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Abstract: Obesity is a condition of rising prevalence worldwide, with important socioeconomic
implications, being considered as a growing public health concern. Frequently, obesity brings other
complications in addition to itself—like Type 2 Diabetes Mellitus (T2DM)—sharing origin, risk factors
and pathophysiological mechanisms. In this context, some authors have decided to include both
conditions as a unique entity known as “diabesity”. In fact, understanding diabesity as a single
disease is possible to maximise the benefits from therapies received in these patients. Gut microbiota
plays a key role in individual’s health, and their alterations, either in its composition or derived
products are related to a wide range of metabolic disorders like T2DM and obesity. The present work
aims to collect the different changes reported in gut microbiota in patients with T2DM associated with
obesity and their possible role in the onset, development, and establishment of the disease. Moreover,
current research lines to modulate gut microbiota and the potential clinical translation derived from
the knowledge of this system will also be reviewed, which may provide support for a better clinical
management of such a complex condition.
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1. The Global Challenge of Obesity

Obesity represents one of the greatest public health concerns worldwide, being considered as an
important risk factor for the development of chronic or non-communicable diseases (NCD). In addition,
its economic implications also pose a serious warning for sanitary authorities [1,2]. According to the
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last updated records from the World Health Organization (WHO), approximately 40% of people around
the world are overweight, whereas 13% are obese. The prevalence of this condition has importantly
increased over the years, in such a way as to almost triplicate from the 1970s, importantly affecting
women [3]. It is estimated that, in the world more people are presently overweight than underweight,
and this situation is not only reported in western societies but also in developing countries, due to
the lower cost of the obesogenic products [4]. In Europe, it is expected that by 2025 up to 20% of
the inhabitants could develop obesity, but a higher percentage cannot be discarded [5]. Similarly,
in Spain, recent data sustain that one in two adults are presently overweight, and around the 15% of
them are obese [6]. Childhood obesity also represents a global threat, even more worrying because
of its association with an increasing morbidity and mortality from early ages [7,8]. Overall, these
statistics show the impact of obesity nowadays, and the necessity of deepening understanding in this
important condition.

Obesity includes a variety of individual, social, economic, psychological, commercial,
and environmental factors which may be considered to fully understand this condition [9]. To start with,
obesity can be defined as an excessive accumulation of adipose tissue prolonged in time. The location
and the amount of stored fat are two key factors inversely related to the health and well-being of
individuals, limiting their quality of life [10]. The main criterion used for the assessment of obesity is
the body mass index (BMI), which is the result of the quotient of the weight (measured in kg) divided
by the size (in m2). Thus, a value ≥25 kg/m2 is diagnosed as overweight, and a value higher than 30,
as obesity. However, this system is not enough to explain why, for example, some patients with a higher
BMI were related to a minor risk of mortality, a fact known as the obesity paradox [11]. Hence, it is
important to consider other factors such as fat redistribution, metabolic status, cardiorespiratory fitness,
age or ethnic factors for a more accurate stratification to gain further insights into this condition [12,13].

On the other hand, obesity as a disease may be perceived as a set of disabling and
pathophysiological problems with inherent comorbidities, a result of the interaction of multiple
obesogenic factors [14]. Genetic predisposition is a major determinant in the outbreak of obesity,
and the origin may be understood from an evolutionary point of view, where the presence of “thrifty
genes” could represent an adaptation of the hominids to the scarcity of resources during the different
eras in their history [15]. Additionally, epigenetic regulation may play a key role in the susceptibility
to obesity, especially during pregnancy and the availability of nutrients in this period. Likewise, early
postnatal development and paternal lifestyle factors seem to also be crucial to switch on/off gene
expression [16]. Thanks to the progress in genomic techniques, more than a hundred genes directly
related with obesity have been described, such as those controlling appetite or even thermogenic
modulation [17,18]. Physical inactivity, an excessive intake, dietary patterns, or alcohol consumption
are the most representative examples of environmental risk factors in obesity [19]. The interaction of
environmental factors and genes and its effect on epigenetic modulation will finally lead to obesity [20].
Moreover, a lack of education in nutrition, cultural or marketing influence, the low price of unhealthy
products and even the existence of certain standards of beauty, relationships or a poor self-esteem, may
also be involved in the origin and establishment of obesity in our culture [21–23].

In this context, different organisations have risen to regulate and control such an extended
condition, like the European Association for the Study of Obesity (EASO). This entity remarks the
need for a multidisciplinary approach to maximise the success in the treatment of these patients,
their quality of life and their general well-being [24]. Public health measures should also consider
these various factors involved in the development of obesity, including economic and procedures
assessments, as well as a clear, detailed, and consistent language for a better clinical management in
the general population [25]. In the same way, the continuous progression and increasing incidence of
this condition denote the lack of success of these measures, thus elucidating the necessity for a greater
implication by governments, which may create awareness of this concern. For instance, it would be
interesting to promote lifestyle changes in the general population, encouraging higher consumption of
fruits, non-starchy vegetables or nuts and reducing the consumption of red or processed meat and
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high sugar and sodium foods [26], or encouraging people to regularly practice some exercise by the
creation of installations or green spaces. Television campaigns or advertisements warning of obesity
could also have a significant impact to educate the general population concerning one of the greatest
public health issues.

2. Type 2 Diabetes Mellitus and Its Connexion with Obesity

Obesity is often related with a wide range of complications, including cardiovascular disease,
metabolic disorders like type 2 diabetes mellitus (T2DM), chronic obstructive pulmonary disease,
arthritis, cancer, and even psychosocial conditions [14,27]. This is due to the excessive adipose tissue and
fat redistribution in obese patients, which is directly implicated with hyperglycaemia, hyperlipidaemia,
insulin resistance, endothelial dysfunction, and chronic inflammation [28]. T2DM, also known as
non-insulin dependent diabetes, is a condition frequently found in obese patients, and some authors
consider them as a unique entity termed as “diabesity” [29]. In fact it is known that up to an 85.2%
of people with T2DM have a problem of being overweight or obese [30] and by 2025, more than
300 million of people will have T2DM associated with obesity [31] so, in the majority of cases it is not
possible to understand these pathologies separately.

Three hypotheses have been established to explain the relationship between these conditions:
(1) chronic inflammation associated with obesity and their proinflammatory cytokines produced
by macrophages in adipose tissue affects insulin dependent tissues and beta cells, (2) Lipotoxicity
generated by the augmentation of ectopic lipid stores in obese people induce and promote the
damage and cytotoxicity in peripheral tissues and (3) adipokines hypothesis which sustains that
stressed adipocytes release a set of autocrine and paracrine products that finally conduct to the
loss of insulin sensitivity and to the capacity of beta cells in the pancreas [32]. Equally, obesity is a
condition that is associated to insulin resistance, which conducts to a chronic hyperglycaemia, thus
causing T2DM. Moreover, other mechanisms have been described by which these conditions may
be connected, such as the role of leptin. Leptin is a hormone responsible for controlling food intake
thanks to its anorexigenic effect on the hypothalamus, having been observed how, in obese people,
the levels of this hormone are increased, leading to a state of leptin resistance [33]. On the other hand,
it has been reported that, consumption of hypercaloric foods and high fat diets is associated with a
mitochondrial dysfunction and endoplasmic reticulum stress in the hypothalamus, thus promoting
not only leptin but also insulin resistance [34]. Interestingly, it has also been demonstrated how
this increase in leptin levels and a higher ratio with adiponectin are associated with an increase in
the proinflammatory cytokines like TNF-α and IL-6, once again related to the insulin resistance and
T2DM [35]. Similarly, it is known that from an evolutionary perspective, T2DM has appeared as a
consequence of the imbalance of two key factors: “Metabolic capacity”—which promotes glucose
homeostasis, and hence is antidiabetic—and “metabolic load”—the opposite to glucose regulation,
being prodiabetic. Thus, dealing with this condition is intended to reduce the metabolic load, which in
turn is enhanced by obesity or unhealthy lifestyles [36]. Frequently, the order of appearance is the
following: As previously described, the exposure to genetic and environmental factors promotes
the developmentof obesity. Obesity triggers and takes part in a complex cluster of conditions like
central obesity, insulin resistance, hypertension, and hyperlipidemia, collectively known as metabolic
syndrome or syndrome X [37]. The presence of metabolic syndrome is directly correlated with T2DM
and other complications such as cardiovascular diseases (CVDs) [38]. In addition, T2DM is a major risk
factor of micro and macrovascular events, nephropathies, opthalmological pathologies, cognitive and
mood disorders, or bone metabolism impairments, amongst other complications [39]. The absence of
metabolic syndrome reduces the risk of acquiring T2DM [40], thus denoting the complex interactions
between obesity and multiple risk factors in the onset and establishment of T2DM, as represented in
Figure 1.
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Figure 1. The interactions between multiple biological and lifestyle factors, directly influenced by an 
obesogenic environment and physiological changes may interplay with the individual’s epigenetic 
regulation, thus promoting the development of obesity. This condition characterised by an excessive 
fat storage, adipose tissue redistribution and chronic inflammation could lead to metabolic 
syndrome, a cluster of systemic alterations (central obesity, insulin resistance, hyperlipidemia and 
hypertension). The presence of metabolic syndrome increases the risk of developing type 2 diabetes 
mellitus (T2DM) in obese patients (Named as diabesity), as it has been reported that obese people 
without additional metabolic disorders rarely present T2DM. Diabesity is often related to T2DM 
complications like micro and macrovascular events, renal or ocular disease and other alterations, and 
importantly with cardiovascular diseases (CVD), a major problem of both diabesity and metabolic 
syndrome and the leading cause of death in obese patients. 

3. Clinical Management of Diabesity 

Because of the multiple links between T2DM and obesity, numerous studies have showed that 
by targeting obesity, it is possible to achieve a significant improvement in T2DM. Treating obesity 
consists, in a simple way, of reaching weight loss in these patients. Various strategies such as 
lifestyle interventions, pharmacotherapy, and even major procedures like bariatric surgery have 
been described [41]. Many studies have demonstrated not only how this clinical management is 
useful for losing weight, but also for ameliorating T2DM, notably improving their quality of life and 
life expectancies [42–44]. It is known that concomitant therapies like antidiabetics, antidepressants or 
antihypertensives may have important implications in weight gain and glycaemic profiles [41,45] 
and thus, denoting the potential effects of treating T2DM and obesity as a unique entity. 

3.1. The Impact of Diet and Lifestyle Interventions in Diabesity 

Diet and lifestyle interventions contribute significantly to clinical management of these 
conditions. The Mediterranean diet has proved to be one of the most effective choices in the clinical 
management of patients with diabesity and metabolic syndrome, to prevent CVDs complications 
[46] PREDIMED study (PREvención con DIetaMEDiterránea) represents accurately the impact of 
this intervention in people with obesity and T2DM, markedly in the prevention of their derived 
complications and global mortality [47,48]. In fact, thanks to interventional studies like this, it has 
been reported that implementing a Mediterranean diet rich in unsaturated fatty acids, is an 
interesting strategy with much greater efficacy than, for example, restricting the total fat intake in 

Figure 1. The interactions between multiple biological and lifestyle factors, directly influenced by an
obesogenic environment and physiological changes may interplay with the individual’s epigenetic
regulation, thus promoting the development of obesity. This condition characterised by an excessive
fat storage, adipose tissue redistribution and chronic inflammation could lead to metabolic syndrome,
a cluster of systemic alterations (central obesity, insulin resistance, hyperlipidemia and hypertension).
The presence of metabolic syndrome increases the risk of developing type 2 diabetes mellitus (T2DM)
in obese patients (Named as diabesity), as it has been reported that obese people without additional
metabolic disorders rarely present T2DM. Diabesity is often related to T2DM complications like
micro and macrovascular events, renal or ocular disease and other alterations, and importantly with
cardiovascular diseases (CVD), a major problem of both diabesity and metabolic syndrome and the
leading cause of death in obese patients.

3. Clinical Management of Diabesity

Because of the multiple links between T2DM and obesity, numerous studies have showed that
by targeting obesity, it is possible to achieve a significant improvement in T2DM. Treating obesity
consists, in a simple way, of reaching weight loss in these patients. Various strategies such as
lifestyle interventions, pharmacotherapy, and even major procedures like bariatric surgery have been
described [41]. Many studies have demonstrated not only how this clinical management is useful
for losing weight, but also for ameliorating T2DM, notably improving their quality of life and life
expectancies [42–44]. It is known that concomitant therapies like antidiabetics, antidepressants or
antihypertensives may have important implications in weight gain and glycaemic profiles [41,45] and
thus, denoting the potential effects of treating T2DM and obesity as a unique entity.

3.1. The Impact of Diet and Lifestyle Interventions in Diabesity

Diet and lifestyle interventions contribute significantly to clinical management of these conditions.
The Mediterranean diet has proved to be one of the most effective choices in the clinical management
of patients with diabesity and metabolic syndrome, to prevent CVDs complications [46] PREDIMED
study (PREvención con DIetaMEDiterránea) represents accurately the impact of this intervention
in people with obesity and T2DM, markedly in the prevention of their derived complications and
global mortality [47,48]. In fact, thanks to interventional studies like this, it has been reported that
implementing a Mediterranean diet rich in unsaturated fatty acids, is an interesting strategy with
much greater efficacy than, for example, restricting the total fat intake in people with diabesity [49].
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Likewise, other studies have found some common polymorphisms such as the transcription factor
TCF7L2, which may be important in precision medicine as well as a potential predictive biomarker in
patients with T2DM and obesity [50]. In addition, PREDIMED-Plus has also gained further insights
into lifestyle interventions in an expanded way, including the monitoring of cognitive symptoms [51],
quality of sleep and sleep patterns [52] and the importance of promoting and prescript moderate and
moderate-to-vigorous physical activity for an improvement in inflammatory profiles and individual’s
health [53].

On the other hand, several studies have also demonstrated the efficacy of other strategies in the
nutritional management of diabesity. An interesting example of diet is the low carbohydrate (LC)
diet. The basis of this diet, firtstly hypothesized by Atkins in the 1970s is that a high consumption of
carbohydrates promotes the production of insulin, the primary cause of a higher intake and a slower
metabolism. Therefore the LC diet will reduce insulin secretion, hence favouring weightloss [54,55].
Likewise, this strategy has also demonstrated its utility in patients with T2DM, improving the levels of
blood glucose, glycosylated hemoglobin (HbA1c), as well as their lipid profile [56]. Following this line,
Boden et al. [57] demonstrated the benefits of LC diet intervention for 2 weeks in a group of obese
patients with T2DM, showing a reduction in their energy intake, weight loss, blood glucose levels,
insulin sensitivity and other metabolic parameters. Equally, other studies have proved the positive
effects of a very low carbohydrate ketogenic (LCK) diet in patients with diabesity. A randomized
clinical trial conducted in 34 overweight adults with T2DM reported a significant reduction in weight
loss and HbA1c, and received less medications than patients who received a moderate carbohydrate
hypocaloric low-fat diet [58]. Notwithstanding, Johnston et al. [59] revealed that LCK and LC diets
were similarly effective in reducing body weight and insulin resistance. Furthermore, the LCK diet was
associated with adverse emotional and metabolic outcomes, warning about the dangers of this weight
loss alternative. Additional dietary approaches such as the paleolitic diet or intermittent fasting seem
to show promising effectiveness in patients with metabolic syndrome and T2DM, although further
research is still needed [60,61]. Nevertheless, it seems that the diet, but also the adherence of each
patient to the regimen, remains an essential point to successfully manage loss weight and glycaemic
profiles of patients with diabesity. It is important to understand that is not all about the nutrients but
also the origin and the processing of foods which may be considered when associating diet with health
and disease [62].

3.2. Clinical Strategies in Diabesity Control

Bariatric surgery may pose an interesting alternative for the clinical management of obese patients
with T2DM. An open label randomized clinical trial showed the potential benefits of bariatric surgery
in a five-year follow-up cohort of patients with diabesity, but it required the continuous monitoring of
blood glucose levels [63]. Nowadays, this procedure is indicated when the BMI > 35 kg/m2 (this value
corresponds to a type II obesity) and it is necessary to be incorporated into a proper context of care
and permanent medical assistance [64]. However, other studies demonstrated that this procedure
may produce higher benefits in patients with a BMI ≥ 27 compared to intensive medical therapy in
terms of glycaemia controlling and weight loss, reporting better results even in their quality of life [65],
thus denoting the possibility of considering this alternative in the clinical management of diabesity.
On the other hand, despite its effectivity, its high price, the possible complications associated, and the
invasiveness of the procedure are other factors to be taken into account when selecting the proper
therapy for each patient [66].

Pharmacotherapy is another field to consider in patients with T2DM associated with obesity.
A suitable pharmacological treatment in diabesity should be able to promote weight loss and control
blood glucose levels. According to the recommendations of the EASO, pharmacotherapy should
be perceived as a part of the clinical management of diabesity but never an exclusive option, being
specially recommended in patients with a BMI ≥ 30 kg/m2 or 27 kg/m2, in case of diabesity [67].
Furthermore, it is relevant to conduct an assessment after 3 months of therapy, classifying them by
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responders (>3% of weight less in patients with T2DM and obesity) or non-responders, considering
different alternatives for the last group. Along this line, two major strategies may be targeted to achieve
a favourable effect in diabesity: those aimed at weight loss with a positive impact in blood glucose
profile and drugs specific to glycaemia control that reduce, or at least maintain the patients’ weight. [68].
The first therapies are mainly developed for controlling metabolism, satiety, and appetite [69]. For the
second ones, some retrospective studies showed that the dual therapy with glucagon-like peptide 1
(GLP-1) agonists and sodium/glucose cotransporter 2 (SGLT-2) inhibitors alone or in combination with
antidiabetic drugs could be especially useful in the treatment of diabesity [45].

Treating diabesity as a unique entity not only ameliorates T2DM and obesity, but also the
establishment of related complications like high blood pressure [70]. It has been demonstrated that,
the presence of these three conditions simultaneously reduce significatively the quality of life in these
patients, regardless of sex [71]. In addition, it has been observed that the use of beta blocker agents
in obese hypertensive patients could provoke weight gain, elucidating the necessity of looking for
more effective alternatives [72]. Saxton et al. reported that, by targeting the excess of perivascular
adipose tissue and its adipokines dysregulation, it is possible to obtain potential benefits in the clinical
management of these pathologies [73], hence supporting the benefits of treating these alterations
collectively rather than separately.

In this context, an increasing amount of evidence shows the potential role that gut microbiota
may play in the development of T2DM and obesity, reporting the promising use of this target in the
personalized and precision medicine [74]. Therefore, the main implications of gut microbiota in the
origin and establishment of diabesity will be reviewed, as well as potential therapies that may benefit
from the knowledge and understanding of this system (Figure 2).
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redistribution. This status produces a low grade chronic inflammation, lipid dysregulation and its
derived cytotoxicity, and a disruption in adipokines signaling which in turn provides a defective
insulin production and sensitivity as well as a wide range of systemic effects, what finally will lead
to diabesity (diabetes associated with obesity), with unique implications. Gut microbiota will also
be affected in this condition, playing an important role in the development of diabesity, implicated
with systemic and insulin alterations. Currently, the clinical management of diabesity is based on
lifestyle interventions, public health policies or medical care like pharmacotherapy and bariatric surgery.
However, it is important to continue searching for new specific targets, as each patient may present
individual characteristics. Gut microbiota could represent an interesting alternative to achieve a higher
precision and efficiency in the targeted therapy, hence denoting the importance of healthy habits which
boost the prevention and awareness of this unique entity.

4. Understanding the Role of Human Gut Microbiota

The term “human microbiota” refers to the totality of microorganisms inside the human body,
both taking advantage of a bidirectional communication forming a single complex organism known
as holobiont [75,76]. It is estimated that the amount of microorganisms in a human-being is around
3.8 × 1013, being found in a 10:1 proportion with eukaryotic cells, however some authors support that
this relation is close to 1:1, with a total mass between 200 g to 1 kg of the total weight of a person [77–79].
On the other hand, microbiome refers to the whole microbial genome found in an individual, as well as
their derived genic products, representing, approximately 100 times the human genome [80].

Although the microbiota is composed mainly of bacteria, the presence of a wide range of
microorganisms, like archaea or viruses, has been reported (especially bacteriophages), and even
more complex entities like fungi and even parasites—mainly protozoans and some helminths [81–83].
These microorganisms have coexisted and coevolved with human organisms, adapting themselves to
accomplish certain functions, playing a key role in health maintenance [84,85]. These microbes can be
inhabitant of a wide range of regions like the skin [86], the oral cavity [87], the upper airways and even
in the genitourinary system [88,89]. However, it is in the gastrointestinal tract, and more specifically,
in the gut, where the major microbiota is located, representing more than 70% of the total human
microbiota, with multiple implications in various pathologies [90]. The importance of gut microbiota
in human´s health and disease will be addressed in this section.

4.1. Composition, Diversity, and Dynamics of the Gut Microbiota

Many studies have attempted to study the “common” structure of human gut microbiota.
Some projects like the Human Microbiome have pretended to elucidate this question to unravel which
microbiome is the most typically associated either in health or disease conditions [91]. The gut ecosystem
is represented by a core microbiome, composed of a microbiome present in all humans, or at least in
the most part, in healthy individuals. In this line, Hugon et al. [92] isolated 2172 different species inside
the gut, divided in 12 different phyla, observing how Proteobacteria, Actinobacteria, Firmicutes and
Bacteroidetes constituted up to a 93.5% of the total microbes’ population. The group of Proteobacteria
are mainly composed by the genus Escherichia and Enterobacter, whereas Bifidobacterium is predominant
in Actinobacter phylum. Firmicutes are strongly represented by Ruminiococcus, Clostridium and
Lactobacillus and Bacteroides, Prevotella and Xylanibacter are the major components of Bacteroidetes [93].
Among these, Firmicutes and Bacteroidetes are the most common phyla both in mice and humans
and, although their proportion may change among individuals, their ratio seems to be important
at different life stages [94] and also in the disease, as subsequently will be discussed. In addition,
it has been reported the impact of other human gut microorganisms like Akkermansiamuciniphilla,
the only member of Verrucomicrobia [95], Methanobrevibactersmithii, belonging to archaea, and fungi like
Candida, whose proportion does not exceed the 1% [96]. Nevertheless, a variable part of the microbiome
exists which may be characteristic of each person, according to the host phenotype, its physiological
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and pathophysiological status, lifestyle, their environment and even the moment, since some microbial
communities cannot persist and colonise the gut [97]. In fact, it must be highlighted that there is such a
huge microbial variability that each person could be said to present a distinctive microbial footprint.
Moreover, it is known that microorganisms are distributed unequally throughout the gut, fluctuating
from approximately 103 cells in the duodenum to 1012 microbes at the descending colon [98].

Microbiota diversity largely depends on the habitat conditions. Some locations, like the skin,
show higher variability in their communities compared to other regions as gut or oral cavity [99].
Development may also have a prominent role in gut microbiota composition. Initially, it was believed
that the first microorganisms colonised human gut immediately postpartum. In contrast, currently it is
thought that a maternal transference during pregnancy is produced, possibly through the placenta,
umbilical cord, or amniotic liquid [100–102]. According to the form of labour, the initial newborn
microbiome may be related to mother’s vaginal and faecal microbiota, if it is a natural birth, whereas if
it is a caesarean one, it would be similar to the skin microbiota [103]. In the last group a reduction
in microbial populations has been reported, resulting then in an initial alteration with a delayed
Bacteroidetes colonisation and a minor efficiency of Th1 mediated responses for 2 years in comparison
to those who were born by vaginal delivery [104]. On the other hand, other studies have shown that,
nearly a month later this difference may disappear, by virtue of breastfeeding [105]. Lactation is one of
the most important determinants of microbiota, due to the transmission of microorganisms from the
mother, also containing antibodies or certain bioactive compounds like oligosaccharides, which make a
major contribution in the microorganism–host interaction, the growth and the establishment of infant
microbiota [106,107]. Curiously, differences in gut microbiota composition in babies fed with formula
milk when compared to breastfeeding groups have been reported, denoting the impact of lactation
in microbiota composition [108,109]. Afterwards, solid foods foster an increase in Bacteroidetes
and Firmicutes, facilitating the digestion of carbohydrates, stimulating the diversity of the bacterial
ecosystem, detrimental to Bifidobacterium, highly related to breastfeeding [110]. Interaction with
objects and people may also have an impact during the first years of life [111]. Some studies also show
how other factors like gestational age, host genetics or maternal diet could be equally important for
the establishment of these first microbial communities [112]. At the age of three it is said that the gut
microbiota is closely related to that of an adult. Despite this fact, external and internal factors of the
individual make gut microbiota susceptible to change at any period of life [113]. Diet and lifestyle [114],
BMI [115], hormones [116–118] and even country of residence and ethnicity [119] are some of the most
relevant factors in adulthood to mention, also being elderly, associated with a loss of microbial diversity
and the atrophy of intestinal mucosa, frequently aggravated by sedentarism and poor diets [120,121].

4.2. Main Functions of Gut Microbiota

The gut microbiota fulfils a variety of physiological functions which are crucial for host health,
being an interesting subject of study from a preventive point of view [122]. The gut microbiota is
implicated in a wide range of biological processes such as digestion of some nutrients and energy
balance homeostasis. This is due to the production of proper bioactive metabolites, like short chain
fatty acids (SCFA), which are butyrate, propionate, and acetate, considered as signalling molecules in
gut and extraintestinal tissues [123]. The synthesis of SCFAs is obtained from the colonic fermentation
of the named microbiota accessible carbohydrates (MAC)—the non-digestible polysaccharides present
in the dietetic fibre [124]. Butyrate is principally produced by Firmicutes activity, whereas propionate
and acetate are typically from Bacteroidetes [125].

Gut microbiota also contribute to the transport and metabolism of carbohydrates and amino acids
like tryptophan, operating in the production of fat-soluble vitamins like vitamin K and water-soluble
ones such as those belonging to B complex [126]. Additionally, the gut microbiota also participates
in the conversion and metabolism of bile acids, as well as the biotransformation and elimination of
xenobiotics and drugs [127].
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In the same way, it could be said that the gut microbiota is strictly necessary to induce and
educate the immune system, regulating in a local and systemic way, the activity of leukocytes [128].
Another point to outline is its decisive mission to maintain the integrity of the intestinal mucosal barrier,
not to mention to prevent the colonisation by pathogens, mostly due to competition or to the production
of antimicrobial substances [129]. Eventually, it has also been proved that the gut microbiota regulates
neurological and psychological process, through the well-known microbiota–gut–brain axis [130,131].
Overall, it is undoubted that the gut microbiota and its numerous functions are vitally important
for the individual´s health and studying its alterations would help to better the understanding of
human diseases.

4.3. Gut Microbiota in Disease

In order to keep their functions, an adequate homeostasis in the composition, so-called eubiosis,
is needed. This balance is disrupted under stress conditions like, for instance, lifestyle modifications,
antibiotic misuse or changes in the immune system and intestinal mucosa, reducing microbial diversity
and leading to a condition known as dysbiosis [132]. Furthermore, this dysbiosis situation may be
exacerbated by an increase in oxidative stress, by the action of bacteriophages or the production
of bacterial toxins, with all the consequences associated [133]. On the one hand, the production of
many microbial compounds may be disturbed and this is often accompanied by an increment in
gut permeability, which permits that some bacteria and their derivatives, like lipopolysaccharides
(LPS), accessing to the bloodstream and producing, as a result, a status known as endotoxemia, with
systemic involvements [134]. Moreover, some microorganisms in the gut microbiota are considered
opportunistic pathogens, and may provoke adverse effects when dysbiosis occurs [135]. These are the
reasons why human gut microbiota disorders are related to a broad range of intestinal pathologies,
such as intestinal bowel disease, irritable bowel syndrome or celiac disease, as well as extraintestinal
diseases like metabolic disorders, T2DM, obesity, cancer or nervous system affections, Alzheimer
disease, Parkinson and even autism spectrum disorder [136]. Even so, it is complicated to establish if
microbiota alterations are a cause, consequence or simply an adaptation to the pathological conditions
of the individual [137,138]. Regardless, there are ever more studies contemplating the therapeutic
validity of microbiota, in order to treat several complications [139,140], elucidating the importance of
focusing our insights towards the study of gut microbiota, particularly a better understanding and
management of health and disease.

5. Gut Microbiota in Diabesity

Changes in gut microbiota composition have been related to a wide variety of metabolic events
such as an increase in adiposity, dyslipidaemia and T2DM. These disorders bring about an increased
gut permeability, disrupting bile acid metabolism, serum levels of lipopolysaccharide and affecting
SCFA production and function [141].

Firmicutes/Bacteroidetes ratio is a parameter that most importantly will be affected in these patients,
having an increased Firmicutes community and decreased Bacteroidetes [142,143]. Furthermore,
this ratio increases with factors like BMI [144] or fasting blood glucose levels [145]. Both phyla occupy
different functional niches in the gut ecosystem. However, it is difficult to interpret this ratio now that,
for example, Firmicutes has members like Clostridium botulinum, which may act as an opportunistic
pathogen, or Eubacteriumrectale, Roseburia spp. and Faecalibacteriumprausnitzii, which are the main
butyrate producing bacteria, and, in general terms, can be considered as beneficial for health [146,147].
Rising Firmicutes is usually associated to a poorer metabolic pattern, lower levels of glycan-degrading
enzymes and an inverse relationship with resting energy expenditure [148,149]. A minor Bacteroidetes
proportion, not only reduces microbial diversity, but also may affect energy metabolism since bacteria
from this phylum are essential for providing energy to their host by propionate production, which may
suppose 10% of daily calories when having a high fibre diet [150]. Additionally, this Bacteroidetes
decrease implies a considerable reduction in acetate and propionate production, and, despite the major
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Firmicutes ratio, it has been found that there is a reduction in butyrate production, and its producing
species, linked to diabesity [151].

Butyrate collaborates in lessening gut permeability, lessening appetite through the gut–brain
axis which affects the vagus nerve, improving insulin sensitivity and energy metabolism, and it has
been involved in fat oxidation, activating brown adipose tissue (BAT) [152,153]. Propionate arrives to
the liver by portal circulation, acts on beta-pancreatic cells and influences the altered reward system
in diabesity. Moreover, either propionate or butyrate, promote intestinal gluconeogenesis, affecting
energy and glucose homeostasis [154]. Acetate is a SCFA which is released mainly to peripheral tissues
and plays a crucial role in lessening appetite when linking to hypothalamic receptors [155,156]. It has
been observed in obese animal models how there is a significant increase in faecal acetate concentration,
promoting an increase in insulin and ghrelin secretion, provoking adipose tissue accumulation [157].
Nevertheless, other studies have shown that there was an increase in faecal acetate in healthy slim
mice [158], so the role of acetate in metabolic disorders remains unclear. Even so, it is thought that along
with butyrate, they can epigenetically regulate histone deacetylase enzymes, inhibiting them [159].
SCFAs also regulate the maintenance of the intestinal epithelial barrier, from the moment they act on G
protein-coupled receptors (GPCR), promoting the release of the GLP-1, the inflammatory response and
insulin sensitivity by adipocytes [160,161]. Hence, minor proportions of SCFA and their associated
producing bacteria will be important in diabesity pathophysiology. In addition, it has been described
how dysbiosis in obesity and T2DM promotes intestinal barrier disruption, which in turn supposes an
entrance way to Gram-negative LPS, increased in the blood because of this fact, bringing a situation of
metabolic endotoxemia [162,163]. Some animal models show endotoxemia as a crucial event in the
beginning and development of diabesity [164]. Rising LPS levels cause chronic inflammation when
joining to CD14/TLR4 receptors on macrophages, triggering a release of proinflammatory cytokines
and leading to an increase in adipose tissue, hepatic insulin resistance and glucose intolerance [93].
Interestingly, Vérges et al. demonstrated that in T2DM patients, there was a stunting in LPS degradation,
so the disease itself promotes or keeps associated endotoxemia, suggesting a potential therapeutic
target for better clinical management in these patients [165]. Elevated levels of LPS in serum are
also related to elevated concentrations of IL-6 and TNF-alpha in adipocytes [160]. Moreover, it is
known that LPS, SCFA, tryptophan metabolites and other bacterial products are able to stimulate
the nervous system directly by the vagus nerve or by immunological or neuroendocrine pathways,
like leptin or insulin signalization [166,167]. The endocannabinoid system is now becoming more
relevant for the gut–brain axis, also being important for energy and glucose metabolism. It is known
that different products and bacterial communities may regulate this system, and at the same time
may regulate bacterial communities due to their systemic distribution [168,169]. It has been proposed
that endotoxemia might have a crucial implication in the hyperactivation of the endocannabinoid
system in hypothalamus, with orexigenic effects or stimulating the intake, because of an increase in
blood–brain barrier permeability which also induces neuroinflammation due to LPS effects on glia
via TLR4 receptors [170]. In addition, it has been discovered that by interceding in these bacterial
communities, it is possible to modulate the endocannabinoid system; as a remarkable example,
Akkermansiamuciniphilla is a bacterium which is found to be decreased in diabesity, and it is considered
to be notably important for keeping the intestinal integrity, and for lipid and glycemic metabolisms,
and in the lessening of sustained endotoxemia as well [171]. Another point is that alterations have also
been found in methanogenic archaea like Methanobrevibactersmithii [172]. Prevotella sp., Bacteroides sp.,
Intestinibacter sp., Escherichia coli, Desulfovibrio sp. or Lactobacillus sp., which seem to be important
in this diabesity condition too, with diet being one of the most determinaning factors modulating
microbiota in these patients [173].

To sum up, as shown in Figure 3, variations in gut microbiota composition, and its derived products
are associated with an increase in adiposity, low-grade inflammation and insulin resistance, along
with alterations in the endocannabinoid system, intestinal peptide production, leptin resistance and
other metabolic characteristics associated with changes reported in patients with diabesity [174–176].
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Therefore, targeting the microbiota and its related compounds, we may understand and maximize
the results of existing therapies such as lifestyle interventions, and importantly diet, bariatric surgery
and even received pharmacological treatment. Furthermore, it has been reported that focusing
on microbiota also makes it possible to treat mood disorders derived from diabesity [177]. Hence,
taking gut microbiota into consideration might consititute a very useful target for understanding
this condition.
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These patients show a minor wealth in microbial diversity, characterized by a high Firmicutes/
Bacteroidetes ratio, that goes with modifications in Actinobacteria, Poteobacteria and in other
microbial communities like methanogenic archaea or Akkermansia muciniphilla, the only Verrucomicrobia.
These alterations may have important consequences in energy imbalance, endotoxemia, low-grade
inflammation, higher adiposity, or insulin and leptin resistance, notably interacting with the
microbiota–gut–brain axis. Different points of study have been examined to explain these changes.
For instance, minor production of short chain fatty acids (SCFAs) and other microbial products,
the presence of LPS in blood and its interaction with TLR4, associated with a systemic proinflammatory
state, or the dysregulation in the production of intestinal peptides like glucagon-like peptide 1 (GLP-1)
or glucose-dependent insulinotropic polypeptide (GIP), with orexigenic effects. The endocannabinoid
system also plays an important role in the dysbiosis in patients with diabesity, who, moreover, show a
lower ability for the browning of adipose tissue and insulin homeostasis.

6. Importance of Gut Microbiota in Clinical Management of Diabesity

6.1. Diet and Lifestyle Interventions in Diabesity. Prebiotics and Probiotics

Diet is one of the main triggers of diabesity, also being a key modulator of gut microbiota
composition [178–180]. For instance, the western dietary pattern, abundant in ultra-processed products,
with sugar, fats, and other refined compounds and scarce in plant-based foods has been demonstrated
to boost Firmicutes expansion, in particular Erysipelotrichia class, while reducing Bacillus and
Bacteroidetes [181,182]. The use of some additives in this diet as artificial sweeteners has been
associated with an increase in Bacteroides sp. but this could derivate rapidly in an impairment in
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glucose tolerance, followed by a decrease in Lactobacillus reuteri [183]. An excessive intake of saturated
fatty acids was also related to diabetes progression in mice, having been related to a remarkable
augmentation in bacterial translocation [184]. Furthermore, this diet promotes a higher production of
chylomicrons, which in turn leads to a significative postprandial endotoxemia, due to their role in LPS
transportation [185,186].

Many dietary interventions have been described to specifically modulate gut microbiota.
Among them, some studies have shown that through a hypocaloric diet, low in fats or carbohydrates
may promote an increase in Bacteroidetes as well as diminishing Firmicutes [187,188]. Notwithstanding,
when combined with a Mediterranean diet this strategy maximises the results. The Mediterranean
diet has been linked to a wide range of benefits in patients with diabesity, in part, due to their
ability to regulate microbial populations, enhancing the growth of Lactobacillus sp., Bifidobacterium sp.,
y Prevotella sp., as well as limiting Clostridium sp. development [189]. This diet rich in fibre and some
plants compounds was associated with higher levels of Akkermansia muciniphila and Faecalibacterium
prausnitzii, providing a reduction in endotoxemia in patients with T2DM [190]. There are some specific
foods which might be interesting to consider in clinical management of diabesity, as cocoa, or cinnamon,
because of their high content of polyphenols, a pivotal modulator of gut microbiota. This compound
has been implicated with positive effects in insulin sensitivity, glucose homeostasis and with other
metabolic parameters [191,192]. The abundance of polyunsaturated fat in mediterranean diet, specially
in eicosapentaenoic (EPA) and docosahexaenoic (DHA) fatty acids has been shown to promote Roseburia
genus and F. prausnitzii populations, having a protective effect against T2DM [193]. The impact of
other diets like gluten-free or ketogenic diet in gut microbiota remain to be elucidated [189,194].

The Mediterranean diet is one of the most interesting strategies when managing microbiota
composition in patients with diabesity (Figure 4). The success of this diet in correcting gut
dysbiosis is, mostly thanks to its prebiotic compounds [195]. Prebiotics are substances contained
in certain foods which may modulate the composition of gut microbiota, thereby influencing
energy homeostasis, satiety and weight control, SCFA production, supressing the growth of
pathogens and immunomodulatory actions [196,197]. A great variety of prebiotics, such as
inulin and fructooligosaccharides, galactooligosaccharides, polydextrose, lactulose, ciclodextrines,
xilooligosaccharides or triphala has been decribed. The properties of these prebiotics, along with the
foods or products in which they may be found, have been collected by Green et al. [198].

Probiotics may also make a major contribution to the clinical management of diabesity.
Probiotics could be defined as products or foods containing living microorganisms, which in an
adequate number may result beneficial to the host health [199]. Probiotics use different strains of
Bifidobacterium and Lactobacillus having been associated with a reduction in BMI, diastolic pressure,
blood triglycerides, and blood pressure [200,201]. The mechanisms by which probiotics assist these
processes, are their potential to modulate gut microbiota, competing in the adhesion to intestinal
mucosa and epithelium, encouraging mucus production and reinforcing the intestinal barrier [197].
The establishment of effective formulas and the search for the proper dose, duration, method of
administration and long-term effects, are the major challenges for clinical translation of probiotics in
diabesity [202]. Nonetheless, prebiotics and probiotics represent such a promising line of research in
the clinical management of this condition. Recently, an interventional clinical trial in 41 patients with
diabesity has been conducted to assess the use of prebiotics and probiotics in comparison to placebo
group, studying some factors like gut microbiota composition, endotoxemia, neutrophils activation,
beta cells function, gut permeability and quality of life in these patients (NCT02637115). Overall, these
studies show how the use of prebiotics and probiotics may play an important role not only in treatment
but also in prevention of obesity and T2DM in risk groups.

Finally, an appropriate rest and physical activity may also promote the establishment of a healthy
gut microbiota [203,204]. Once again, it is important to harbour a multidisciplinary approach for the
successful clinical management of such a complex disease.
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Figure 4. A representation of the various effects that diet may have in gut microbiota composition
in patients with diabesity. Western dietary patterns, rich in ultraprocessed food, refined and
unhealthy products could affect individual´s microbiota populations, promoting an increase in
Firmicutes/Bacteroidetes ratio and gut dysbiosis, leading to a bacterial and LPS translocation, directly
associated with endotoxemia and chronic inflammation, as well as the loss of glucose tolerance and
insulin resistance. The Mediterranean diet is a powerful tool in the nutritional management of gut
dysbiosis in patients with diabesity, mainly through their prebiotic effects, also related with the energy
homeostasis, SCFA production and immunomodulation, along with a reduction in endotoxemia and
promoting insulin sensitivity or glucose regulation.

6.2. Gut Microbiota and Bariatric Surgery

As previously outlined, bariatric surgery is a procedure which reports multiple benefits in weight
loss, while improving glycaemic index in patients with diabesity. In fact, a 40–80% of obese patients
who undergo this surgery also recover from their T2DM [205]. One cause explaining this outcome, is the
regulatory role of bariatric surgery in gut microbiota, withits capacity to overcome gut dysbiosis having
been demonstrated [206]. Moreover, it is known that bariatric surgery directly affects the production
and enterohepatic circulation of bile acids [207]. The gut microbiota plays a key role in the biosynthesis
and biotransformation of bile acids, which, in turn regulates the microbial populations through
different signalling routes [208]. One study conducted by Zhang et al. [209] showed a significant
reduction in Firmicutes and methanogenic archaea, while a rise in Gammaproteobacteria was found.
Proteobacteria are stimulated by the presence of bile acids in the intestinal lumen, thus reducing the
content of secondary bile acids while increasing primary bile acids [210]. Higher serum levels of these
bile acids were associated with an enhanced metabolic and hormonal profile of the patient, possibly
through their effects on the Farnesoid X Receptor (FXR) and G coupled protein receptor TGR5 [211].

Likewise, the study of microbiota and its metabolites are supposed to be a valuable point of
study prior to bariatric surgery procedure. Ceperuelo-Mallafré et al. [212] found how lower levels
of circulating basal succinate seemed to be useful to predict diabetes remission in 1 year. What is
more, circulating succinate was still reduced up to a year after surgery. The role of succinate in obesity
and metabolic disorders remains elusive. It is believed that in diabesity it may act as a marker of gut
dysbiosis, acting as a signalling molecule in peripheral tissues, like SCFA [213]. Levels of succinate are
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correlated with an impaired glucose metabolism, being associated with an alteration in the ratio of
Prevotellacea, Veillonellaceae, Odoribacteracea and Clostridacea [214].

Eventually, Murphy et al. [215] compared the effect of two types of bariatric surgery on the
gut microbiota: Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG). Interestingly, they
reported more benefits in RYGB surgery, although they found that, regardless of the method performed,
patientes who achieved the remission submitted an increase in Roseburia populations. In animal models,
however, it has been shown that these procedures may modulate gut microbiota in a different way.
While RYGB promote the growing of Proteobacteria/Gammaproteobacteria, SG held a major impact
in Actinobacteria, with both surgeries resulting in a reduction in blood glucose [216]. On the other
hand, a different study only replicated this outcome when RYGB was carried out [217]. These authors
described an inverse relationship between Gammaproteobacteria population with postoperative body
weight, resulting as an important variable to stabilize weight loss after undergoing bariatric surgery.

6.3. Gut Microbiota in Pharmacotherapy

Metformin is a first line therapy used for T2DM implicated in the reduction in hepatic
gluconeogenesis and insulin production. Beyond these effects, some studies have endorsed its
potential use in loss weight, mainly due to the impact of metformin on food intake centres and as a gut
microbiota regulator [218]. More precisely, Sun et al. observed that after 3 days of metformin treatment,
a significant decrease in the Bacteroides fragilis population was reported, followed by an increase in
Glycoursodeoxycholic acid (GUDCA) [219]. This was associated with the inhibition mediated by FXR.
Likewise, the positive actions of metformin in the higher production of SCFA, as well as in the growing
of the bacteria Akkemansia muciniphila have been reported [220].

The role of antibiotics in diabesity have not been clarified yet. An abuse in the use of these
substances is directly related not only with the generation of resistant microorganisms, but also with the
promotion of some pathological conditions like obesity, as evidenced in numerous animal models. [221].
This is due to their impact on gut microbiota. Despite this, further studies are needed in humans.
Rasmussen et al. showed that, recurrent exposition to antibiotics in childhood, importantly before the
first 6 months increased the risk of becoming overweight and obese [222]. Similarly, Mikkelsen et al.
demonstrated how the use of some antibiotics like narrow spectrum penicillin were related with a
higher odds ratio of presenting T2DM [223], thereby concluding that over exposition to antibiotics may
play an important role in the origin of diabesity. On the other hand, previous works have indicated
that the use of some antibiotics or antitoxins could report substantial improvements in loss weight and
insulin sensitivity in animal models with established diabesity [224], probably by their implications on
gut dysbiosis.

The opening of new potential targets like incretins are proposed to be useful in the treatment of
diabesity [225]. Incretins are hormones secreted by enteroendocrine cells which promote the secretion
of insulin by beta cells. There are two types of incretins, glucose-dependent insulinotropic polypeptide
(GIP) or glucagon like peptide 1 (GLP-1). Disruptions in the production and action of these products
have been reported in a broad spectrum of pathologies, among them diabesity [226]. Equally these
authors have proposed the existence of a complex interaction between nutrients, the gut microbiota,
endocannabinoid system and enteroendocrine cells. Co and triagonist of the incretins-based therapies
have shown promising results in preclinical studies to reduce body weight and blood glucose in
patients with diabesity [225]. It is of note that, by targeting the microbiota and its interactions with this
axis could act as a hopeful therapy for clinical management in patients with diabesity.

7. Conclusions and Future Perspectives

Obesity is a global threat defined by the interaction of numerous factors, entailing a high economic
burden since being associated with many complications, like T2DM. Evidence collected supports
the importance of treating both pathologies as a unique entity, thus maximising the benefits of the
therapies received by these patients. Changes in gut microbiota are a common characteristic of a wide
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range of diseases, among them, diabesity. Gut dysbiosis and disruption of their microbial products
may be involved in this condition, although more studies are needed to possibly establish causality in
this relation [227]. In any case, it is undeniable that focusing on gut microbiota reports substantial
improvements in the clinical management of diabesity, specially through diet. Moreover, it could
be an important approach when considering other therapeutic options such as bariatric surgery or
pharmacotherapy. Nevertheless, more lines of research are simultaneously opened, like the faecal
microbiota transplant (FMT) or phage therapy.

FMT consists of changing the composition of gut microbiota by the extraction and purification
of the faecal microbiota from a healthy patient and the introduction in a receptor via endoscopy or
oral administration [228]. Currently, FMT is indicated in Clostridium difficile infections, but its use
in other conditions has not been well-examined yet [229]. Current research aims to extend FMT in
a wide range of intestinal and extraintestinal diseases in which gut dysbiosis is observed. A recent
review showed that this method could be effective in the treatment of some patients with obesity and
metabolic syndrome, although its therapeutic success depends on the receiver’s microbiome richness,
as well as the metabolic status of the donor [230]. Conclusively, it is still necessary to accomplish
further research to approve their use in patients with diabesity and the possible methods followed
during this procedure, although the potential of these kind of techniques may represent an attractive
therapeutic window in the future of diabesity.

Phage therapy is another strategy which is now being investigated to treat dysbiosis in several
conditions [231]. Bacteriophages represent up to 90% of the viral populations composing gut microbiota,
take a leading role regulating bacterial populations, also interacting with the immune system [232,233].
The origin of this therapy took place in the eastern Europe, almost a century ago. Further studies are
needed to assess its efficacy and security though [234]. Rasmussen et al. have reported how transferring
faecal bacteriophages from normal weight to obese mice promotes weight loss in the last group, besides
an improvement in glucose parameters [235]. In addition, the use of phage-derived products poses an
interesting area of research in the clinical management of diabesity [236]. The childhood could be an
interesting period to target gut microbiota, either using probiotics, prebiotics, phages or a combination
of these techniques [237], and clearly strengthening a proper lifestyle. However, currently, there are no
clinical trials using phage therapy in patients with diabesity.

Browning is a novel treatment with such a potential in the treatment of diabesity and other
metabolic disorders. In a simple way, browning consists in the transformation of WAT into BAT.
This adipose tissue is responsible for the process of thermogenesis and differs from the first one in its
ability to regulate triglyceride levels and insulin sensitivity, mainly by the production of batokynes [238].
Although physical activity, or low temperatures are the principal factors regulating browning, it has also
been described how the gut microbiota may be implicated in this process, thanks to its impact in bile
acids metabolism, endotoxemia, the endocannabinoid system or through SCFA production [239,240].
Furthermore, Li et al. demonstrated how the intermittent fasting could stimulate this browning due to
its modulatory properties on gut microbiota in murine models, although still more studies are required
to prove the efficacy of this strategy [241].

Gut microbiota bacteria may also be used as biomarkers in patients with diabesity, although their
validity is starting to be investigated. Wang et al. reported the utility of Phocea, Pseudoflavonifractor
and Lactobacillus intestinalis as prognosis biomarkers in ZDF rats with diabesity, whose presence is
associated with the worst metabolic serum profiles [242]. Dao et al. found that the grade of appearance
of Akkermansia muciniphila could be used as a metabolic status biomarker, directly correlated with
glucose homeostasis, serum lipid levels and fat redistribution in a dietary intervention in patients with
obesity [243]. Akkermansia muciniphila equally represents a promising therapy in diabesity. One study
conducted by Cani and De Vos showed how daily oral administration of 200 million of bacteria
could revert the obesity induced by diet in mice [244]. These results were supported by a clinical
trial reporting the benefits of targeting A. muciniphila in patients with diabesity and other metabolic
conditions related to obesity (NCT02637115).
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In conclusion, the gut microbiota is assumed to be a promising focus of study to fully understand
the development, establishment, and pathophysiology of the main processes involved in diabesity and
other metabolic disorders. As figured in Table 1, clinical applications focused on the gut microbiota
and its derived products may have an important impact in diabesity. Increasing evidence targets gut
microbiota in this condition, although further research in humans is still needed. The gut microbiota is
modulated by a large number of factors, diet being one of its key regulators. Diabesity is a disease that
is mostly preventable, whose origin may be related to unhealthy lifestyles. The gut microbiota could
be the link and the consequence of the high impact of lifestyle interventions in patients with diabesity,
hence helping to understand the relevance of an adequate lifestyle tin preventing this condition. Finally,
the gut microbiota represents, indeed, a promising target to diagnose the disease at early stages, being
correlated to patients’ status. It even allows the anticipation of the response that a patient will have by
receiving a certain therapy, encouraging clinicians to select the perfect alternative for these patients.
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Table 1. The impact of the main interventions in the clinical management of diabesity on gut microbiota. Likewise, gut microbiota could represent a promising target
in future therapies which are currently being investigated.

Intervention Representative Examples
Gut Microbiota

Implications References
Increase Decrease

Lifestyles

Mediterranean diet (High
in plants-based
compounds as fiber and
polyphenols,
polyunsaturated fats)

Lactobacillus sp.
Bifidobacterium sp.
Prevotella sp.
A. muciniphila
F. prausnitzii

Clostridium sp.
Endotoxemia prevention
Prebiotic effects
Reduction in Firmicutes/Bacteroidetes ratio

[189,190]

Probiotics and
Prebiotics

Fructans (Inulin and
fructooligosaccharides)
Probiotic formulas

A. muciniphila
Lactobacillus sp.
Bifidobacterium sp.

-

Antimicrobian effects
Reinforcement of intestinal barrier
Energy homeostasis
Satiety regulation
Body weight control
SCFA production
Immunomodulatory effects

[197]
(NCT02637115)

Bariatricsurgery

Roux-en-Y gastric bypass
(RYGB)

Prevotella
Veillonella
Roseburia

Firmicutes
Odoribacter
Clostridium
Methanogenic archaeas

Bile acid regulation
Succinate reduction
Lower glycaemia

[209,215,217]

Sleeve gastrectomy (SG) Gammaproteobacteria
Actinobacteria

Pharmacotherapy
Metformin Arkemansia muciniphila Bacteroides fragilis Inhibition of FXR signaling [219,220]
Incretin-based triagonists
and coagonists - - Nutrients-gut microbiota-endocannabinoid

system-enteroendocrine cells signaling [225,226]

Future targets
(Currently
developing)

Faecal microbiota
transplantation - -

Potential effects on obesity and metabolic syndrome
(Correlated with receiver’s microbiome richness and
donors metabolic status)

[230]

Phage therapy - - Regulate bacterial communities
Immunomodulatory effects [231,235]

Biomarkers
Phocea
Pseudoflavonifractor
Lactobacillus intestinalis

A. muciniphila
Serum metabolites profile
Glucose and lipid homeostasis, fat redistribution [242,243]

Potential therapeutic uses [244]
(NCT02637115)

Browning - - Bile acids, endotoxemia, endocannabinoid system and
SCFA modulation [239,240]
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