Compound	Molecular	M	M + X+	Fragments	DP	EP	CE
	formula	(g/mol)	(m/z)	(m/z)	(V)	(V)	(V)
				Q1 132.20 →			
3-methylindole (3ML)	C9H9N	131.17	$M + H^+$	63.00	30	9	21
o meanymaole (oniz)	CHIN	101.17	101 - 11	Q2 132.20 →	23	12	27
				117.00			
				Q1 177.20 →			
5-hydroxytryptamine	$C_{10}H_{12}N_{2}O$	176 21	M + H+	160.20	16	6	20
(5HT)		170.21	101 - 11	Q2 177.20 →	16	8	30
				132.00			
				Q1 221.20 →			
				204.10			
5-Hydroxytryptophan	$C_{11}H_{12}N_2O_2$	220.22	$M + H^+$	Q2 221.20 →	22	4	17
(5-HTP)		220.22	141 - 11	162.20	21	4	24
				Q2 177.20 →			
				132.00			
				Q1 188.20 →			
				146.10			
				Q2 188.20 →	35	12	21
2 Indologoralis asid (IA)	$C_{11}H_0NO_2$	187 10	$M \perp H^+$	160.10	36	6	21 18
5-indoleaciyiic acid (IA)		107.19	111 + 11	Q3 188.20 →	16	0	10
				170.20	10	2	10
				Q1 176.10 →			
				130.00	30	10	35
indole acetate (IAA)	$C_{10}H_9NO_2$	175 18	$M + H^+$	Q2 176.10 →	30	10	35
indoie declate (in in i)		170.10	101 - 11	103.10	30	10	35
				Q3 176.10 →	00	10	00
				77.10			
				Q1 175.20 →			
Indole-3-Acetamide				130.20	29	5	18
(IAM)	$C_{10}H_{10}N_2O$	174.20	$M + H^+$	Q2 175.20 →	30	5	10
(11 11 (1))				105.00	00	U	
				01 1 47 10			
				QI 146.10 →			
indole-3-carboxaldehyde	CUNO		N.C TT.	118.00	24	10	21
(Icld)	C9H7INO	145.16	$M + H^+$	Q2 146.10 →	35	6	15
				118.00			
				$\bigcirc 120620 \rightarrow$			
				Q1 200.20			
indole lactate (ILA)	$C_{11}H_{11}NO_{2}$	205.21	$M + H^+$	$\bigcirc 2206.20 \rightarrow $	33	10	30
indole lactate (ILA)			1VI $+$ I I	Q2 200.20	33	10	30
				110.00			
				O1 118.00 →			
				91.00			
Indole	C ₈ H ₇ N	117 15	M + H+	$O211800 \rightarrow$	9	10	30
madic	C011/1 V	11/ 10	.,	63.00	9	10	24

 Table S1. Operating parameters in MRM-mode.

3-Indolepropionic acid (IPA)	C11H11NO2	189.21	M + H+	Q1 190.20 → 130.30 Q2 190.20 → 172.30	29 25	12 8	26 21
Kynurenine (Kyn)	C10H12N2O3	208.21	M + H+	Q1 209.00 → 192.00 Q2 209.00 → 146.00 Q3 209.00 → 94.00	11 29 25	9 8 8	12 27 21
Melatonin (ST)	C13H16N2O2	232.28	M + H+	Q1 233.10 → 174.00 Q2 233.10 → 130.00 Q3 233.10 → 159.00	60 60 60	12 12 12	20 47 36
Typtophan (Trp)	C11H12N2O2	204.22	M + H*	Q1 205.00 → 118.00 Q2 205.00 → 115.10	120 130	10 10	24 46

	Table S2. Sequence of the primers used in	n this study [sequence 5′-3′].
	Forward	Reverse
β-actin	ACAGCAGTTGGTTGGAGCAA	ACGCGACCATCCTCTTA
18S	AAGGGCTGCTTCCAA ACC TTT GAC	TGCCTGAAGCTCTTGTTGATGTGC
IL-1β	AAGGGCTGCTTCCAAACCTTTGAC	TGCCTGAAGCTCTTGTTGATGTGC
IL-6	CTCTGGCGGAGCTATTGAGA	AAGTCTCCTGCGTGGAGAAA
IL-10	CAGGACTTTAAGGGTTACTTG	ATTTTCACAGGGGAGAAATC
IL-17	ACGTTTCTCAGCAAACTTAC	CCCCTTTACACCTTCTTTTC
IL-22	GAGGCCAGCCTTGCAGATAA	CAGGAGCTGAGCTGATTGCT
TNF-α	CGTGGAACTGGCAGAAGAGG	CAGGAATGAGAAGAGGCTGAGAC
IFN-γ	GCTCTGAGACAATGAACGCTACAC	TTCTTCCACATCTATGCCACTTGAG
COX-2	CCCATTAGCAGCCAGTTGTC	CAGGATGCAGTGCTGAGTTC
iNOS	GGGCTGACCTGTTTCCTACT	GGAGGTTGAGACCCAATGGA
ZO-1	GGGGCCTACACTGATCAAGA	TGGAGATGAGGCTTCTGCTT
Occludin	ACGGACCCTGACCACTATGA	TCAGCAGCAGCCATGTACTC
AHR	GAGCTTCTTTGATGGCGCTG	CCTTGTGCAGAGTCTGGGTTT
GPR41	TCCAGCCTGGCTTTCCAATA	GCCTGCAGGAGACATTTCAG
GPR43	CGACTAGAGATGGCTGTGGT	AGAAGATGAGCAGTGTGGCT
FOXP3	AATAGTTCCTTCCCAGAGTTC	GGTAGATTTCATTGAGTGTCC
GPR109a	AGTGGAAACTTCTCAGCCTTCCAA	TCCCCTCCAGTTTCGTGGA
VEGFa	CTGCCTGGAAGAATCGGGAG	GTACCCAGGAGGTGGGGTAA

Table S3. Difference of the values of PC1 between data from different cages within the same group.

	<i>P</i> value for PC1 (43.9%), Cage 1 vs Cage 2
NM	0.403
AOM/DSS	0.772
AOM/DSS+millet	0.860
AOM/DSS+rice	0.700

Statistical difference was analyzed by Wilcoxon rank-sum test. n=10, 6, 7, and 4 for the NM, AOM/DSS, AOM/DSS+millet, and AOM/DSS+rice groups, respectively.

Figure S1. Daily food consumption per mouse in each group. The average food consumption was calculated based on the total food intake of the mice within a single cage.

Figure S2. The concentrations of other tryptophan metabolites in feces. (A)5-HT, (B)5-HTP, (C)IAM, (D)Icld, (E)Indole, (F)Kyn, (G)ST and (H)tryptophan. Data are shown as the mean \pm SD. Means with different letters are significantly different (p < 0.05).

Hierarchical clustering tree on OTU level

Figure S3. Cluster analysis of gut microbiota at OTU level with Unweighted-Unifrac distance.