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Abstract: Low serum albumin (LSA) on admission for acute myocardial infarction (AMI) is related
to adverse in-hospital outcomes. However, the relationship between LSA and long-term post-AMI
cardiovascular outcomes is unknown. A single-center, non-randomized, retrospective study was
performed to investigate the prognostic impact of LSA at admission for AMI on cardiovascular death
or newly developed HF in the remote phase after AMI. Admission serum albumin tertiles (<3.8,
3.8–4.2, ≥4.2 g/dL) were used to divide 2253 consecutive AMI from February 2008 to January 2016
patients into three groups. Primary outcome was a composite of hospitalization for HF and
cardiovascular death remotely after AMI. Cox proportional hazard models were used to explore the
relationship between admission LSA and primary outcome. During follow-up (median: 3.2 years),
primary composite outcome occurred in 305 patients (13.5%). Primary composite outcome occurred
individually for hospitalization for HF in 146 patients (6.5%) and cardiovascular death in 192 patients
(8.5%). The cumulative incidence of primary composite outcome was higher in the LSA group than
the other groups (log-rank test, p < 0.001). Even after adjustments for relevant clinical variables,
LSA (<3.8 mg/dL) was an independent predictor of remote-phase primary composite outcome,
irrespective of the clinical severity and subtype of AMI. Thus, LSA on admission for AMI was an
independent predictor of newly developed HF or cardiovascular death and has a useful prognostic
impact even remotely after AMI.
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1. Introduction

In the evolution of treatment for acute myocardial infarction (AMI), early reperfusion therapies
have reduced short-term mortality [1]. Especially in the era of primary percutaneous coronary
intervention (PCI), a lower in-hospital mortality rate has become well established in patients with
AMI. However, heart failure (HF) as a remote phase complication after AMI is still an important
issue because it worsens the chronic prognosis. Hence, risk stratification for its prevention should
be carried out in the early phase [2–5]. Previous reports have suggested a number of possible
predictors of cardiovascular events after AMI, including patient background, electrocardiographic
features, factors of reperfusion therapy including onset-to-balloon time, ventricular dysfunction,
frailty, and poor nutritional status [6–8]. Serum albumin is one of the most important nutritional
indicators. Among several others, including prognostic nutritional index (PNI), geriatric nutritional
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risk index (GNRI), and controlling nutritional status score (CONUT), serum albumin is a simple
indicator which has been widely used as a quantitative measure of nutritional status or inflammatory
reaction. Low serum albumin (LSA) has been reported to be associated with a number of cardiovascular
diseases and disabilities [9,10]. In patients with AMI, the presence of LSA has been associated with
in-hospital mortality and development of HF during hospitalization [8]. However, whether LSA at
admission is a risk factor for the development of HF in the remote phase after AMI is unknown, and the
precise impact on long-term mortality also remains uncertain. We therefore investigated the prognostic
impact of LSA at admission for AMI on cardiovascular death or newly developed HF in the remote
phase after AMI.

2. Materials and Methods

2.1. Patient Population

The present study was a single-center, non-randomized, retrospective study performed in the
Miyazaki Medical Association Hospital, Japan. A total of 2266 consecutive AMI patients with either ST
elevated or non-ST elevated myocardial infarction (STEMI and NSTEMI, respectively) were recruited
from February 2008 to January 2016 (Figure 1). Thirteen patients were excluded from this analysis for
missing data on serum albumin at admission. All patients provided informed consent for both the
procedure and the subsequent data collection and analysis for research purposes. Ethics approval was
obtained from the Institution Review Board of Miyazaki Medical Association Hospital (2019-23).
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2.2. Definition and Diagnosis of STEMI and NSTEMI

Clinical diagnoses of STEMI and NSTEMI, based on the 2007 universal definitions [9], were made
by the treating cardiologists. In brief, STEMI and NSTEMI were redefined as follows: for STEMI,
patients had to have chest symptoms, ST-segment elevation in two contiguous leads or left bundle
branch block, and an elevated biochemical marker of myocardial necrosis (high-sensitivity troponin
T >0.032 ng/mL or creatine phosphokinase (CPK) at least two-fold the upper limit of normal), whereas
for NSTEMI, patients had to have chest symptoms, ST-segment depression or T-wave inversion in two
contiguous leads, and an elevated biochemical marker of myocardial necrosis. Unstable angina pectoris
patients that did not fulfill either definition in the present study were excluded. The therapeutic
strategies for AMI treatment depended on the practice of each individual cardiologist, but all patients’
treatments followed the guidelines set forth by the Japanese Circulation Society and American College
of Cardiology (ACC)/ American Heart Association (AHA) for the diagnosis and treatment of AMI [3].

2.3. Data Collection and Outcome

The following types of data were collected: baseline demographics and clinical characteristics of
study patients, medical history, presenting signs and symptoms, results of blood tests, transthoracic
echocardiography, electrocardiography, cardiac procedures, and clinical outcome. Transthoracic
echocardiography was performed for all patients immediately after admission and left ventricular
ejection fraction (LVEF) was estimated by the standard biplane Simpson method. In addition, all blood
biomarkers were measured within 24 h after admission. Clinical follow-up was achieved through
clinic visits, telephone calls, and records from hospital admissions.

The primary outcome was a composite of hospitalization for HF or cardiovascular death.
The diagnosis of HF was made based on the guidelines, in which HF is diagnosed by the presence of at
least one sign (rales, peripheral edema, ascites, or radiographic evidence of pulmonary congestion)
and one symptom (dyspnea, orthopnea or edema), regardless of ejection fraction [11]. The secondary
outcomes included the individual components of primary composite outcome, all-cause death,
and in-hospital death.

2.4. Statistics

For continuous variables, normally distributed data are reported as the mean ± standard deviation;
nonparametric data are reported as the median and interquartile range (IQR). For categorical variables,
data are presented as counts and percentages. Comparisons of continuous variables between groups
were performed by Student’s t-test or Mann–Whitney U test, as appropriate. Comparisons of categorical
variables were assessed by the chi-squared or Fisher exact test, as appropriate. The cumulative incidence
of each outcome was calculated according to the Kaplan–Meier method. The effects of serum albumin
on primary outcome were determined using multivariate Cox proportional hazard regression analysis.
Patients were stratified to tertiles based on serum albumin levels (<3.8, 3.8–4.2, and ≥4.2 g/dL) at
admission. Especially, the receiver operating characteristic curve of albumin for primary composite
outcome showed that lower cut-off value was also 3.8 g/dL. Univariate and multivariate analyses
using the Cox model were performed to determine the relationships between the albumin level and
clinical outcome, independent of the following confounders: Model 1 (age, sex), Model 2 (Model 1
plus body mass index (BMI) and coronary risk factors, Model 3 (Model 2 plus onset-to-admission time,
pre-thrombolysis in myocardial infarction (TIMI) grade, percutaneous coronary intervention (PCI),
max creatine kinase, length of hospital stay and statin use at discharge) and Model 4 (Model 3 plus
other medication use at discharge (antiplatelet, β-blocker, angiotensin-converting enzyme inhibitor,
angiotensin II receptor blocker, mineralocorticoid receptor antagonist and diuretic), left ventricular
ejection fraction at acute phase, cardiogenic shock, high-sensitivity troponin T level, C reactive protein,
alanine aminotransferase as liver function and Killip ≥III. In order to further clarify the impact of
serum albumin, we also classified patients according to the presence or absence of the following risk
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factors for primary outcome, which were estimated by multivariate analysis and receiver operating
characteristic curve analysis: brain natriuretic peptide (BNP) >200 pg/mL, peak CPK >8000 IU/L,
estimated glomerular filtration rate (eGFR) <30 mL/min/1.73 m2, and LVEF <35% in the acute phase.
Furthermore, Cox proportional hazards analysis for primary composite outcome in each subtype of
AMI (STEMI or NSTEMI) was also performed. A two-sided p value <0.05 was considered statistically
significant. All statistical analysis was performed using JMP® 14 (SAS Institute Inc., Cary, NC, USA).

3. Results

3.1. Patient Characteristics on Admission

The baseline demographics and clinical characteristics of patients are shown in Table 1. The mean
patient age was 70.1 ± 12.7 years old, with 69.7% being male. Electrocardiography revealed that 69.2%
were STEMI and 30.8% were NSTEMI. Patients in the lowest albumin tertile (<3.8 g/dL) were older
and more likely to have lower body mass index, lower systolic blood pressure, and more frequent
histories of diabetes mellitus, old myocardial infarction, and malignancy. This patient group also had
lower levels of hemoglobin, eGFR, and lipid parameters and higher levels of high-sensitivity troponin
T and BNP, compared to the other two groups.

3.2. Procedures and Management after AMI

Detailed information on AMI procedures and clinical management during hospitalization is
shown in Table 1. The onset-to-admission time in the lowest albumin group was significantly longer
than in the other groups and delayed post-AMI arrival (≥48 h from onset) was more frequent in this
group. An incident Killip class ≥III was also observed more frequently in this group, with LVEF being
lower than in the other groups. Overall, 90.9% of patients underwent revascularization (87.2% PCI
and 3.6% coronary artery bypass graft (CABG)), with the percentage of patients who underwent
revascularization being significantly lower in the lowest albumin group. On the other hand, patients
in the lowest albumin group needed longer hospital stays and more frequent mechanical supports,
such as intra-aortic balloon pumping and extracorporeal membrane oxygenation.

Regarding medications at discharge, the prevalence of antiplatelet, statin, and angiotensin-converting
enzyme inhibitor (ACE-I) prescriptions was lower in the lowest albumin group, while mineralocorticoid
receptor antagonist and diuretic prescriptions were more prevalent in this group.

3.3. Clinical Outcome

The median duration of follow-up was 3.2 (IQR, 1.6–5.4) years. The primary composite outcome of
hospitalization for HF or cardiovascular death occurred in 305 patients (13.5%); individual components
of the primary composite outcome occurred in 146 patients (6.5%) for hospitalization for HF and
192 patients (8.5%) for cardiovascular death (Table 1). In addition, the secondary outcomes of
all-cause death and in-hospital death were observed for 375 patients (16.6%) and 154 patients (6.8%),
respectively (Table 1). Kaplan-Meier curves of clinical outcomes in patients stratified by tertile of serum
albumin level on admission are presented in Figure 2. Cumulative incidences of primary composite
outcome and secondary outcomes were significantly higher in the lowest albumin group than in
the other two groups (log-rank test, p < 0.001 for each outcome). In the Cox proportional hazards
model analyses (Table 2), the incidences of primary composite outcome and other outcomes were
significantly and incrementally higher in the lowest and middle albumin groups than in the highest
group (albumin ≥4.2 g/dL: reference). Even after adjusting for relevant clinical variables including
LVEF and cardiogenic shock, all medication uses at discharge, high-sensitivity troponin T level,
C reactive protein, alanine aminotransferase as liver function and Killip ≥III, these associations between
cardiac events and lower tertile of serum albumin remained significant (Table 2).
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Table 1. Baseline demographics and characteristics of patients.

Variables
Total Alb < 3.8 g/dL 3.8 ≤ Alb < 4.2 g/dL Alb ≥ 4.2 g/dL p

(n = 2253) (n = 679) (n = 665) (n = 909)

Male 1571 (69.7) 397 (58.5) 470 (70.7) 704 (77.5) <0.001
Age, years 70.1 ± 12.7 77.0 ± 10.9 71.4 ± 11.5 64.1 ± 12.0 <0.001

Body mass index, kg/m2 23.7 ± 3.8 22.4 ± 3.6 23.7 ± 3.7 24.7 ± 3.7 <0.001
Heart rate, /min 79.0 ± 21.4 80.9 ± 26.0 77.4 ± 21.2 78.7 ± 17.3 0.019

Systolic blood pressure, mm Hg 137.9 ± 31.2 127 ± 33 136 ± 30 147 ± 28 <0.001
Medical history
Hypertension 1568 (69.6) 494 (72.8) 446 (67.1) 628 (69.1) 0.069
Dyslipidemia 1068 (47.4) 243 (35.8) 314 (47.2) 511 (56.2) <0.001

Diabetes mellitus 738 (32.8) 250 (36.8) 205 (30.8) 283 (31.1) 0.027
Smoking 981 (43.5) 230 (33.9) 293 (44.0) 458 (50.4) <0.001

Family history of cardiovascular disease 194 (8.6) 38 (5.6) 68 (10.2) 88 (9.7) <0.001
Myocardial infarction 115 (5.1) 53 (7.8) 36 (5.4) 26 (2.9) <0.001

Malignancy 87 (3.9) 37 (5.5) 25 (3.8) 25 (2.8) 0.023
WBC, ×103/mL 92 (56.4–120) 96 (72–126) 91 (70–117) 90 (69–118) 0.315

Hemoglobin, g/dL 13.3 ± 2.3 11.8 ± 2.2 13.3 ± 1.9 14.5 ± 1.8 <0.001
eGFR, mL/min/1.73 m2 63.1 ± 23.9 51.8 ± 23.9 62.0 ± 22.9 72.3 ± 20.5 <0.001

Alanine aminotransferase, U/L 22.0 (15–35) 24.0 (17–37) 21.0 (15–31) 22.5 (17–37) <0.001
Triglyceride, mg/dL 107 (74–158) 87 (65–117) 103 (74–148) 132 (89–200) <0.001

Total-cholesterol, mg/dL 194.5 ± 48.9 172.6 ± 43.8 194.2 ± 42.6 210.3 ± 50.7 <0.001
LDL-cholesterol, mg/dL 121.3 ± 37.9 105.0 ± 33.4 121.8 ± 35.7 132.5 ± 38.4 <0.001
HDL-cholesterol, mg/dL 46.6 ± 13.4 43.9 ± 13.7 67.4 ± 13.3 48.6 ± 13.3 0.248

High-sensitivity troponin T, ng/mL
(upper limit of normal: 0.032) 0.33 (0.05–2.07) 1.25 (0.14–8.47) 0.27 (0.06–2.00) 0.15 (0.03–1.15) <0.001

Brain natriuretic peptide, pg/mL
(upper limit of normal: 18.4) 77.8 (24.0–287.2) 335.9 (97.7–790.5) 73.1 (26.9–221.8) 34.9 (14.5–93.9) <0.001

STEMI 1558 (69.2) 624 (68.7) 471 (70.8) 463 (68.2)
0.526NSTEMI 695 (30.8) 285 (31.3) 194 (29.2) 216 (31.8)

Onset-to-admission time, min 275 (160–632) 335 (184–1071) 260 (160–600) 246 (159–503) <0.001
Delayed arrival (≥48 h from onset) 64 (2.8) 29 (4.3) 20 (3.0) 15 (1.7) <0.001

Killip class ≥3 250 (11.5) 166 (25.5) 64 (9.9) 20 (2.3) <0.001
LVEF, % 55.3 ± 13.1 50.3 ± 14.6 56.1 ± 12.5 58.3 ± 11.1 <0.001

Pre-TIMI grade 0.1 1181 (52.4) 335 (49.3) 343 (51.6) 499 (54.9) 0.346
Peak creatine kinase, IU/L 1423 (499–3250) 1077 (372–2588) 1522 (593–3460) 1620 (517–3382) 0.118

Revascularization 2048 (90.9) 574 (84.0) 623 (93.7) 851 (93.6) <0.001
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Table 1. Cont.

Variables
Total Alb < 3.8 g/dL 3.8 ≤ Alb < 4.2 g/dL Alb ≥ 4.2 g/dL p

(n = 2253) (n = 679) (n = 665) (n = 909)

PCI 1965 (87.2) 540 (79.5) 597 (89.8) 828 (91.1) <0.001
CABG 83 (3.6) 34 (5.0) 26 (4.0) 23 (2.7) <0.001
IABP 286 (12.7) 151 (22.8) 68 (10.4) 67 (7.3) <0.001

ECMO 64 (2.8) 40 (5.9) 11 (1.7) 13 (1.4) <0.001
Length of hospital stay, days 15 (12–20) 17 (11–26) 15 (12–21) 14 (12–17) <0.001

Medication at discharge
Antiplatelet 2026 (96.5) 537 (93.4) 616 (97.5) 873 (97.5) <0.001

Statin 1753 (83.5) 435 (75.9) 511 (80.9) 807 (90.2) <0.001
β-blocker 987 (47.0) 272 (47.5) 281 (44.5) 434 (48.5) 0.288

ACE-I 534 (25.4) 107 (18.7) 162 (25.6) 265 (29.6) <0.001
ARB 853 (40.6) 213 (37.2) 277 (43.8) 363 (40.6) 0.063
MRA 258 (12.3) 125 (21.8) 83 (13.1) 50 (5.6) <0.001

Diuretic 475 (22.6) 227 (39.6) 145 (22.9) 103 (11.5) <0.001
Primary composite outcome 305 (13.5) 168 (24.7) 91 (13.7) 46 (5.1) <0.001

Hospitalization for heart failure 146 (6.5) 70 (10.3) 46 (6.9) 30 (3.3) <0.001
Cardiovascular death 192 (8.5) 116 (17.1) 53 (8.0) 23 (2.5) <0.001

Secondary outcome, n (%)
All-cause death 375 (16.6) 227 (33.4) 97 (14.6) 51 (5.6) <0.001

In-hospital death 154 (6.8) 107 (15.8) 33 (5.0) 14 (1.5) <0.001

Data for categorical variables given as numbers (%); data for continuous variables given as means ± standard deviation for normal distribution or medians (interquartile range) for skewed
distribution. STEMI, ST elevation myocardial infarction; NSTEMI, non-ST elevation myocardial infarction; MVD, multi-vessel disease; TIMI, thrombolysis in myocardial infarction; WBC,
white blood cell; eGFR, estimated glomerular filtration rate; LDL, low-density lipoprotein; HDL, high-density lipoprotein; LVEF, left ventricular ejection fraction; PCI, percutaneous
coronary intervention; CABG, coronary artery bypass grafting; IABP, intra-aortic balloon pumping; ECMO, extracorporeal membrane oxygenation; ACE-I, angiotensin-converting enzyme
inhibitor; ARB, angiotensin II receptor blocker; MRA, mineralocorticoid receptor antagonist.
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Table 2. Cox proportional hazards analysis for primary and secondary outcomes.

Outcomes
Albumin < 3.8 g/dL 3.8 ≤ Albumin < 4.2 g/dL Albumin ≥ 4.2 g/dL (Reference)

HR 95% CI p HR 95% CI p HR

Primary composite outcome
Crude 4.89 1.64–6.67 <0.001 2.70 1.92–3.80 <0.001 1.00

Model 1 4.69 3.29–6.81 <0.001 1.85 1.29–2.70 <0.001 1.00
Model 2 4.52 3.11–6.63 <0.001 1.65 1.12–2.47 0.010 1.00
Model 3 3.44 1.97–6.90 <0.001 1.81 1.05–3.20 0.033 1.00
Model 4 2.94 1.37–6.51 <0.005 2.84 1.41–5.93 0.003 1.00

Hospitalization for heart
failure
Crude 3.12 2.06–4.74 <0.001 2.10 1.33–3.28 <0.001 1.00

Model 1 3.12 1.93–5.15 <0.001 1.56 0.96–2.55 0.068 1.00
Model 2 3.12 1.89–5.25 <0.001 1.56 0.94–2.60 0.079 1.00
Model 3 4.03 2.04–8.19 <0.001 1.97 1.03–3.87 0.040 1.00
Model 4 3.69 1.56–9.15 0.003 2.55 1.15–5.92 0.021 1.00

Cardiovascular death
Crude 6.75 4.37–10.4 <0.001 3.15 1.95–5.09 <0.001 1.00

Model 1 6.15 3.84–10.2 <0.001 2.12 1.29–3.59 0.003 1.00
Model 2 5.80 3.54–9.85 <0.001 1.71 1.01–2.99 0.048 1.00
Model 3 5.07 2.01–13.8 <0.001 2.00 0.79–5.06 0.142 1.00
Model 4 4.77 1.39–18.4 0.012 2.14 0.64–7.11 0.211 1.00

All-cause death
Crude 5.96 4.47–7.94 <0.001 2.60 1.88–3.59 <0.001 1.00

Model 1 5.61 4.06–7.88 <0.001 1.80 1.27–2.58 <0.001 1.00
Model 2 5.55 3.93–7.99 <0.001 1.69 1.16–2.48 0.006 1.00
Model 3 5.30 3.26–8.86 <0.001 1.79 1.08–3.03 0.023 1.00
Model 4 3.99 2.19–7.45 <0.001 1.70 1.01–2.90 0.045 1.00

In-hospital death
Crude 10.2 5.91–17.7 <0.001 3.22 1.74–5.97 <0.001 1.00

Model 1 8.16 4.64–15.4 <0.001 2.21 1.18–4.37 0.013 1.00
Model 2 1.41 1.25–1.59 <0.001 0.97 0.87–1.82 0.603 1.00
Model 3 1.26 1.09–1.46 0.002 0.96 0.85–1.08 0.485 1.00
Model 4 3.00 1.11–8.66 <0.001 0.80 0.24–0.91 0.541 1.00

CI, confidence interval; HR, hazard risk. Model 1; adjusted for age and sex. Model 2; adjusted for Model 1 plus body mass index and coronary risk factors (hypertension, dyslipidemia,
diabetes mellitus, smoking, family history of cardiovascular disease). Model 3; adjusted for Model 2 plus onset-to-admission time, pre-TIMI grade, percutaneous coronary intervention,
max creatine kinase, length of hospital stay and statin use at discharge. Model 4; adjusted for Model 3 plus other medication use at discharge (antiplatelet, β-blocker, angiotensin-converting
enzyme inhibitor, angiotensin II receptor blocker, mineralocorticoid receptor antagonist and diuretic), left ventricular ejection fraction at acute phase, cardiogenic shock, high-sensitivity
troponin T level, C reactive protein, alanine aminotransferase as liver function and Killip ≥III.
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Figure 2. Primary and secondary outcomes. Kaplan-Meier curves show the incidence of primary
composite outcome (A), hospitalization for heart failure (B), cardiovascular death (C), and all-cause
death (D).

3.4. Subgroup Analysis for Primary Composite Outcome

Receiver operating characteristic curve analyses of clinical variables (BNP, peak CPK, eGFR, LVEF,
albumin and high-sensitivity troponin T) for primary composite outcome were performed (Figure 3)
and determined corresponding cut-off values. Depending on the presence or absence of the estimated
risk factors for primary outcome (AMI due to left main trunk, BNP >200 pg/mL, peak CPK >8000 IU/L,
eGFR <30 mL/min/1.73 m2, and LVEF <35%), 611 patients who had at least one of these risk factors
on admission were identified as a high-risk group, and 1642 patients without these risk factors on
admission were identified as a non-high-risk group. The incidence of primary composite outcome
occurred in 145 patients (23.7%) in the high-risk group and 160 patients (9.7%) in the non-high-risk
group. In the high-risk group, the incidence of primary composite outcome was significantly higher in
the lowest albumin group than in the highest group (albumin ≥4.2 g/dL: reference) even after multiple
adjustments by relevant clinical factors (Table 3). Finally, even in the non-high-risk group, the lowest
albumin group exhibited significantly higher rates of primary composite outcome compared with the
corresponding reference subgroups (albumin ≥4.2 g/dL) in the analyses for the crude model, Model 1,
Model 2, and Model 4 (Table 3).

Regarding subtype of AMI, the incidence of primary composite outcome occurred in 229 patients
(14.7%) of 1558 STEMI patients and 76 patients (10.9%) of 695 NSTEMI patients. In each subtype of
AMI, the incidence of primary composite outcome was significantly higher in the lowest albumin
group than in the reference highest group even after multiple adjustments by relevant clinical factors
(Table 3).
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Table 3. Cox proportional hazards analysis for primary composite outcome in subgroups according to the clinical severity (high-risk or non-high-risk) of AMI and
subtype of AMI (STEMI or NSTEMI).

Subgroups
Albumin < 3.8 g/dL 3.8 ≤ Albumin < 4.2 g/dL Albumin ≥ 4.2 g/dL (Reference)

HR 95% CI p HR 95% CI p HR

High-risk group (n = 611)
Crude 1.87 1.17–3.02 0.001 1.59 0.95–2.66 0.066 1.00

Model 1 2.38 1.38–4.36 0.001 1.17 0.65–2.18 0.592 1.00
Model 2 2.38 1.35–4.46 0.002 1.11 0.59–2.16 0.740 1.00
Model 3 3.96 1.52–11.4 0.004 1.15 0.45–3.14 0.763 1.00
Model 4 6.41 2.01–21.1 <0.001 2.30 0.78–7.36 0.128 1.00

Non-high-risk group (n = 1642)
Crude 6.10 4.07–9.15 <0.001 2.79 1.79–4.36 <0.001 1.00

Model 1 4.74 2.98–7.70 <0.001 1.84 1.15–2.99 0.011 1.00
Model 2 4.40 2.67–7.40 <0.001 1.45 0.86–2.45 0.156 1.00
Model 3 2.22 0.75–6.32 0.146 1.72 0.76–3.99 0.191 1.00
Model 4 2.54 1.02–6.61 0.044 2.11 0.68–6.54 0.193 1.00

STEMI (n = 1558) 1.00
Crude 5.45 3.82–7.93 <0.001 2.33 1.58–3.47 <0.001 1.00

Model 1 3.67 2.46–5.57 <0.001 1.60 1.07–2.43 0.002 1.00
Model 2 3.40 2.22–5.28 <0.001 1.49 0.97–2.30 0.069 1.00
Model 3 3.47 1.71–7.14 <0.001 1.89 1.03–3.53 0.038 1.00
Model 4 3.75 1.70–8.68 0.001 3.51 1.31–9.64 0.012 1.00

NSTEMI (n = 695) 1.00
Crude 14.8 6.80–39.1 <0.001 6.61 2.82–18.1 <0.001 1.00

Model 1 11.0 4.79–29.8 <0.001 4.09 1.66–11.6 <0.001 1.00
Model 2 11.0 4.72–30.3 <0.001 2.74 1.05–8.12 0.038 1.00
Model 3 12.0 3.38–57.8 <0.001 3.02 0.68–17.5 0.149 1.00
Model 4 7.04 1.21–63.8 0.0284 6.45 0.01–2201 0.531 1.00

The high-risk group was defined as a group in which patients had at least one risk factor (acute myocardial infarction due to left main trunk, brain natriuretic peptide >200 pg/mL, peak
creatine phosphokinase >8000 IU/L, estimated glomerular filtration rate <30 mL/min/1.73 m2, and left ventricular ejection fraction <35%) on admission, while the non-high-risk group was
defined as a group in which patients did not have any of those risk factors on admission. CI, confidence interval; HR, hazard risk. Model 1; adjusted for age and sex. Model 2; adjusted for
Model 1 plus body mass index and coronary risk factors (hypertension, dyslipidemia, diabetes mellitus, smoking, family history of cardiovascular disease). Model 3; adjusted for Model 2
plus onset-to-admission time, pre-TIMI grade, percutaneous coronary intervention, max creatine kinase, length of hospital stay and statin use at discharge. Model 4; adjusted for Model 3
plus other medication use at discharge (antiplatelet, β-blocker, angiotensin-converting enzyme inhibitor, angiotensin II receptor blocker, mineralocorticoid receptor antagonist and diuretic),
left ventricular ejection fraction at acute phase, cardiogenic shock, high-sensitivity troponin T, C reactive protein, alanine aminotransferase as liver function and Killip ≥III. AMI—acute
myocardial infarction.
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Figure 3. Receiver operating characteristic curve with area under the curve (AUC) of primary composite
outcome: brain natriuretic peptide (BNP) (A), peak creatine phosphokinase (CPK) (B), estimated
glomerular filtration rate (eGFR) (C), left ventricular ejection fraction (LVEF) (D), high-sensitivity
troponin T (E) and albumin (F).

4. Discussion

Our present study clearly demonstrated that LSA (<3.8 g/dL) on hospital admission was an
independent predictor of newly developed HF or cardiovascular death in the remote phase after AMI,
both in the overall study cohort and even in the non-high-risk patients who did not have any of the
risk factors associated with clinical severity of AMI. Furthermore, these clinical impacts were also
demonstrated in the STEMI and the NSTEMI subgroups. In addition, LSA adversely affected both
short-term and long-term mortalities. These findings suggest that the LSA on admission for AMI may
have a useful prognostic impact in the remote phase after AMI; even after discharge, especially careful
follow-up is therefore needed for AMI patients with LSA.

Previous studies reported that risk factors for increased short-term mortality in AMI patients
included advanced age, prior MI, female sex, Killip class III or IV, left anterior descending coronary
artery (LAD) involvement, complete occlusion of the infarct vessel at baseline, severely reduced LVEF,
frailty, and nutritional status in the acute phase [12–14]. Several nutritional indicators including
PNI, GNRI, and CONUT score have been reported as useful predictors of prognosis in patients with
cardiovascular disease [15–17]. PNI is independently associated with long-term survival in patients
hospitalized for acute heart failure with either reduced or preserved LVEF [15]. GNRI is a significant
prognostic factor in clinical outcomes after AMI during hospitalization [16]. In addition, CONUT
score demonstrated prognostic impact of nutritional status in STEMI patients [17]. PNI is calculated
using serum albumin and total lymphocyte count; GNRI is calculated using serum albumin and
BMI; and CONUT score is calculated using the serum albumin level, total cholesterol level, and total
lymphocyte counts. All these indicators take albumin into account but require multiple values and
complicated calculations. We therefore investigated the prognostic impact of serum albumin alone,
a simple nutritional indicator, for cardiovascular events in the remote phase after AMI.

Serum albumin, the most abundant protein in plasma, is the main determinant of plasma oncotic
pressure and the main modulator of fluid distribution between body compartments [18]. In clinical
practice, it is recognized as a simple and important nutritional indicator and widely used to monitor the
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clinical course of several diseases and treatments, including hypovolemia, shock, burns, surgical blood
loss, trauma, hemorrhage, cardiopulmonary bypass, acute respiratory distress syndrome, hemodialysis,
nutritional support, and resuscitation [18–20].

In the context of cardiovascular disease, several studies have reported that LSA is associated with
prognosis. In heart failure patients, LSA has proven to be a useful predictor. Regardless of the etiology
of heart failure, chronic heart failure patients with LSA were revealed to have increased long-term
mortality [21,22]. LSA was also an independent predictor of long-term event in patients with acute
heart failure [23]. In these reports, the negative impact of LSA was thought to result from malnutrition,
decreased hepatic synthesis, increased vascular permeability, and/or renal failure.

For stable coronary artery disease patients, LSA predicted adverse events including all-cause
death, stroke, and myocardial infarction during long-term follow-up [24,25]. In these reports, the main
cause of the negative effect was thought to be severe atherogenesis-related inflammation. Recently,
the relationship between LSA and prognosis after AMI was reported [26,27], suggesting that LSA
is associated with new onset HF during AMI hospitalization and resultant poor prognosis after
AMI. For these reports, new onset HF during AMI hospitalization seemed to be main factor of
adverse outcome.

LSA may facilitate increased peripheral edema and pulmonary congestion even at lower left
atrial pressures, acting as an aggravating factor of heart failure [28]. It has recently been reported that
inflammation has a negative impact on serum albumin level, making it an important inflammatory
marker [8]. Experimental studies showed that activation of cardiac inflammation provokes LV
remodeling and LV dysfunction [29]. Pathophysiological analysis also shows that excess inflammation
contributes to LV remodeling associated with newly developing HF [30]. Inflammation is accelerated
in the acute phase of AMI, which causes a temporary decreasing effect on the albumin level [18],
then inflammation and LSA can additively and adversely affect the outcome, including HF. Thus,
it is reasonable that LSA in the acute phase has a negative impact for HF and mortality in the acute
phase [8]. However, the relationship between LSA at AMI admission and long-term outcomes after
AMI has been unknown. If LSA at admission has an impact for prognosis of AMI developing in the
remote phase, LSA can become a potent therapeutic target for prevention of HF and improvement of
prognosis after AMI.

Even after multiple adjustments by relevant clinical factors including inflammatory biomarker and
hemodynamic status, our present study demonstrates the prognostic impact of LSA in AMI patients in
the remote phase after AMI. Furthermore, LSA was adversely associated with long-term outcomes
even in those patients who did not have any risk factors associated with clinical severity of AMI. Note
that our results regarding AMI patients with LSA should help to identify at-risk patients and should
promote future research regarding the effects of serum albumin levels. Of course, the questions remain
whether LSA mechanistically facilitates newly developing heart failure and excess mortality or is
merely a disease biomarker.

Some limitations must be taken into account. First, this was a non-randomized, retrospective,
observational study carried out in a single center between February 2008 and January 2016. Therefore,
the extent to which the data apply only to the immediate environment of the patients is unknown.
In addition, although revascularization therapy (including PCI and CABG) and oral medication
delivery was performed based on the local treatment guidelines, nation-wide or international data
could be of great value in assessing the generalizability of our findings. Second, decision-making
regarding hospitalization for HF was the choice of the treating physician. It was based on at least one
sign or symptom of worsening HF but did not require the use of intravenous diuretics or increase of oral
diuretic dose. Therefore, this outcome might not be assessed in a completely objective manner, and there
might be some uncertainty with respect to its ascertainment. Third, the optimal pharmacological
therapies after AMI were also not completely achieved in the present study cohort with statins for
83.5%, ACE-I or angiotensin II receptor blockers for 66.0%, and β-blockers for 47.0%, which might
affect the outcomes in the remote phase after AMI. In particular, a relatively small percentage of the
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present study cohort was treated with β-blockers, due mainly to low blood pressure and low heart rate.
Additionally, we did not collect detailed data on the drugs administered or changed after discharge.
Fourth, 69.2% of the AMI were STEMIs in the present study, which could obscure the possibility of
different impacts for outcome due to different types of AMI. Fifth, serum albumin could be affected by
systemic conditions resulting from the acute phase of AMI. Further research would be required to
further understand the effect of changes in serum albumin levels on outcomes in the chronic phase
after AMI.

5. Conclusions

LSA on admission for AMI was an independent predictor of adverse clinical events, including
hospitalization for HF and cardiovascular death, in the remote phase after AMI, irrespective of the
clinical severity and subtype of AMI.
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