in liver sections from the CHOW (lean), 
CHOW+GWI (persistence Gulf War illness), WD (obese) and WD+GWI (persistence Gulf War illness 
underlying obesity) mice groups. Immunoreactivity was indicated by black circles. Images were taken 
at 20× magnification (scale 100 µm). (C,E). Bar graph showing immunoreactivity of CD 68 as (C), and 
α-SMA as (E). Results were displayed as the mean ± SD of ROI% of three different areas (n = 6). 
Significance was tested by unpaired t-test; ** p < 0.01, and *** p < 0.001; NS = non-significant. (G). 
Immunoblot analyses of IRS-1 from liver tissue lysates of the CHOW, CHOW+GWI, WD, and 
WD+GWI mouse groups. (H). Densitometric analyses of IRS-1 immunoreactivity displayed as the 
mean ± SD (n = 3), normalized against β-actin, and plotted as a bar graph. (D,F,I). Correlation plot of 
α diversity (Chao) of bacterial species index by immunoreactivity obtained from 
immunohistochemistry of CD 68 as (D) and α-SMA as (F) and immunoblot of IRS-1 (I) of the 
WD+GWI mouse group. Pearson’s linear regression is shown in red with 95% confidence bands. 
CD68, Cluster of Differentiation 68; α-SMA, alpha-smooth muscle actin; IRS1, insulin receptor 
substrate 1. 

Figure 6. Kupffer cell and stellate cell activation in the liver and their correlation with microbial
species diversity in Gulf War Illness (GWI) following obesogenic diet feeding. (A,B). Immunoreactivity
Kupffer cell activation marker CD 68 (A) and stellate cell activation marker α-SMA (B) proteins were
shown by immunohistochemistry in liver sections from the CHOW (lean), CHOW+GWI (persistence
Gulf War illness), WD (obese) and WD+GWI (persistence Gulf War illness underlying obesity) mice
groups. Immunoreactivity was indicated by black circles. Images were taken at 20× magnification
(scale 100 µm). (C,E). Bar graph showing immunoreactivity of CD 68 as (C), and α-SMA as (E). Results
were displayed as the mean ± SD of ROI% of three different areas (n = 6). Significance was tested by
unpaired t-test; ** p < 0.01, and *** p < 0.001. (G). Immunoblot analyses of IRS-1 from liver tissue lysates
of the CHOW, CHOW+GWI, WD, and WD+GWI mouse groups. (H). Densitometric analyses of IRS-1
immunoreactivity displayed as the mean ± SD (n = 3), normalized against β-actin, and plotted as a bar
graph. (D,F,I). Correlation plot of α diversity (Chao) of bacterial species index by immunoreactivity
obtained from immunohistochemistry of CD 68 as (D) and α-SMA as (F) and immunoblot of IRS-1
(I) of the WD+GWI mouse group. Pearson’s linear regression is shown in red with 95% confidence
bands. CD68, Cluster of Differentiation 68; α-SMA, alpha-smooth muscle actin; IRS1, insulin receptor
substrate 1.
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3.6. Western Diet-Fed Mice with GWI Show Heightened Neuroimmune Activation, Thus Worsening GWI
Neuronal Pathology

Gulf War illness is perceived as a neuroimmune disease [22–25]. Chemical exposures during the
war theater have been considered as significant effectors of neuronal pathology. Further, the neuronal
pathology persists even 28 years after the war ended. We have shown previously that microbial dysbiosis
connects neuroinflammation via mediators of the persistent dysbiosis. We ascertained whether the
underlying obesity due to Western diet feeding would worsen persistence of neuroinflammation
and related pathology through immunohistochemistry for proinflammatory mediators in the frontal
cortex. Results showed that IL6 and IL1β tissue levels in the frontal cortex increased significantly in
the WD+GWI group when compared to the Chow+GWI group (Figure 7A–D) (p < 0.01). Microglia,
the brain-specific macrophages with an active role in neuroinflammation, have been shown to play
a significant role in GWI pathology. Results showed that levels of CD40 co-localization events with
microglial marker TMEM119 were significantly increased in the WD+GWI group when compared to
the Chow+GWI group (Figure 8A,B) (p < 0.01). To ascertain whether the dysbiosis shown earlier at the
species level correlated with the observed neuroinflammation both for the proinflammatory cytokines
and microglial activation, a Pearson’s R was calculated for each of these comparison parameters.
Results showed that levels of frontal cortex IL6 and IL1β were correlated with alpha diversity of the
microbiome species in the same group (WD+GWI) (Figure 7E,F) (r = 0.73 for IL6) while the same
positive correlation was observed for microglial activation (Figure 8C) (r = 0.89). The results suggested
that obesity worsened neuronal inflammation and microglial activation, and the microbial species
diversity was strongly associated with the brain inflammatory pathology.
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IL6 (A) and IL1β (B) proteins was shown by immunohistochemistry in brain slices (the focused area
is cerebral cortex) from the CHOW (lean), CHOW+GWI (persistence Gulf War illness), WD (obese)
and WD+GWI (persistence Gulf War Illness underlying obesity) mice groups. Immunoreactivity was
indicated by black arrows. Images were taken at 10× and 20× magnification. The frontal cortex is
marked as FC, and HC is the hippocampus. (C,D). Bar graph showing immunoreactivity of IL6 as
(C), and IL1β as (D). Results were displayed as the mean ± SD of ROI% of three different areas (n = 6).
Significance was tested by unpaired t-test; *** p < 0.001; NS = non-significant. (E,F). Correlation plot of α
diversity (Chao) of bacterial species index by immunoreactivity obtained from immunohistochemistry
of IL6 as (E) and IL1β as (F) of the WD+GWI mouse group. Pearson’s linear regression is shown in red
with 95% confidence bands. IL1β, Interleukin 1 beta; IL6, Interleukin 6.
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Figure 8. Microglial activation in the frontal cortex and its correlation with microbial species diversity
in Gulf War illness (GWI) following an obesogenic diet feeding. (A). Co-localization of TMEM119/CD40
(yellow), as shown by immunofluorescence microscopy in frontal cortex sections from the CHOW
(lean), CHOW+GWI (persistence Gulf War illness), WD (obese) and WD+GWI (persistence Gulf War
illness underlying obesity) mice groups. Immunoreactivity was indicated by white circles. All images
were taken at 40×magnification (50 µm). (B). Bar graph showing immunoreactivity of TMEM119/CD40
co-localization. Results were displayed as the mean ± SD of ROI% of three different areas (n = 6).
Significance was tested by unpaired t-test; ** p < 0.01, and *** p < 0.001; NS = non-significant.
(C). Correlation plot of α diversity (Chao) of bacterial species index by immunoreactivity obtained from
immunofluorescence of co-localized TMEM119/CD40 of the WD+GWI mouse group. Pearson’s linear
regression is shown in red with 95% confidence bands. CD40, Cluster of Differentiation 40; TMEM119,
Transmembrane protein 119.
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3.7. Western Diet-Fed Mice with GWI Show Decreased Tissue Specific Content of Neurotrophic Factor BDNF
and a Concomitant Rise in Tau Phosphorylation, Thus Worsening the Risk of GWI Neurocognitive Deficiencies

GWI symptom persistence in patients often reflects cognitive and memory deficits. Notably,
neuroinflammation and microglial activation have been shown to cause decreased BDNF release, which
has a notable role in neurogenesis and synaptic plasticity. Further, the accumulation of phosphorylated
Tau protein exhibits a strong correlation with memory and recognition problems. We uncovered
whether the underlying obesity decreased the tissue content of BDNF and increased phosphorylated
Tau in the frontal cortex by immunohistochemistry on brain slices. Results showed that BDNF levels
were significantly decreased in the frontal cortex of the WD+GWI group when compared to the
Chow+GWI group (Figure 9A,B) (p < 0.05). Phosphorylated Tau assessment by immunoblot showed a
significant increase in the protein levels in the frontal cortex of the WD+GWI group when compared to
the Chow+GWI group (Figure 9D,E) (p < 0.05). Notably, microbial species diversity as assessed by
alpha diversity was negatively correlated with levels of BDNF (Figure 9C) (r = 0.65) and positively
correlated with levels of phosphorylated Tau protein (Figure 9F, r = 0.6). The results above suggested
that the underlying obesity due to Western diet feeding for a prolonged time decreases neurotrophic
mediator BDNF while increasing accumulation of phosphor Tau protein, a mediator for defects in
memory and Alzheimer-like pathology.Nutrients 2020, 12, x FOR PEER REVIEW 20 of 30 
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tested by unpaired t-test; ** p < 0.01, and *** p < 0.001; NS = non-significant. (D). Immunoblot analyses 
of p-Tau from frontal cortex tissue lysates of the CHOW, CHOW+GWI, WD, and WD+GWI mouse 
groups. (E). Densitometric analyses of p-Tau immunoreactivity displayed as the mean ± SD (n = 3), 
normalized against β-actin and plotted as a bar graph. (C,F). Correlation plot of α diversity (Chao) of 
bacterial species index by immunoreactivity obtained from immunohistochemistry of BDNF (C) and 
immunoblot of p-Tau (F) of the WD+GWI mouse group. Pearson’s linear regression is shown in red 
with 95% confidence bands. BDNF, Brain-derived neurotrophic factor; p-Tau, phosphorylated Tau. 
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Figure 9. BDNF and accumulation of p-Tau and its correlation with microbial species diversity in
Gulf War Illness (GWI) following an obesogenic diet feeding. (A). Immunoreactivity of neurotrophic
marker BDNF protein was shown by immunohistochemistry in brain slices (the focused area is cerebral
cortex) from the CHOW (lean), CHOW+GWI (persistence Gulf War illness), WD (obese) and WD+GWI
(persistence Gulf War illness underlying obesity) mice groups. Immunoreactivity was indicated by
black arrows. Images were taken at 10× and 20×magnification. The frontal cortex is marked as FC and
the hippocampus as HC. (B). Bar graph showing immunoreactivity of BDNF. Results were displayed
as the mean ± SD of ROI% of three different areas (n = 6). Significance was tested by unpaired t-test;
** p < 0.01, and *** p < 0.001; NS = non-significant. (D). Immunoblot analyses of p-Tau from frontal
cortex tissue lysates of the CHOW, CHOW+GWI, WD, and WD+GWI mouse groups. (E). Densitometric
analyses of p-Tau immunoreactivity displayed as the mean ± SD (n = 3), normalized against β-actin
and plotted as a bar graph. (C,F). Correlation plot of α diversity (Chao) of bacterial species index by
immunoreactivity obtained from immunohistochemistry of BDNF (C) and immunoblot of p-Tau (F) of
the WD+GWI mouse group. Pearson’s linear regression is shown in red with 95% confidence bands.
BDNF, Brain-derived neurotrophic factor; p-Tau, phosphorylated Tau.

3.8. Mouse Serum from Mice with GWI and Underlying Obesity with an Altered Microbiome Activate
Microglial Cells, Cause M1 Polarization and Induce Oxidative Stress and Cytotoxicity

The data described above clearly show an association with microbiome dysbiosis in mice that are
obese and have GWI but does not causally link the dysbiosis-induced systemic inflammation to changes
in microglia. We determined whether the GWI and obesity-induced microbiome dysbiosis would
release the circulatory mediators of microglial activation through an ex vivo/in vitro approach. SIM-A9
cells were incubated with mouse serum from the Chow, Chow+GWI, WD, and WD+GWI groups.
An LPS-treated group was used as a positive control. Results showed that there was a significant
increase in co-localization events of CD40 and TMEM119 in SIM-A9 cells-incubated with serum from
the WD+GWI group when compared to the Chow or WD or Chow+GWI groups (Figure 10A,C)
(p < 0.05). Tyrosyl radical formation, as indicated by 3-nitrotyrosine, significantly increased in the
WD+Chow group when compared to the Chow or WD or Chow+GWI groups (Figure 10B,D) (p < 0.05).
We examined whether the serum from mice with GWI and obesity would induce M1 polarization of
microglia and release proinflammatory cytokine IL6, a crucial mediator in worsening GWI-associated
neuroinflammation, by screening supernatants for the cytokine concentration using ELISA. Results
showed that there was a significant increase in secreted IL6 in the supernatant of cells incubated with the
WD+GWI group when compared to either the Chow or GWI alone or Chow+GWI groups (Figure 10E)
(p < 0.01). The same group showed marked cytotoxicity as assessed by LDH release (Figure 10F).
The results suggested that mouse serum from the WD-GWI group might harbor damage-associated
molecular patterns, preferably HMGB1 or IL6, that may be instrumental in the activation of microglia
shown in Figure 9.
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tested by unpaired t-test; ** p < 0.01, and *** p < 0.001; NS = non-significant. (E). IL6 concentration 
(pg/mL) in supernatants from SIM-A9 cells treated with serum from CHOW, CHOW+GWI, WD, 
WD+GWI mice groups and with lipopolysaccharide (LPS) (1 µg/mL) were displayed by bar graph. 
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Figure 10. Obese mice serum induces microglial activation, tyrosine nitration, and IL6 release in mouse
SIM-A9 cells. (A). Co-localization of CD40/TMEM119 (yellow) as shown by immunofluorescence
microscopy in mouse microglial cells SIM-A9 treated with serum from CHOW (lean), CHOW+GWI
(persistence Gulf War illness), WD (obese), and WD+GWI (persistence Gulf War illness underlying
obesity). Nucleus was stained with DAPI. Images were taken at 60×magnification and a magnified
image of the merged channels is presented at the right side. (B). Immunoreactivity of 3-nitrotyrosine
as shown by immunofluorescence microscopy in mouse microglial cells SIM-A9 treated with serum
from CHOW, CHOW+GWI, WD, and WD+GWI. Immunoreactivity was indicated as white circles.
Nucleus was stained with DAPI. Images were taken at 40×magnification. (C,D). Bar graph showing
immunoreactivity of CD40/TMEM119 co-localization (C) and 3-nitrotyrosin (D). Results were displayed
as the mean ± SD of ROI% of three different areas (n = 3). Significance was tested by unpaired t-test;
** p < 0.01, and *** p < 0.001; NS = non-significant. (E). IL6 concentration (pg/mL) in supernatants
from SIM-A9 cells treated with serum from CHOW, CHOW+GWI, WD, WD+GWI mice groups and
with lipopolysaccharide (LPS) (1 µg/mL) were displayed by bar graph. Data were calculated and
expressed as the mean ± SD; significance was calculated by paired t-test between the groups; ** p <

0.01, and *** p < 0.001. (F). Bar graph depicting percentage cytotoxicity by lactate dehydrogenase assay
using supernatant of SIM-A9 cells treated with serum from CHOW, CHOW+GWI, WD, WD+GWI
mice groups or with LPS (1 µg/mL), Data were calculated and expressed as the mean ± SD (n = 3).
CD40, Cluster of Differentiation 40; TMEM119, Transmembrane protein 119; Il-6, Interleukin 6; DAPI,
4′,6-diamidino-2-phenylindole.

4. Discussion

The present study describes the obesity-induced worsening of GWI-associated inflammation in
the gastrointestinal tract, hepatic inflammatory changes that are a precursor to metabolic disturbances
and neuroinflammation that may form the basis of cognitive decline and memory loss. The mouse
model of chronic GWI was adopted from a published study by Zakirova Z et al. [45] to mimic
exposures experienced by GW veterans who returned to a non-combat role after deployment and live
in the United States [46]. In addition, like the rest of the continental US, veterans have adapted to a
sedentary lifestyle or were physically incapacitated due to an injury suffered during the deployment [7].
This study used a Western diet (43% carbohydrate, 44% fat) that is a staple dietary pattern in the US
and other Western societies [47]. Such a diet induces obesity and primarily mimics the present-day US
dietary habit [48,49]. The Western diet remains a better model than a high-fat diet (60% kcal fat/low
carb)-induced obesity for our studies since it models our veterans and is not merely mimicking a
high-fat diet-induced morbidly obese condition with implications in the liver and other cardiovascular
complications [50]. Our results show that obesity-induced by a Western diet for 20 weeks (~equivalent
to 15.5 years in GW veterans) [51] resulted in a unique microbiome signature that caused a significant
decrease in the butyrogenic bacterial species. Notably, the microbiome species changed in richness,
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diversity, and abundance, which was strongly correlated with gastrointestinal and hepatic alterations,
and neuroinflammation.

To date, the current study is the most comprehensive microbial analysis in the GWI mouse
model. The present study expands our earlier acute phase study that showed the microbiome
dysbiosis via a V3–V4 16s sequencing [52]. With a rapidly evolving technology to evaluate microbiome
dysbiosis, it is important that better and more sophisticated techniques must be applied to unearth the
microbiome puzzle that may have lasting answers to the cause and the treatment of GWI. We used the
shotgun metagenomics method for microbiome analysis at the species level using the next-generation
sequencing platform, a sophisticated and better alternative to our earlier approach. A recent study
reported the high-fat and low-carbohydrate diet (45% kcal fat)-induced microbiome changes in GWI,
but the study was entirely based on 16s RNA sequencing. Though 16S rRNA gene sequencing is highly
useful regarding bacterial classification, it may be noted that it has low phylogenetic power at the
species level and a weak discriminatory power for some genera. Further, DNA-related studies are
necessary to provide absolute resolution to these taxonomic problems [53–55].

Akkermansia muciniphila, a widely studied species known to have a beneficial effect in
gastrointestinal disorders, was significantly decreased in Chow+GWI, and the decrease was strongly
associated with gut abnormalities and inflammation [11,41]. In contrast, we observed a marked
increase in abundance of Akkermansia muciniphila in the WD+GWI group (Supplementary Figure S1)
when compared to the Chow+GWI group, suggesting that mucin degradation by this species was an
adaptive response by the intestinal microenvironment to ensure that a proper defense can be launched
following a possible rapid loss of membrane integrity in the WD+GWI group (increased Claudin-2
levels and decreased Occludin) though more detailed studies need to be performed to back the above
hypothesis [11] (Figure 4A,B). It may be noted that Akkermansia species have been associated with
intestinal membrane integrity [56]. However, the mechanisms of such a response are unclear at this
time, and more species-level studies with higher n values need to be carried out to understand the
commensalism of other species. The above argument is backed by our data related to the abundance
of another beneficial microbe, Lactococcus lactis. Lactococcus lactis was found to be abundant in the
WD+GWI group when compared to the Chow+GWI group. Interestingly, Lactobacillus lactis has been
shown to release antioxidant defense enzyme superoxide dismutase and can be a strong player in
the host anti-inflammatory response [42]. Together with Akkermansia, species such as Lactobacillus
lactis may be aiding the host intestinal microenvironment to launch an effective and robust wound
healing response following the chronic obesity-induced worsening of GWI intestinal inflammation
(Figure 2B and Supplementary Figure S1). These findings are relevant for planning a future effective
probiotic therapy where a combination of Lactobacillus lactis and Akkermansia sp. may be used in our
GWI veterans.

We have shown before that butyrate-producing bacteria and bacterial species that promote
gut health are significantly decreased in GWI. Similar results were also observed in the present
study, where several butyrogenic bacteria and other prominent beneficial microbes were significantly
decreased in the WD+GWI group (Figure 2E,F). Further, butyrate generated as a metabolic product
of these bacteria has been shown to possess a robust anti-inflammatory effect largely by its ability
to trigger an adaptive immune response involving T regulatory cells [57]. We used LEfSe analysis
to determine specific bacteria taxa that were differentially abundant and partially depleted in the
WD+GWI group. We identified Hungatella sp, Eubacterium sp, Lachnospiraceae bact 3.1, Ruminococcaceae
bact D16, Lachnospiraceae bact A2, Blautia, and Enterohabdus cecimuris as the most differentially depleted
genera associated with GWI-led worsening of symptoms in an underlying obesity condition (Figure 2B,
Supplementary Figure S1). Notably, Dorea sp. decreased as well in the WD+GWI group, suggesting
an adaptive response probably similar to the type of response we observed with Akkermansia sp.
The results assume immense significance, since chronicity of GWI symptoms and their subsequent
worsening might be due to the partial depletion of these beneficial microbes. However, gnotobiotic
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studies using the individual strains or a combination of these strains in the future will be valuable to
authenticate these results.

Chronicity of GWI manifests in mild to severe gastrointestinal disturbances in the subsection of
patients [46]. We have shown that GI inflammation persists in the mouse model (Neu Insights-in press).
The levels of proinflammatory events such as increased proinflammatory mediators like IL6, IL1β,
inflammasome activation with concomitant alterations of tight junction proteins are strongly associated
with persistent dysbiosis even 5 months after the GW chemical exposure that mimics war theater [11].
Our results of a further worsening of the GI inflammatory surge and events that contribute to a leaky
gut in underlying obesity suggest that a Western dietary behavior and sedentary lifestyle (mice in the
present model were not subject to exercise) can aggravate GI disturbances. Interestingly, one of our
earlier studies showed an underlying liver inflammation but failed to show a liver disease phenotype
that manifests in a significant elevation of liver enzymes or marked steatosis [44]. The underlying
obesity due to prolonged Western diet consumption significantly elevated liver injury, as shown by
increased Kupffer cell and stellate cell activation, markers of ensuing steatohepatitis, and or metabolic
syndrome. The results and our assumptions about a possible metabolic syndrome were also backed by
significant hyperinsulinemia and a decrease in insulin receptor substrate 1 level in the liver (Figure 6).
Significantly enough, all the results associated with a diseased liver were strongly associated with an
altered microbiome species diversity (Figures 5 and 6).

Gulf War illness veterans show a consistent decrement of brain function that includes cognitive
and memory deficits [46]. Many of the symptoms reported by veterans with GWI are indicative of
central nervous system (CNS) dysfunction, and indeed this has been corroborated by structural and
functional neuroimaging and biomarker studies [46,58]. The decrements in brain function, such as
memory and learning deficits, plague the veterans even today and highlight the need for proper
diagnostic pathology and treatment. Most studies that model persistence of GWI symptoms do not
consider the various comorbidities accompanying brain dysfunction in veterans. For example, a
GWI veteran in the age range of 50–55 years and consuming a Western diet has limited mobility
due to combat-related injuries, and may suffer from increased weight gain, hypertension, type II
diabetes and a host of other chronic diseases. Thus, it is essential to study the weight gain-associated
comorbidities and their role in worsening the neuronal disturbances. Our results of increased
frontal cortex levels of IL6 and IL1β and their strong association with an altered species diversity
show that obesity-induced unique microbiome signature might exacerbate the proinflammatory
microenvironment in the brain. Interestingly, we have shown that IL6 remains elevated in serum
and the brain following GW chemical exposure. IL6 and IL1β have been shown to contribute to
major depression, dementia, and neurodegenerative disease phenotypes by [59–62]. Our results of a
gut–brain connection to neuroinflammation strongly support the argument of increased focus on the
mechanisms that may lead to these phenotypes, especially the role of microglial activation following
stimulation by circulatory IL1β and IL6 [63]. Microglial activation in our mouse model showed a
significant increase in the WD+GWI group when compared to the Chow+GWI group, suggesting
that obesity-associated microbial dysbiosis and increased serum IL6 levels might contribute to such
activation and possibly connect to neurodegenerative phenotype (Figure 8). Our results of exacerbation
of neuroinflammation following Western diet-induced obesity are corroborated by other experimental
studies where microglial activation is seen as an important event [64]. Microglial activation and
subsequent amplification of inflammation in the brain is associated with regulation by neurotrophic
factors such as BDNF [65]. Furthermore, obesity is associated with decreased levels of BDNF [66].
Further, the accumulation of phosphorylated tau is indicative of neurodegenerative changes [67,68].
The underlying obesity in the GWI mouse model resulted in a significant decrease in BDNF and a
parallel increase in phosphorylated tau protein, indicating a neurodegenerative phenotype associated
with microbial dysbiosis (Figure 9). Interestingly, microglial activation also leads to a neurodegenerative
phenotype [69] and is extensively reviewed [70]. To strengthen our conclusion of such an association
between dysbiosis, increased microglial activation and neurodegeneration, we incubated a transformed



Nutrients 2020, 12, 2764 23 of 27

microglial cell line with serum from WD+GWI that had significant species diversity and a unique
phenotype of increased bacterial species known to increase inflammation. Increased secretion of IL6,
peroxynitrite generation, and increased cytotoxicity in these cells show a linear relationship between
Western diet consumption, microbial dysbiosis, and neuroinflammation via a microglial activation
pathway. Having shown that GWI mice with dysbiosis have an elevated circulatory IL6, it is not
surprising that an even higher serum IL6 (Figure 3) in the WD+GWI group caused an M1 polarization
(secreted IL6) to seeded microglial cells (Figure 10) [71]. The ex vivo/in vitro data also form the basis of a
likely mechanism of microglia-induced neuroinflammation and neuronal dysfunction in the WD+GWI
group. We also found a robust association between obesity in a GWI model and dysbiosis that is in
line with a recent study in a Gulf War illness mouse model that showed dysbiosis following high-fat
diet feeding [9]. Such a scenario is likely in GWI veterans because they are aging and have limited
physical activity. Moreover, studies on the effects of mouse serum from the experimental in vivo
groups exhibiting gut dysbiosis on microglia partially proved a relationship between gut dysbiosis
and neuroinflammation. Our present study also advances our understanding about a likely scenario in
veterans with an overweight or obese phenotype. Notably, one strength of our study lies in possible
mechanistic links of an obese phenotype to persistence of GWI symptoms such as GI disturbances,
liver abnormalities and neuronal pathology 28 years after the war ended. Nonetheless, a detailed
mechanistic study using either an antibiotic-induced gut sterility control group or germ-free mice will
be necessary to confirm the mechanisms mentioned above. Limitations include a moderate sample size
of 5–6 mice per group and future studies should build on the preliminary findings of this study to focus
on specific mechanistic underpinnings in each organ system with a large sample size. Further, GWI is
a multisymptom disorder and dysbiosis-linked associations in pathology seen in mouse models only
reflect a trend in disease progression rather than a causality. Improved rodent preclinical models may
see benefits in finding definitive pathology and drug pathways. In summary, the results of this study
suggest that the underlying obesity due to a Western diet contributes to persistence of gastrointestinal
and hepatobiliary alterations and neuroinflammation over the longer term. Such effects are likely the
result of a sustained microbial species-level diversity. Targeted probiotic approaches in combination
with anti-inflammatory nutraceuticals might help to prevent a poor outcome in obesity-associated
worsening of GWI symptoms that we observe in GW veterans today. Additionally, the results have
implications for understanding the inflammation processes in chronic illnesses and the aging process.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/12/9/2764/s1,
Figure S1: Differential abundance (LEfSe analysis) plot of significant OUT at species level between CHOW+GWI
(GWI persistence in lean mice) and WD+GWI (GWI persistence in obese mice) Groups. The LEfSe analysis is
calculated using three methods: Kruskal-Wallis sum-rank test, Wilcoxin rank-sum test, and Liniear Discriminant
Analysis(LDA) meet p ≤ 0.05 for Kruskal-Wallis and Wilcoxin tests and have an LDA score ≥2.0 or ≤−2.0.
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