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Abstract: Alterations of transition metal levels have been associated with obesity, hepatic steatosis,
and metabolic syndrome in humans. Studies in animals indicate an association between dietary
sugars and copper metabolism. Our group has conducted a study in which young adults consumed
beverages sweetened with glucose, fructose, high fructose corn syrup (HFCS), or aspartame for two
weeks and has reported that consumption of both fructose- and HFCS-sweetened beverages increased
cardiovascular disease risk factors. Baseline and intervention serum samples from 107 participants
of this study were measured for copper metabolism (copper, ceruloplasmin ferroxidase activity,
ceruloplasmin protein), zinc levels, and iron metabolism (iron, ferritin, and transferrin) parameters.
Fructose and/or glucose consumption were associated with decreased ceruloplasmin ferroxidase
activity and serum copper and zinc concentrations. Ceruloplasmin protein levels did not change in
response to intervention. The changes in copper concentrations were correlated with zinc, but not
with iron. The decreases in copper, ceruloplasmin ferroxidase activity, ferritin, and transferrin were
inversely associated with the increases in metabolic risk factors associated with sugar consumption,
specifically, apolipoprotein CIII, triglycerides, or post-meal glucose, insulin, and lactate responses.
These findings are the first evidence that consumption of sugar-sweetened beverages can alter clinical
parameters of transition metal metabolism in healthy subjects.

Keywords: copper; ceruloplasmin; ferroxidase; sugar beverages; metabolism; lipid

1. Introduction

Copper, iron, and zinc are essential transition metals, participating as cofactors in the activity of
numerous enzymes. They can contribute to crucial metabolic processes, including energy and lipid
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metabolism, one-carbon metabolism, electron transport chain, neuromodulation, and antioxidant
mechanisms [1–3]. Given the fine limits existing between the physiological concentrations at which
these metals are essential and their toxic pro-oxidant activities when present in excess, interconnected
transporters and chaperones tightly regulate absorption and metabolism.

Copper is absorbed throughout the small intestine via copper transporter 1 (CTR1) [4]. In the
portal circulation, a significant portion of copper is loosely bound to albumin and delivered to
hepatocytes where specialized chaperones carry copper to its specific metabolic sites. In particular,
copper is delivered to the transporter ATPase copper transporting beta (ATP7B) which is responsible
for the excretion of copper via ceruloplasmin [5]. Ceruloplasmin is the main plasma copper carrier,
believed to carry 40–70% of copper in plasma of healthy people. Its copper-bound form, known as
holoceruloplasmin, carries an average of six copper atoms, but it can also circulate as its copper-free
form, apoceruloplasmin [6]. Ceruloplasmin is essential to iron transport and metabolism through its
ferroxidase activity, which catalyzes the conversion of Fe2+ to Fe3+. Ceruloplasmin plasma levels are
of clinical relevance, mainly in the diagnosis of Wilson disease, a genetic condition caused by ATP7B
pathogenic variants [7–9]. Changes in plasma copper levels and parameters of copper metabolism
are connected to metabolic conditions, including obesity and fatty liver, and dietary factors [2,10].
However, the significance of copper excess or deficiency in metabolism and the methods to measure
them are subjects of ongoing debate. Epidemiological data over the past few decades show declining
mineral and trace element contents in the Western diet [11,12]. In obese patients, plasma copper levels
are positively correlated with body mass index (BMI) [13]. Obesity is accompanied by increased plasma
ceruloplasmin levels and increased copper concentration in visceral fat [14]. Conversely, patients
with fatty liver present lower hepatic and plasma copper and lower plasma ceruloplasmin levels
compared to healthy people and patients with other liver diseases [15]. In addition, hepatic copper
concentration is inversely correlated with the severity of hepatic steatosis and features of metabolic
syndrome [15]. The provision of a high fructose diet in rats caused worsening of fatty liver, particularly
when associated with marginal copper deficiency [16].

However, copper is not the only transition metal playing a role in metabolism and the antioxidant
response. Both iron and zinc have equally complex and important regulatory roles in the body, playing
essential functions as co-factors in energy production and homeostasis. Misregulation of these metals
has been linked to numerous diseases, from metabolic to neurodegenerative diseases [17–19]. Iron,
similarly to copper, can undergo redox active chemistry, having disastrous effects on cells and the body
if not properly regulated [20–22]. Ferritin (an iron storage protein) and transferrin (an iron chaperone)
are traditionally used alongside iron concentrations as biomarkers for serum iron status [23,24]. Zinc,
on the other hand, is not redox active yet imparts significant function to a large number of proteins in
both structural and enzyme active sites [25]. These metals have been shown to play significant roles
in lipid metabolism. For instance, PPARγ, which regulates lipid metabolism, utilizes zinc fingers for
DNA binding and is downregulated in zinc deficient conditions, while intracellular catalytic iron is
believed to facilitate lipid peroxidation [26–28]. As such, understanding how these metals and their
markers are affected by environmental factors, such as dietary sugar intake, is likely to prove important
in the diagnosis or treatment of metabolic diseases.

Human and in vivo data in the metal micronutrient field are lacking. Clinical parameters assessing
systemic metal status and metabolism and flow between organs are limited, likely due to discrepancies
in the available data and the difficulties in their interpretation. In the case of copper, most clinical
laboratories provide plasma ceruloplasmin protein levels assessed by immunologic assay; however,
this parameter does not differentiate between apoceruloplasmin and holoceruloplasmin [29–31].
Ceruloplasmin (enzymatic) ferroxidase activity could aid in the direct quantification and speciation of
copper in plasma, but it is not normally provided in clinical practice. Other parameters, including
radioactive copper incorporation and exchangeable copper, appear promising and could potentially
enable a better assessment of copper status, but remain unvalidated [32,33]. To study the effects of
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dietary components such as sugar consumption on transition metal levels and the resulting metabolic
changes, improved clinical parameters for assessing these metal levels are necessary.

In the current study, we analyzed serum copper, iron, and zinc metabolism parameters and their
relation to lipid metabolism in healthy, younger (18–40 years) male and female subjects who consumed
beverages sweetened with glucose, fructose, high fructose corn syrup (HFCS), or aspartame for two
weeks. We provide evidence that intake of sugar-sweetened beverages results in changes of copper,
iron, and zinc status and metabolism in association with markers of lipid metabolism.

2. Materials and Methods

2.1. Human Subjects and Study Design

Subjects in this study are a subgroup from a NIH-funded, parallel-arm, double-blinded
diet-intervention study. Subject characteristics and detailed study design were previously
reported [34,35]. In brief, the study occurred in three phases: (I) 3.5-day inpatient baseline; (II)
12-day outpatient intervention; and (III) 3.5-day inpatient intervention. Subjects resided at the UC
Davis Clinical and Translational Science Center Clinical Research Center (CCRC) during inpatient
periods. Each experimental group was matched according to sex, BMI, fasting triglyceride (TG),
cholesterol, high-density lipoprotein (HDL), and insulin. This study reports results from 107 of the 187
original participants consuming beverages containing aspartame (n = 23), glucose (n = 28), fructose
(n = 28), and HFCS composed of 45% glucose and 55% fructose (n = 28). For 5 weeks prior to the study,
subjects were asked to restrict daily intake of sugar-containing beverages to one 8-oz serving of fruit
juice and stop consuming all vitamin and mineral dietary or herbal supplements.

Informed written consent was obtained from each subject and the study protocol conformed
to the ethical guidelines of the 1975 Declaration of Helsinki as reflected in a priori approval by the
Institutional Review Board at the University of California, Davis; IRB #214709 (19 August 2018) and
#1332484 (5 December 2018).

2.2. Diet

During the 12-day outpatient phase, subjects were provided with and instructed to drink three
servings of sweetened beverage per day (one per meal), consume their normal diet, and abstain from
other sugar-containing beverages, including fruit juice. The sugar-sweetened beverages contained
glucose (STALEYDEX® crystalline dextrose, Tate and Lyle, Hoffman Estates, IL, USA), fructose
(KRYSTAR® crystalline fructose, Tate and Lyle, Hoffman Estates, IL, USA), or HFCS (ISOSWEET®

5500, Tate and Lyle, Hoffman Estates, IL, USA). These beverages were formulated as 15% sugar in
water (weight/weight) and flavored with unsweetened Kool-Aid® drink mix (Kraft Foods, Northfield,
IL, USA). The three daily servings of sugar-sweetened beverage in total provided 25% of daily energy
requirement, equivalent to approximately 4.5 12-ounce cans of a standard soft drink per day. Daily
energy requirements were calculated by the Mifflin equation with adjustments of 1.3 for activity on the
inpatient 24-h serial blood collection days and 1.5 for the other days [36]. The control beverages were
sweetened with aspartame (Market Pantry™ sugar-free drink mix, Target Brands Inc., Minneapolis,
MN, USA) and were provided as 3 daily servings comparable in quantity to the sugar-sweetened
beverages. Riboflavin was added as a compliance biomarker to the sweetened beverages and measured
by fluorimetry in urine collected from the subjects during both the inpatient and outpatient phases [37].
Urinary riboflavin levels did not differ between groups, and levels during the outpatient phase were
not different than levels during the inpatient phase when consumption was monitored [34,35]. Subjects
were instructed to abstain from alcohol the day before check-in to the CCRC.

2.3. Serum Metals and Ceruloplasmin Ferroxidase Activity

Fasting serum (30-min clotting time) was collected between 07:00 and 08:00 following subject
check-in during both the baseline and intervention inpatient phase. Serum and sweetened beverage
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aliquots were digested in 1N Ultrex II nitric acid (Avantor JT Baker, Radnor Township, PA, USA)
at 4 ◦C for 24 h then centrifuged at 3000 rpm/4 ◦C for 12 min in a Sorvall Legend X1R centrifuge
(Thermo Fisher Scientific, Waltham, MA, USA) and supernatant collected. Iron, copper, and zinc levels
were measured by inductively coupled plasma mass spectrometry at the UC Davis Interdisciplinary
Center for Plasma Mass Spectrometry. Sweetened beverage samples were analyzed separately to
determine if metal content in the Kool-aid drink mixes were significantly different from one another;
no significant differences were found (Figure S1). Ceruloplasmin ferroxidase activity was measured
with a colorimetric assay (EIACPLC, Invitrogen, Carlsbad, CA, USA). According to the manufacturer’s
protocols, samples were diluted 1:50 in the commercial assay buffer and a colorimetric ceruloplasmin
substrate was added. Plates were incubated at 30 ◦C for 60 min and absorbances were read at 560 nm
using a Synergy H1 microplate reader (Bio Tek, Winooski, VT, USA).

2.4. Serum Protein Levels

Serum protein levels were measured using commercially available ELISAs according to the
manufacturers’ protocols. Samples were diluted 1:400,000 for ceruloplasmin (EC4201-1, Assaypro,
St. Charles, MO, USA); 1:250,000 for transferrin (ab187391, Abcam, Cambridge, MA, USA); and 1:10 for
ferritin (ab200018, Abcam, Cambridge, MA, USA). Samples and standards were run in duplicate and
their absorbance was measured using a Synergy H1 microplate reader (Bio Tek, Winooski, VT, USA).

2.5. Plasma Lipid and Glucose Parameters

As previously reported [34,35], 24-h serial plasma samples were collected every 30 or 60 min
starting at 08:00 during the third day of each inpatient phase and analyzed for TG, lipoproteins, insulin,
and glucose. In the current study these data were utilized for the purpose of novel correlation analyses
with metal and metal biomarker parameters. Plasma TG concentrations were measured at all time
points and calculated for mean 24-h concentration and for total 24-h area under the curve (AUC) by the
trapezoidal method. TG, apolipoprotein CIII (apoCIII), and lactate concentrations were measured with
a Polychem Chemistry Analyzer (PolyMedCo Inc., Cortland Manor, New York, USA) with reagents
from MedTest DX (Canton, MI, USA). Glucose was measured with an automated glucose analyzer
(YSI, Inc., Yellow Springs, OH, USA) and insulin by radioimmunoassay (Millipore, St. Charles, MO).
Changes in glucose and insulin amplitude were calculated as post-meal zenith minus pre-meal nadir
concentration for each meal and averaged for the 3 meals.

2.6. Statistical Analyses

Metal concentrations in the sweetened beverages and baseline variables were analyzed by
one-way ANOVA.

Each metal outcome was analyzed for the effect of beverage group in a MIXED procedure
repeated measures (time) analysis of covariance (ANCOVA) using SAS 9.4 (Cary, NC, USA). The model
included adjustments for sex, BMI, time, and beverage x time, with Tukey’s post-test for beverage x
time. Identical repeated measures ANCOVAs that included adjustment for the change in BMI were
also conducted. The percentage change of each outcome was analyzed by the general linear model
ANCOVA; the beverage interventions were included as its proportional contents of monosaccharides
(fructose and glucose) as separate variables. Therefore, fructose was input as 1 for fructose and 0 for
glucose, glucose as 0 for fructose and 1 for glucose, HFCS as 0.55 for fructose and 0.45 for glucose,
and aspartame as 0 for both fructose and glucose. The model was adjusted for outcome at baseline,
BMI, and sex. Covariates that decreased the sensitivity of the model were removed. Outcomes
significantly affected by BMI were further assessed by two-tailed unpaired t-test (Microsoft Excel;
Microsoft, Redmond, WA, USA) with subjects separated into two cohorts by BMI < or ≥ 25 kg/m2.

Partial Pearson correlations adjusted for BMI and sex (SAS 9.4) were used to assess the relationships
between: (1) metal markers at baseline; (2) changes in metal markers; and (3) changes in metal markers
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and metabolic markers. Significant relationships between changes in metal markers and metabolic
markers were further tested by partial Pearson correlations adjusted for fructose, glucose, BMI, and sex.

p-values < 0.05 were considered significant.

3. Results

3.1. Baseline Measures

There were no significant differences in baseline characteristics between the four intervention
groups (Table 1) or in the copper, iron, and zinc content of the study beverages (Figure S1).

Table 1. Description of subjects at baseline by sugar consumed. Means ± SEMs are shown. BMI, body
mass index; HFCS, high fructose corn syrup.

Glucose n = 28 Fructose n = 28 HFCS n = 28 Aspartame
n = 23 Total n = 107

BMI 25.4 ± 0.7 25.8 ± 0.7 24.9 ± 0.8 24.8 ± 0.7 25.3 ± 0.4
Age 26.8 ± 1.2 26.0 ± 1.1 26.8 ± 1.2 25.4 ± 1.3 26.3 ± 1.6
Sex 15 M/13 F 15 M/13 F 15 M/13 F 11 M/12 F 56 M/51 F

% M/F 53.6/46.4 53.6/46.4 53.6/46.4 47.9/53.1 52.3/47.7

3.2. Effects of Glucose, Fructose, HFCS, and Aspartame on Metals and Metal Metabolism Markers

Table 2 shows the absolute values of the seven metal-associated outcomes (three metals and
four metal metabolism markers) at baseline and after intervention. Ceruloplasmin concentration was
not affected by the consumption of the sweetened beverages. The serum concentrations of all other
metal-associated outcomes decreased over time; however, there were no significant effects of beverage
group or beverage x time (Table 3). Subjects consuming HFCS and glucose exhibited the most marked
decreases in copper concentrations (HFCS: −83.9 ± 25.3, 2 weeks vs. 0 weeks, Tukey’s post-test adjusted
p-value: 0.0019; glucose: −77.6 ± 13.8 ppb; adjusted p-value = 0.0069). Ceruloplasmin ferroxidase
activity was also decreased following HFCS or glucose consumption; however, when adjusted for
multiple comparisons, the decreases were not significant (HFCS: −2.0 ± 0.53 U/mL, unadjusted p-value:
0.0049; adjusted p = 0.089; glucose: −2.1 ± 0.9 U/mL, unadjusted p-value: 0.0029, adjusted p-value:
0.056). Subjects consuming HFCS or glucose also exhibited decreased zinc concentrations (HFCS: −93.3
± 29.3 ppb; Tukey’s post-test unadjusted p-value: 0.0006; adjusted p-value: 0.014; glucose: −80.0 ±
25.2 ppb; Tukey’s post-test unadjusted p-value: 0.0032; adjusted p-value: 0.060, 2 weeks versus 0 weeks).
Adjustment of the repeated measures ANCOVAs for the change in BMI tended to strengthen rather
than attenuate these results and did not reveal any additional effect of the beverage interventions.

Table 2. Serum metals and metal metabolism markers during consumption of aspartame, glucose,
fructose, or HFCS-sweetened beverages at week 0 and week 2. Means ± SEMs are shown. Cp,
ceruloplasmin; Cp-ferrox, ceruloplasmin ferroxidase activity.

Aspartame Glucose Fructose HFCS
Week 0 Week 2 Week 0 Week 2 Week 0 Week 2 Week 0 Week 2

Cp
(µg/mL) 773 ± 125 1095 ± 287 920 ± 157 815 ± 125 1098 ± 258 805 ± 198 885 ± 146 984 ± 156

Cp-ferrox
(U/mL) 26.8 ± 2.5 26.8 ±2.3 28.2 ± 2.2 26.1 ± 1.8 28.8 ± 1.5 27.7 ± 1.5 29.5 ± 2.3 27.5 ± 2.1

Transferrin
(mg/dL) 93.6 ± 6.6 84.87 ± 6.5 104.2 ± 4.4 104.4 ± 6.2 101.2 ± 5.1 94.0 ± 5.8 109.2 ± 5.7 94.0 ± 5.4

Ferritin
(ng/mL) 37.7 ± 10.2 28.9 ± 7.54 48.7 ± 7.9 36.8 ± 7.1 45.6 ± 8.4 28.7 ± 5.7 41.9 ± 6.0 31.1 ± 5.3

Copper
(ppb) 912 ± 49 881 ± 41 976 ± 55 869 ± 43 953 ± 34 898 ± 32 1019 ± 55 935 ± 49

Iron
(ppb) 1029 ± 77 726 ± 68 920 ± 82 825 ± 78 1037 ± 87 796 ± 53 1007 ± 74 750 ± 59

Zinc
(ppb) 975 ± 37 957 ± 30 1012 ± 24 932 ± 33 983 ± 24 969 ± 24 991 ± 33 897 ± 22
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Table 3. p-values for the MIXED procedure repeated measures (time) ANCOVA testing each outcome
for the effects of beverage, sex, BMI, time, and beverage × time. Significant values are in bold.

Beverage Sex BMI Time Beverage × time
p-Value p-Value p-Value p-Value p-Value

Cp 0.972 0.615 0.289 0.945 0.087
Cp-ferrox 0.873 0.005 0.255 <0.001 0.161

Copper 0.203 <0.001 <0.001 <0.001 0.331
Zinc 0.737 <0.001 0.558 <0.001 0.084
Iron 0.916 0.001 0.039 <0.001 0.442

Ferritin 0.878 <0.001 0.177 <0.001 0.284
Transferrin 0.104 0.355 0.590 0.003 0.209

Sex was a significant factor in the model (Table 3). However, the differences between male and
female in copper, ceruloplasmin ferroxidase activity, zinc, iron, and ferritin levels were specific to
baseline and not due to an effect of intervention.

There were significant relationships between BMI and both iron and copper (Table 3). To further
investigate these relationships, subjects were stratified by BMI (BMI < 25 and BMI ≥ 25), and iron
and copper concentrations were compared at both baseline and intervention (Table 4). Serum copper
concentrations tended to be higher and iron concentrations lower at baseline in subjects with BMI ≥ 25
compared to those with BMI < 25. After intervention, copper was significantly higher in subjects with
BMI ≥ 25, but a BMI-influenced difference in iron was no longer apparent.

Table 4. Copper and iron concentrations in subjects divided by BMI into normal weight (<25 kg/m2)
or overweight and obese (≥25 kg/m2) groups. An unpaired, two-tailed t-test was used to analyze
significance between BMI groups. Mean ± SEM are shown.

BMI < 25
(n = 51)

BMI ≥ 25
(n = 56) p-Value

Copper Baseline 918 ± 33 995 ± 30 0.08
Intervention 847 ± 29 936 ± 29 0.03

Iron
Baseline 1107 ± 64 899 ± 47 0.008

Intervention 779 ± 53 776 ± 40 0.97

To further investigate the changes over time, we analyzed each outcome in a model that assessed
the specific effects of glucose and fructose. Copper and ceruloplasmin ferroxidase activity were
significantly influenced by the effects of fructose and/or glucose (Figure 1). Glucose, consumed at 25%
of energy requirement, accounted for −7.06% ± 3.26% of the change in copper (p = 0.033) and −9.23%
± 3.46% of the change in ceruloplasmin ferroxidase activity (p = 0.009). Fructose, consumed at 25% of
energy requirement, accounted for −7.26% ± 3.4% of the change in ceruloplasmin ferroxidase activity
(p = 0.035). Glucose consumption also contributed to the decrease in serum zinc concentrations (−8.41%
± 4.1%, p = 0.045) (Figure 1). Neither glucose nor fructose consumption contributed to the significant
decreases in iron status markers observed during the two-week intervention (data not shown).
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Figure 1. Estimates of the effects of fructose and glucose on the percentage changes of serum copper,
Cp-ferrox, and zinc in subjects consuming beverages containing fructose, glucose, HFCS, or aspartame
for 2 weeks. General linear model ANCOVA with beverage interventions described as the proportional
contents of fructose and glucose as separate variables. Model included adjustments for BMI and sex.
* p < 0.05, ** p < 0.01, effect of glucose or fructose.

3.3. Correlations of Baseline Serum Metal Concentrations with Baseline Metal Metabolic Markers

Partial Pearson correlations of baseline metals and their metabolism markers were adjusted for
BMI and sex (Table 5). This analysis of baseline metal markers presents some interesting correlations,
with copper positively correlated to ceruloplasmin ferroxidase activity (r = 0.520, p < 0.001), but not
ceruloplasmin concentration (r = 0.125, p = 0.204). In addition to this lack of significance with copper,
ceruloplasmin concentration is negatively correlated to its ferroxidase activity (r = −0.452, p < 0.001).
Zinc was also found to be negatively correlated with ceruloplasmin concentration (r = −0.208, p = 0.033).
Iron concentrations were positively correlated to both transferrin (r = 0.350, p < 0.001) and ferritin
(r = 0.241, p = 0.014).

Table 5. Partial correlation between baseline metal and metal metabolism markers adjusted for BMI
and sex. p < 0.05 are shown in bold with positive associations (r > 0) shown in blue, and negative
associations (r < 0) shown in red.

Copper Iron Zinc Cp-ferrox Cp Transferrin Ferritin

Copper r −0.131 −0.082 0.520 0.125 0.014 −0.237
p 0.184 0.411 <0.001 0.204 0.890 0.016

Iron
r −0.131 0.048 −0.098 0.016 0.350 0.241
p 0.184 0.628 0.321 0.872 <0.001 0.014

Zinc
r −0.0815 0.048 0.132 −0.208 0.169 −0.088
p 0.411 0.628 0.178 0.033 0.087 0.376

Cp-ferrox r 0.520 −0.098 0.132 −0.452 0.028 −0.153
p <0.001 0.321 0.178 <0.001 0.778 0.119

Cp r 0.125 0.016 −0.208 −0.452 −0.032 −0.014
p 0.204 0.872 0.033 <0.001 0.746 0.889

Transferrin
r 0.014 0.350 0.169 0.028 −0.032 0.103
p 0.890 <0.001 0.087 0.778 0.746 0.295

Ferritin
r −0.237 0.241 −0.088 −0.153 −0.014 0.103
p 0.016 0.014 0.376 0.119 0.889 0.295
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3.4. Correlations of Changes in Serum Metal Concentrations with Changes in Metal Metabolism Markers

Correlations of the changes from week 0 to week 2, adjusted for BMI and sex, highlighted different
interactions between metal markers than observed with baseline correlations (Table 6). ∆Copper was
strongly positively correlated with ∆zinc (r = 0.359, p < 0.001) and ∆ceruloplasmin ferroxidase activity
(r = 0.572, p < 0.001) along with a weaker positive correlation with ∆ceruloplasmin concentration
(r = 0.235, p = 0.016). ∆Iron concentrations were strongly correlated with only ∆transferrin (r = 0.445,
p < 0.001). These significant relationships were not attenuated in additional partial correlation analyses
that included adjustment for fructose, glucose, BMI, and sex (data not shown).

Table 6. Partial correlation between changes from week 0 to week 2 in metal and metal metabolism
markers adjusted for BMI and sex. p < 0.05 are shown in bold with positive associations (r > 0) shown
in blue.

Copper Iron Zinc Cp-ferrox Cp Transferrin Ferritin

Copper r 0.114 0.358 0.572 0.235 −0.046 0.069
p 0.251 <0.001 <0.001 0.016 0.642 0.492

Iron
r 0.114 0.204 0.040 −0.032 0.445 0.049
p 0.251 0.036 0.687 0.745 <0.001 0.624

Zinc
r 0.358 0.204 0.309 0.173 0.191 −0.091
p <0.001 0.036 0.687 0.078 0.052 0.360

Cp-ferrox r 0.572 0.040 0.309 0.187 0.093 0.041
p <0.001 0.687 0.687 0.056 0.346 0.676

Cp r 0.235 −0.032 0.173 0.187 0.017 0.143
p 0.016 0.745 0.078 0.056 0.864 0.147

Transferrin
r −0.046 0.445 0.191 0.093 0.017 0.045
p 0.642 <0.001 0.052 0.346 0.864 0.648

Ferritin
r 0.069 0.049 −0.091 0.041 0.143 0.045
p 0.492 0.624 0.360 0.676 0.147 0.648

3.5. Correlations of Changes in Serum Metal Concentrations with Changes in Metabolism Markers

Partial correlations, with adjustments for BMI and sex, between changes from week 0 to week 2
of metal markers, and changes in selected metabolic markers showed negative correlations (Table 7).
∆Copper was negatively correlated with ∆fasting levels of apoCIII (r =−0.25, p = 0.011). ∆Ceruloplasmin
ferroxidase activity was negatively correlated with the ∆amplitude of glucose (r = −0.260, p = 0.007),
insulin (r = −0.270, p= 0.007), and lactate (r = −0.300, p = 0.003). ∆Iron metabolism was also
related to changes in metabolic markers. ∆Transferrin concentration was negatively correlated with
∆postprandial apoCIII (r =−0.200, p = 0.046) and ∆ferritin was negatively correlated with ∆postprandial
TG levels (r = −0.220, p = 0.025), ∆TG AUC (r = −0.230, p = 0.021), ∆fasting apoCIII (r = −0.290,
p = 0.003), ∆postprandial apoCIII (r = −0.290, p = 0.003), and ∆lactate amplitude (r = −0.21, p = 0.039).
These significant inverse relationships were not attenuated in additional partial correlation analyses
that included adjustment for fructose, glucose, BMI, and sex (data not shown).

Table 7. Partial correlation between changes from week 0 to week 2 in metal and metabolism markers
adjusted for fructose, glucose, BMI, and sex. p < 0.05 are shown in bold with r < 0 shown in red. TG
AUC, triglyceride area under the curve; apoCIII, apolipoprotein CIII.

PostprandialTG TG AUC Fasting
apoCIII

Postprandial
apoCIII

Glucose
Amplitude

Insulin
Amplitude

Lactate
Amplitude

Copper r −0.001 −0.069 −0.250 −0.053 0.028 −0.116 −0.026
p 0.994 0.504 0.011 0.606 0.788 0.261 0.800

Iron
r 0.029 −0.059 −0.165 −0.142 0.066 0.069 0.074
p 0.777 0.565 0.109 0.169 0.525 0.504 0.473
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Table 7. Cont.

PostprandialTG TG AUC Fasting
apoCIII

Postprandial
apoCIII

Glucose
Amplitude

Insulin
Amplitude

Lactate
Amplitude

Zinc
r 0.010 −0.061 0.023 −0.036 0.059 0.080 0.150
p 0.922 0.555 0.823 0.728 0.566 0.436 0.144

Cp-ferrox r 0.010 0.095 −0.089 0.0172 −0.260 −0.270 −0.300
p 0.334 0.359 0.389 0.868 0.007 0.007 0.003

Cp r −0.056 −0.060 0.050 0.005 0.085 −0.077 −0.121
p 0.586 0.559 0.630 0.959 0.411 0.457 0.240

Transferrin
r −0.047 −0.069 −0.078 −0.200 −0.104 −0.059 0.007
p 0.651 0.507 0.451 0.046 0.312 0.570 0.947

Ferritin
r −0.220 −0.230 −0.290 −0.290 −0.210 0.096 −0.21
p 0.025 0.021 0.003 0.003 0.934 0.351 0.039

4. Discussion

The current study provides insights on the relationship between the consumption of sweetened
beverages in the diet and metal micronutrient regulation in humans. Our data propose connections
between diet composition; copper, iron, and zinc metabolism; and metabolic biomarkers in healthy
subjects. We found consumption of both glucose and fructose contributed to significant decreases
in ceruloplasmin ferroxidase activity but had no effect on ceruloplasmin concentrations. We also
found consumption of glucose, but not fructose, contributed to decreases in serum copper and
zinc concentrations.

The notable changes in ceruloplasmin ferroxidase activity and copper concentrations in the serum
of subjects consuming sugar-sweetened beverages suggest a connection between sugar ingestion
and copper metabolism. The role of copper in human health is poorly understood, with a majority
of research investigating copper in patients with obesity. Our data point to healthy adults having
increased serum copper levels with higher BMI. The association between serum copper concentration
and adiposity status in healthy individuals was also noted by Olusi et al., who reported a positive
association between copper and leptin in healthy adults [38]. Yang et al. reported that an increase in
copper and ceruloplasmin serum concentrations was positively associated with BMI [14]. Additional
studies have shown increased copper export along with decreased hepatic copper concentration in
non-alcoholic fatty liver disease (NAFLD) and a relationship between elevated serum copper and
liver cirrhosis or hepatocellular carcinoma [10,39,40]. While these studies relate elevated serum
copper to obesity and associated conditions, our data suggest consumption of sugar-sweetened
beverages, especially glucose containing beverages, by healthy subjects, decreases serum copper and
ceruloplasmin ferroxidase activity. Similarly to our findings, Aigner et al. demonstrated patients
with NAFLD present a decrease in both hepatic copper concentration and serum ceruloplasmin
ferroxidase activity [41]. Previous in vivo studies indicate involved pathogenic factors may include
reduced duodenal copper absorption due to inhibited transcription of Ctr1, concomitant hepatic iron
accumulation, or alterations in gut microbiota composition possibly related to increased abundance
of Firmicutes and reduced Akkermansia [16,41,42]. Other proposed mechanisms involve copper
regulation of cyclic-AMP-dependent lipolysis or mitochondrial dysfunction associated with impaired
cupro-enzymatic activity [43–45]. These mechanisms may be contributing factors to effects observed
but not studied in our work.

To the best of our knowledge, this is the first study of the effects of glucose or HFCS on copper and
its markers in healthy subjects. Previous studies have focused on fructose and indicated fructose may
impact copper metabolism in a unique way [46,47]. In rats, fructose-rich diets and copper-deficient
diets showed exacerbations of NAFLD-like pathology, suggesting a potential crosstalk between copper
metabolism and fructose [46]. Recent studies have further corroborated this finding and revealed
sex-specific differences, finding that a diet of 30% caloric intake from fructose altered copper only
in males [48]. Our results suggest glucose consumption may also have a negative impact on copper
metabolism and this impact may be more marked than that of fructose. More studies of the effects of
glucose, HFCS, and fructose on copper metabolism are needed.
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We found changes in copper were negatively associated with changes in fasting apoCIII,
a lipoprotein implicated as a cardiovascular disease risk factor [49], and ceruloplasmin ferroxidase
activity was negatively associated with increases in post-meal glucose, insulin, and lactate responses.
These inverse associations, which were independent of the effects of fructose and glucose, suggest the
possibility that adequate copper and ceruloplasmin ferroxidase activity is linked to fuel utilization and
may have protective metabolic effects.

Traditionally it is thought that iron is linked to copper through the activity of ceruloplasmin,
however, our data suggest that zinc may also be involved [50]. Serum zinc levels follow a pattern
similar to copper, with glucose consumption contributing to decreased zinc concentrations. We also
observed a strong positive association between the changes in zinc and copper independent of the
effects of glucose and fructose. Baseline serum zinc concentrations were negatively correlated with
ceruloplasmin concentration. A connection between sugar consumption and zinc has also been
recently reported wherein rats consuming high fructose diets exhibited decreases in hepatic zinc
concentrations [48]. These data strengthen the connection between copper and zinc, but also indicate
that the interplay between them, especially in the context of dietary interventions, has yet to be fully
understood [51–53].

While we failed to observe any significant difference between beverage groups, or significant
effects of fructose or glucose, on the decreases in iron and iron markers, we observed some interesting
relationships. Analysis of the change from baseline to intervention of iron and ferritin by repeated
measures ANCOVA reveals that serum iron was significantly decreased in all four beverage groups.
Ferritin, however, was significantly decreased in subjects consuming sugar-containing beverage, but
not the subjects consuming aspartame. Literature is sparse regarding connections between serum iron
and aspartame. As the aspartame-induced decrease in serum iron concentrations was not confirmed
by an aspartame-induced decrease in ferritin, additional studies are required to determine whether
aspartame consumption affects iron levels. We observed that subjects with BMI < 25 had higher serum
iron concentrations at baseline than subjects with BMI ≥ 25. This difference requires further study
as it was not observed at the end of the two-week intervention. However, the baseline relationship
supports data reporting decreased serum iron concentration is associated with increased BMI [54]. Our
data support the findings that NAFLD induces increased hepatic iron concentrations and increased
hepatic hepcidin expression, which would result in decreased serum iron levels [41]. This relationship
between hepcidin and diet merits additional research given the role of this peptide in the innate
immune system [55]. Studying the interplay between diet, inflammatory cytokines, and transition
metal regulation would add another piece to the puzzle of transition metals in biology.

We also observed that the changes in ferritin were negatively associated with the changes in
postprandial TG and the changes in fasting and postprandial apoCIII. These effects, which were
independent of fructose and glucose consumption, are contradicted by a recent observational study
showing fasting ferritin levels were positively associated with TG and lipoproteins [56]. This discrepancy
may be due to the much higher ferritin concentrations exhibited by the subjects studied by Zhou et
al. They were divided into quartiles based on ferritin concentrations; only three of the subjects in our
study met the criteria of the second-highest quartile and none fit in the highest quartile.

One important observation of the present study concerns the relationship between serum
copper concentration, ceruloplasmin levels, and copper-dependent ceruloplasmin ferroxidase activity.
Laboratory tests for ceruloplasmin levels are widely used as a proxy for copper concentration in the
serum [29,57]. While serum ceruloplasmin has been a key test for diagnosing Wilson disease, our
findings suggest ceruloplasmin ferroxidase activity might be a more accurate representation for copper
status given the observed strong correlation of copper concentration with ceruloplasmin ferroxidase
activity and a weaker correlation with ceruloplasmin concentration. The differences between activity
and concentration are even more apparent when considering the effects of the intervention. The change
in serum copper was positively correlated with ceruloplasmin ferroxidase activity, yet negatively
correlated with ceruloplasmin concentration. This accentuates the differences between the activity and
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concentration of a protein and the need for additional studies untangling how these parameters relate
to one another and to copper metabolism.

Our study is limited by the post hoc nature of the analysis. Consumption of metal micronutrients
were not controlled during the outpatient period of the study and the subjects were instructed to
consume their normal diets. Thus, both metal consumption and bioavailability could have been altered
by variables for which this study did not control. In addition to variabilities in the subjects’ normal
diets, it is possible that the added calories from the beverages could have displaced the consumption
of metal-rich foods or nutrients that enhance metal bioavailability. It is also feasible that consumption
of sweetened beverages affected metal absorption. Future studies may be informed by existing reports
on the impacts of sugar intake on metal bioavailability [58,59]. In addition, given the assessment of
metal markers was not initially planned, the study might also have been under-powered to assess
certain effects of sugar consumption on metal metabolism. Future studies are warranted that control
for metal micronutrient intake and being sufficiently powered to validate the trends observed in
this study. Nevertheless, the short-term two-week intervention was sufficient to cause significant
sugar-dependent changes in certain serum metal markers, offering support for a connection between
sugar metabolism and metal homeostasis.

5. Conclusions

Our results suggest sugar consumption affects copper and zinc metabolism parameters within two
weeks. Alterations in transition metal metabolism, in turn, can contribute to aberrant fuel utilization
and potentially worsen the course of metabolic-related diseases. Glucose consumption may possibly
have a more marked impact on transition metal metabolism than fructose consumption. Ceruloplasmin
ferroxidase activity appears to correlate significantly with copper serum levels and may have broader
applications in clinical practice than ceruloplasmin levels.

Our findings are the first evidence that consumption of sugar-sweetened beverages can alter
clinical parameters of transition metal metabolism in healthy subjects. As sugar consumption has
become entrenched in the Western diet, further study of the relationships between transition metal
metabolism and glucose, fructose, HFCS, and also sucrose is warranted. Our findings represent the
proverbial tip of the iceberg toward understanding the physiological impact of microminerals in the
modern Western diet and highlight the need to further probe the clinical relationship between metal
status and metabolic health.
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