
nutrients

Article

Desaturase Activity and the Risk of Type 2 Diabetes
and Coronary Artery Disease: A Mendelian
Randomization Study

Susanne Jäger 1,2 , Rafael Cuadrat 1,2 , Per Hoffmann 3,4 , Clemens Wittenbecher 1,2,5

and Matthias B. Schulze 1,2,6,*
1 Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke,

14558 Nuthetal, Germany; susanne.jaeger@dife.de (S.J.); Rafael.Cuadrat@dife.de (R.C.);
cwittenbecher@hsph.harvard.edu (C.W.)

2 German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
3 Human Genomics Research Group, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland;

per.hoffmann@unibas.ch
4 Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn,

53105 Bonn, Germany
5 Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
6 Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
* Correspondence: mschulze@dife.de; Tel.: +49-33200-882434

Received: 10 June 2020; Accepted: 25 July 2020; Published: 28 July 2020
����������
�������

Abstract: Estimated ∆5-desaturase (D5D) and ∆6-desaturase (D6D) are key enzymes in metabolism
of polyunsaturated fatty acids (PUFA) and have been associated with cardiometabolic risk;
however, causality needs to be clarified. We applied two-sample Mendelian randomization
(MR) approach using a representative sub-cohort of the European Prospective Investigation
into Cancer and Nutrition (EPIC)–Potsdam Study and public data from DIAbetes Genetics
Replication And Meta-analysis (DIAGRAM) and Coronary ARtery DIsease Genome wide Replication
and Meta-analysis (CARDIoGRAM) genome-wide association studies (GWAS). Furthermore,
we addressed confounding by linkage disequilibrium (LD) as all instruments from FADS1 (encoding
D5D) are in LD with FADS2 (encoding D6D) variants. Our univariable MRs revealed risk-increasing
total effects of both, D6D and D5D on type 2 diabetes (T2DM) risk; and risk-increasing total
effect of D6D on risk of coronary artery disease (CAD). The multivariable MR approach could not
unambiguously allocate a direct causal effect to either of the individual desaturases. Our results
suggest that D6D is causally linked to cardiometabolic risk, which is likely due to downstream
production of fatty acids and products resulting from high D6D activity. For D5D, we found indication
for causal effects on T2DM and CAD, which could, however, still be confounded by LD.

Keywords: ∆5-desaturase; ∆6-desaturase; type 2 diabetes; coronary artery disease; Mendelian
randomization; multivariable Mendelian randomization; FADS-gene-cluster; fatty acids

1. Introduction

∆5-Desaturase (D5D) and ∆6-desaturase (D6D) are key enzymes for the synthesis of longer chain
poly-unsaturated fatty acids (PUFA) from plant-derived precursor fatty acids linoleic acid (LA) and
α-linolenic acid (ALA) (see Figure 1a).
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(20:4n-6/20:3n-6) [1–3]. Furthermore, higher D6D activity is linked to higher cardiovascular mortality 

[4] and higher estimated D5D activity to lower cardiovascular mortality and coronary heart disease 

(CHD) risk [4,5]. 

 

 

Figure 1. (a): Conversion of linoleic acid and α-linolenic acid to longer-chain n-6- and n-3 

polyunsaturated fatty acids by the action of Δ6-desaturase, Δ5-desaturase and elongases. Adapted 

from Kröger et al. [1]. (b): Hypothesized relationship between genetic variants, Δ6-desaturase (D6D), 

Δ5-Desaturase (D5D) and the investigated outcomes type 2 diabetes and coronary artery disease. The 

arrow from D6D to D5D relies on the biologically underlying mechanisms as depicted in panel a; 

however, methodologically in the multivariable MR the arrow could be in any direction. Confounders 

are omitted from this figure for clarity. Pleiotropic effects by pathways other than D6D or D5D are 

not considered in this multivariable MR. 

To investigate causal relationships between risk factors and disease outcomes, genetic variants 

can be used as instrumental variables in Mendelian randomization (MR). The principle is based on 

Mendels’s second law of inheritance, stating that the assignment of alleles is random during meiosis 

[6]. 

In humans, D5D and D6D are encoded by FADS1 and FADS2 genes [7] and SNPs in that gene 

region have been reliably linked to desaturase activities [1,8,9] and cardiometabolic traits [10,11]. 

Recent MR studies have linked single fatty acids to T2DM risk [12] and CVD risk [13]. However, they 

are limited by the high correlation between the single fatty acids and hence individual effects could 

largely not be elucidated. A previous MR study found a direct relation for D6D activity and tended 

to support an inverse relation for D5D activity using a FADS1-SNP as genetic instrument [14]. 

However, the FADS-gene cluster is characterized by high linkage disequilibrium (LD) where all 

instruments from FADS1 are in LD with FADS2 variants [1,7]. Therefore, it is hard to select suitable 

genetic instruments for MR to disentangle the causal nature of each desaturase on the respective 

outcome without the limitation of confounding by LD. Furthermore, genetic instruments might 

associate with multiple exposures due to pleiotropic or mediating effects or both [15]. By applying 

multivariable MR, we are able to use multiple genetic instruments to estimate direct effects of both 

desaturases simultaneously in one model [15], providing novel insights into causal inference of 

desaturase activity and cardiometabolic outcomes (see Figure 1b). 

Figure 1. (a) Conversion of linoleic acid andα-linolenic acid to longer-chain n-6- and n-3 polyunsaturated
fatty acids by the action of ∆6-desaturase, ∆5-desaturase and elongases. Adapted from Kröger et al. [1].
(b) Hypothesized relationship between genetic variants, ∆6-desaturase (D6D), ∆5-Desaturase (D5D)
and the investigated outcomes type 2 diabetes and coronary artery disease. The arrow from D6D to D5D
relies on the biologically underlying mechanisms as depicted in panel a; however, methodologically
in the multivariable MR the arrow could be in any direction. Confounders are omitted from this
figure for clarity. Pleiotropic effects by pathways other than D6D or D5D are not considered in this
multivariable MR.

Prospective cohort studies used product-to-precursor ratios of fatty acids measured in blood fractions,
representing surrogate markers of estimated liver desaturase activity [1]. Overall, study findings support
that a higher estimated D6D activity (ratio of 18:3n-6/18:2n-6) is related to an increased type 2 diabetes
(T2DM) risk, while the contrary is the case for estimated D5D activity (20:4n-6/20:3n-6) [1–3]. Furthermore,
higher D6D activity is linked to higher cardiovascular mortality [4] and higher estimated D5D activity to
lower cardiovascular mortality and coronary heart disease (CHD) risk [4,5].

To investigate causal relationships between risk factors and disease outcomes, genetic variants
can be used as instrumental variables in Mendelian randomization (MR). The principle is based on
Mendels’s second law of inheritance, stating that the assignment of alleles is random during meiosis [6].

In humans, D5D and D6D are encoded by FADS1 and FADS2 genes [7] and SNPs in that gene
region have been reliably linked to desaturase activities [1,8,9] and cardiometabolic traits [10,11].
Recent MR studies have linked single fatty acids to T2DM risk [12] and CVD risk [13]. However,
they are limited by the high correlation between the single fatty acids and hence individual effects could
largely not be elucidated. A previous MR study found a direct relation for D6D activity and tended to
support an inverse relation for D5D activity using a FADS1-SNP as genetic instrument [14]. However,
the FADS-gene cluster is characterized by high linkage disequilibrium (LD) where all instruments
from FADS1 are in LD with FADS2 variants [1,7]. Therefore, it is hard to select suitable genetic
instruments for MR to disentangle the causal nature of each desaturase on the respective outcome
without the limitation of confounding by LD. Furthermore, genetic instruments might associate with
multiple exposures due to pleiotropic or mediating effects or both [15]. By applying multivariable
MR, we are able to use multiple genetic instruments to estimate direct effects of both desaturases
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simultaneously in one model [15], providing novel insights into causal inference of desaturase activity
and cardiometabolic outcomes (see Figure 1b).

In contrast to previous MR studies on PUFA metabolism, we aim to estimate the causal effects
of D6D and D5D activity, instead of single fatty acids, on the risk of T2DM and CAD. To this end,
we selected suitable genetic instruments in genome-wide association analyses on estimated D6D
and D5D activities. Disease associations were drawn from large public genome-wide association
studies (GWAS) on T2DM and coronary artery disease (CAD). In univariable and multivariable
two-sample MR studies we estimated the causal effects of D6D and D5D activity on T2DM risk and
CAD risk, accounting for interrelations between single desaturases and hence single fatty acids. Finally,
we address the phenomenon of confounding by LD within the FADS gene cluster, which was not or
not sufficiently accounted for in previous MR studies.

2. Materials and Methods

2.1. Study Population

2.1.1. Individual-Level Data from EPIC-Potsdam

The European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study consists
of 27,548 participants recruited between 1994 and 1998 from the general population in Potsdam and
surroundings [16]. We used a random sample within the EPIC-Potsdam study, described in detail
previously [17]. Briefly, a sub-cohort of 2500 individuals was randomly selected from 26,444 participants
who provided blood samples at baseline. Participants with prevalent diabetes, diabetes medication at
baseline or prevalent myocardial infarction were excluded. Further exclusion criteria were missing
genetic data and missing or implausible data on fatty acid measurements, leaving 1853 individuals for
analyses in the sub-cohort (Supplemental Figure S1).

All participants provided written informed consent. The study was approved by the ethics
committee of the State of Brandenburg, Germany. All procedures were in accordance with the ethical
standards of the institutional and/or national research committee and with the 1964 Helsinki declaration
and its later amendments or comparable ethical standards.

2.1.2. Summary-Level Data from DIAGRAM and CARDIoGRAM

For outcome associations, we used summary-level data obtained from the DIAbetes Genetics
Replication And Meta-analysis (DIAGRAM) consortium without BMI adjustment [18] and from
meta-analysis of UK Biobank SOFT CAD GWAS with Coronary ARtery DIsease Genome wide
Replication and Meta-analysis (CARDIoGRAM) plus The Coronary Artery Disease (C4D) Genetics
(CARDIoGRAMplusC4D) 1000 Genomes-based GWAS and the Myocardial Infarction Genetics and
CARDIoGRAM Exome [19]. The SOFT CAD phenotype incorporates self-reported angina or other
evidence of chronic coronary heart disease [19].

2.2. DNA-Extraction, Genotyping and Quality Control

The DNA was extracted from buffy coats using the chemagic DNA Buffy Coat Kit on a Chemagic
Magnetic Separation Module I (PerkinElmer chemagen Technologies, Baesweiler, Germany) according
to the manufacturer’s manual. Samples from EPIC-Potsdam participants were genotyped with three
different genotyping arrays: Human660W-Quad_v1_A (n = 355), HumanCoreExome-12v1-0_B (n = 622)
and Illumina Infinium OmniExpressExome-8v1-3_A DNA Analysis BeadChip (n = 1349). Genotyping
and quality control of the Human660W-Quad_v1_A and HumanCoreExome-12v1-0_B chips was
described elsewhere [20]. Genotyping using the Illumina Infinium OmniExpressExome-8v1-3_A DNA
Analysis BeadChip was performed in the Life and Brain Center in Bonn, Germany. The DNA was
processed according to the manufacturer’s instruction using an automatized, LIMS controlled workflow
and the arrays were finally scanned using an Illumina iScan bead arrays reader. Genotype calling
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and quality control of the samples were carried out jointly in all 1349 participants using Illumina’s
GenomeStudio v2011.1 software suite. For rare variants, zCall (threshold = 7) was applied [21].
Exclusions were due to low call rate, discordant sex information, related or duplicated individuals and
divergent ancestry (deviating from CEU) [22–24], leaving a sample size of 1292 participants genotyped
with the Illumina Infinium OmniExpressExome-8v1-3_A DNA Analysis BeadChip. Overall, we had
data for n = 2269 samples available. Phasing and imputation were conducted using the Michigan
Imputation Service [25]. The Haplotype Reference Consortium (release 1.1) served as reference
panel [26]. Pre-phasing was applied using Eagle2 [27]. Imputation was carried out in four separate
datasets (one for each chip or two for the HumanCoreExome-12v1-0_B chip) using minimac3 [25].
Imputed files were merged using bcftools [28], keeping the minimal R2 score. Afterwards,
SNPs were filtered by R2 keeping those with values bigger than 0.6. Pre- and post-imputation
tools (HRC-1000G-check-bim.v4.2.9, icv.1.0.5) for checking data quality were applied [29].

2.3. Determination of Desaturase Activities

Thirty milliliters of blood were obtained from EPIC-Potsdam participants during baseline
examination. Plasma, serum, erythrocytes and buffy coat were stored at −80 ◦C. The erythrocyte
membrane fatty acids were analyzed between February and June 2008. Thirty-two fatty acids were
determined by gas chromatography and expressed as the percentage of total fatty acids present
in the chromatogram [14]. Estimated D5D activity was determined as the ratio arachidonic acid
(AA)/dihomo-γ-linolenic acid (DGLA) (20:4n-6/20:3n-6), and D6D activity as the ratio γ-linolenic acid
(GLA)/linoleic acid (LA) (18:3n-6/18:2n-6), as done previously [1].

2.4. Statistical Analysis

We used the Statistical Analysis System (SAS) Enterprise Guide 7.1 with SAS version 9.4
(SAS Institute Inc., Cary, NC, USA) for data management and data preparation. For data filtering we
used QCtool v1.4 and for GWAS we used SNPtest v2.5.2 [30]. We performed Mendelian Randomization
analyses with R (version 3.5.2 (2018-12-20)) using the TwoSampleMR (v0.4.26) [31], the Mendelian
Randomization (v0.4.1 and v0.4.2) [32], Radial MR (0.4) [33] and MVMR (0.2) [34] R packages.
To visualize LD of the FADS-gene region and genetic instruments we utilized Plink v1.07, plink v1.90 [35]
and Haploview v4.1 [36].

2.4.1. Selecting Genetic Instruments in Genome-Wide Association Study

SNPs were filtered by SNP missing-rate (removed ≥ 0.05), minor allele frequency (MAF) (removed
out of interval [0.05–0.5]) and Hardy–Weinberg equilibrium (removed -log10(p-value) ≥3). Genetic
instruments were obtained from GWAS on natural log-transformed and standardized (mean = 0;
SD = 1) estimated D5D and D6D using n~5,340,003 markers as exposures. We considered a p-value
as genome-wide significant at p < 9.36 × 10−9 [0.05/5,340,003]. Suggestive significance threshold was
defined as p < 1.00 × 10−5. We assumed an additive genetic model, adjusted for age at recruitment and
sex. Variants were mapped to Ensembl annotation version 87 (GRCh37) [37] and we used the Ensembl
Variant Effect Predictor for annotation [38].

2.4.2. Mendelian Randomization

We conducted univariable two-sample MR studies using single desaturases as exposures on
cardiometabolic outcomes. Effect estimates of the association between genetic instruments and
desaturases were obtained from EPIC-Potsdam data and effect estimates of the SNP-T2DM and
SNP-CAD associations were used from public summary GWAS data on T2DM [18] and CAD [19].
We selected gene-wide significant (p < [0.05/169]) instrumental variables and performed clumping
according to LD. Therefore, SNPs within a window of 10,000 kb and being in LD as defined by
R2
≥ 0.3 were removed (Figure 2). The SNP with the lowest p-value was retained. Within the MR

analysis we accounted for their correlation among each other estimated in 502 European samples
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from 1000 Genomes phase 3 [39]. We repeated the analysis by additionally including independent
genome-wide significant hits (p < 9.36 × 10−9) that were not located within the FADS gene region (with
a clumping-threshold of 0.001).Nutrients 2020, 12, x FOR PEER REVIEW 5 of 17 
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Figure 2. Flow chart of inclusion and exclusion of SNPs into the analysis. First, we restricted to
the set of SNPs that were located within the FADS gene region (Chr 11: 61560452–61659523). Next,
we clumped the GWAS results separately for D6D and D5D to identify independent SNPs for both
traits for univariable MR approach. Finally, we clumped a combined list of SNPs for both traits for
multivariable MR. This resulted in ten SNPs for D5D and eight SNPs for D6D at gene-wide significance
level p < 2.96 × 10−4. There were eight SNPs that associated with both desaturases. All SNPs
were included in the analysis. Additionally, two SNPs at genome-wide significance level for D5D
were included.

Data were harmonized for the direction of effects between exposure and outcome associations and
palindromic SNPs were excluded. We used an inverse variance weighted (IVW) meta-analysis of SNP
specific Wald ratios (SNP-outcome estimate divided by SNP-exposure estimate) using random effects,
to obtain causal estimates for the desaturase activities on T2DM or CAD risk. MR-Egger method [40]
was used in sensitivity analyses. Heterogeneity was assessed by the Cochran’s Q statistic and we
performed RadialMR [33] to identify outliers with the largest contribution to the Q statistic. Outlying
genetic instruments were removed and the data were re-analyzed. Radial MR analysis was conducted
using second order weights and an α level of 0.05 or 0.1.

We applied a multivariable MR approach [15] combining both desaturases (see Figure 1b). First,
we selected all gene-wide significant instruments for each estimated desaturase activity. This combined
list was again pruned with R2 < 0.3 leaving ten independent instruments. We obtained the SNP
effects on the other desaturase activity and vice versa. Extraction of the outcome GWAS results
and data harmonization was conducted as described for the univariable MR. We applied the IVW
multivariable MR performing multivariable weighted linear regression with the intercept term set
to zero and accounting for the correlation structure among the ten FADS variants. We additionally
included genome-wide significant hits (p < 9.36 × 10−9) that were not located within the FADS gene
region. As sensitivity analyses, we used multivariable MR-Egger for two-sample summary data [41].
We calculated F-statistics to evaluate the presence of weak instruments within the multivariable
MR analysis and adjusted for those by minimizing the Q-statistic allowing for heterogeneity using
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“qhet_mvmr” function with 1000 bootstrap iterations from the MVMR package [34]. Phenotypic
correlation was obtained from EPIC-Potsdam data. To account for horizontal pleiotropic effects by other
pathways than considered in the multivariable approach, we used Causal Analysis Using Summary
Effect estimates (CAUSE) [42].

2.4.3. Investigation of LD within the FADS-Gene Cluster

To exclude possibly confounding by LD, we restricted the MR analysis for D6D on variants that
are located in FADS2 only and are not in LD (R2 < 0.45) with SNPs located in FADS1-FADS2 LD Block.
The selection was based on a LD plot of all 143 D6D GWAS Hits available within the FADS-gene region
in EPIC-Potsdam. For D5D, we included only genome-wide hits outside from FADS due to the strong
LD of FADS1 variants with variants in FADS2.

3. Results

3.1. Selection of Genetic Instruments

GWAS were conducted in EPIC-Potsdam with 1853 participants. Baseline characteristics are
illustrated in Table 1.

Table 1. Baseline characteristics, EPIC-Potsdam random sample.

EPIC-Potsdam

N 1853

Sex (% men) 37.1

Age in years; median (interquartile range) 49.0 (15.5)

Waist circumference in cm; mean (SD) 85.3 (12.6)

∆6-desaturase activity (18:3n-6/18:2n-6);
median (interquartile range) 0.005 (0.003)

∆5-desaturase activity (20:4n-6/20:3n-6);
mean (SD) 8.80 (1.91)

Lipid medication (%) 3.72

SD, standard deviation.

Genetic variants within the FADS gene region were strongly associated with estimated D6D
(Supplemental Table S1, Supplemental Figure S2) and D5D activity (Supplemental Table S2,
Supplemental Figure S2). For D6D, we identified 143 FADS-gene-wide significant (p < [0.05/169])
variants of which after LD clumping seven independent variants (R2 < 0.3) remained (Supplemental
Table S1, Supplemental Figure S3). All of them were available within DIAGRAM and one (rs174607)
could not be found within CAD outcome data. However, this SNP (rs174607) was labeled as palindromic
variant and was therefore excluded also from the diabetes analysis (Supplemental Table S2).

Regarding D5D, 160 SNPs showed FADS-gene-wide significance (p < [0.05/169]) resulting in
11 independent variants (R2 < 0.3) (Supplemental Table S2, Supplemental Figure S3). All of them were
available within DIAGRAM and one (rs174607) was not available for CAD outcome data. Two variants
(rs174607, rs174565) were excluded from the diabetes analysis because of being palindromic and are
therefore not presented in Supplemental Table S2.

Furthermore, our GWAS identified two novel loci associated with D5D activity at genome-wide
significance level: an intronic variant (rs2608073) at chromosome 3 within the RP11-372E1.4 locus and
an intronic variant (rs11644601) at the RRN3; PDXDC1 locus at chromosome 16 (Supplemental Table S2
and Supplemental Figure S2).
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3.2. Mendelian Randomization

3.2.1. Univariable Mendelian Randomization

Causal Estimates for Desaturase Activities on Risk of Type 2 Diabetes

The IVW estimate indicated a positive total effect of D6D (odds ratio (OR) [95% confidence interval
(CI)] = 1.08 [1.06–1.09]) on T2DM (Table 2, Supplemental Figure S4). The results showed no indication
of heterogeneity between the SNPs (Cochran’s Q value = 7.17, p = 0.21). The MR-Egger regression
showed a positive intercept 0.012 (SE = 0.009) p = 0.185) and OR (1.04 [0.98–1.10]) (Supplemental
Table S3), not supporting directional horizontal pleiotropy with regards to T2DM.

For D5D, we found a positive total effect (OR = 1.03 [1.01–1.04]) on T2DM (Table 2, Supplemental
Figure S5). There was evidence for heterogeneity among the SNPs (Cochran’s Q value = 28.25,
p = 0.0004). The MR-Egger regression showed a positive intercept (0.011 (SE = 0.011), p = 0.306) and
no association (OR = 1.00 [0.98–1.05]) (Supplemental Table S3), not indicating presence of directional
horizontal pleiotropy. Based on the Radial MR, we identified two outlying SNPs (rs174602, rs508768) for
the D5D—T2DM analysis (Supplemental Figure S6). After outlier removal, inverse variance weighted
and MR-Egger effect estimates were largely unchanged (Supplemental Table S4; Supplemental Figure
S7); however, heterogeneity was not present anymore (Cochran’s Q value = 6.55, p = 0.36).

Causal Estimates for Desaturase Activities on Risk of Coronary Artery Disease

We found evidence for a causal total effect of D6D (OR = 1.06 [1.02–1.11]) on the risk of CAD
(Table 2, Supplemental Figure S4) with no indication of heterogeneity. The MR-Egger estimates were
lower and not significant anymore compared to the IVW estimates (Supplemental Table S3). For D5D,
we found a positive total effect (OR = 1.03 [1.01–1.05]) on the risk of CAD (Table 2, Supplemental
Figure S5) with no indication of heterogeneity. However, MR-Egger estimates were lower than the
ones from the IVW method and not significant. Furthermore, the MR-Egger test indicated directional
horizontal pleiotropy for D5D and CAD, pointing to a biased IVW estimate (Supplemental Table S3).
When we excluded one possibly outlying SNP (rs61897792) the indication for directional horizontal
pleiotropic effects for D5D and CAD disappeared (Supplemental Table S5; Supplemental Figure S8).

Sensitivity Analyses

In sensitivity analyses, we additionally included genome-wide significant instruments
(p < 9.36 × 10−9) for D5D. For both endpoints, there was evidence for heterogeneity between the
SNPs (T2DM: Cochran’s Q value = 31.15, p = 0.0006; CAD: Cochran’s Q value = 20.46, p = 0.03).
The indication for directional horizontal pleiotropy with regards to CAD remained (Supplemental
Table S3). The observed positive associations for T2DM (OR = 1.04 [1.02–1.06]) and CAD (OR = 1.03
[1.01–1.06]) did not change (Table 2, Supplemental Figure S5). Exclusion of the previous two outlying
SNPs (rs174602, rs508768) influenced the IVW effect estimate for T2DM only marginally (Supplemental
Table S4; Supplemental Figures S6 and S7). Exclusion of one possibly outlying SNP (rs61897792) did
not change the IVW effect estimates for CAD, but weakened the indication for directional horizontal
pleiotropic effects with regards to D5D and CAD (Supplemental Table S5; Supplemental Figure S8).
The CAUSE method suggested indication for causal association for both desaturases with T2DM and
CAD (Supplemental Figures S9–S12).
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Table 2. Total and direct effects of estimated desaturase activities and risk of type 2 diabetes and coronary artery disease.

T2DM CAD

Method N (SNPs) * OR (95% CI) p-Value N (SNPs) † OR (95% CI) p-Value

D6D instruments from FADS IVW 6 1.08
(1.06–1.09) <0.001 6 1.06

(1.02–1.11) 0.008

MVIVW 10 1.03
(0.94–1.12) 0.528 10 1.00

(0.93–1.07) 0.971

MVIVW ‡ 10 1.03
(0.99–1.16) 10 1.01

(0.91–1.12)

instruments from FADS and genome-wide hits MVIVW 12 1.03
(0.95–1.10) 0.514 12 1.00

(0.95–1.06) 0.907

MVIVW ‡ 12 1.01
(0.94–1.10) 12 1.00

(0.96–1.15)

D5D instruments from FADS IVW 9 1.03
(1.01–1.04) <0.001 9 1.03

(1.01–1.05) 0.017

MVIVW 10 1.00
(0.96–1.04) 0.824 10 1.04

(1.01–1.08) 0.021

MVIVW ‡ 10 1.02
(0.98–1.04) 10 1.04

(1.01–1.15)

instruments from FADS and genome-wide hits IVW 11 1.04
(1.02–1.06) <0.001 11 1.03

(1.01–1.06) 0.017

MVIVW 12 1.00
(0.96–1.03) 0.845 12 1.03

(0.99–1.06) 0.108

MVIVW ‡ 12 1.02
(0.99–1.05) 12 1.04

(0.99–1.07)

CAD, coronary artery disease; CI, confidence interval; D5D, delta-5-desaturase; D6D, delta-6-desaturase; IVW, inverse variance weighted method; MVIVW, multivariable inverse variance
weighted method; OR, Odds ratio; T2DM, type 2 diabetes. * Of the 11/7 SNPs associated with D5D/D6D, 11/7 were available in the GWAS of T2DM [18]. After harmonization and removal
of palindromic SNPs with intermediate allele frequencies, 9/6 SNPs were included in the MR analysis on T2DM. For MVMR a combined set of 10 SNPs was used. † Of the 11/7 SNPs
associated with D5D/D6D, 10/6 were available in the GWAS of CAD [19]. After harmonization and removal of palindromic SNPs with intermediate allele frequencies, 9/6 SNPs were
included in the MR analysis on CAD. For MVMR a combined set of 10 SNPs was used. ‡ adjusting for weak instruments in MVMR, but not for correlation structure between instruments.
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3.2.2. Multivariable Mendelian Randomization

Estimates for Causal Direct Effects of Desaturase Activities on Risk of Type 2 Diabetes and Coronary
Artery Disease

All independent FADS-gene-wide significant variants (p < [0.05/169]) from both desaturases were
combined leading to ten variants of which all were available within the outcome GWAS (Supplemental
Table S6). In the multivariable MR approach, we could not precisely allocate the causal effect on T2DM
to one or the other desaturase. While for D6D, we still found a small not significant direct effect on the
risk of T2DM (OR = 1.03 [0.94–1.12]); for D5D, there was no direct causal effect (OR = 1.00 [0.96–1.04]).
For CAD, the total causal effect of D6D was fully attenuated in multivariable MR (OR = 1.00 [0.93–1.07])
(Table 2); however, a significant direct causal effect of D5D on the risk of CAD could be observed
(OR = 1.04 [1.01–1.08]) (Table 2). Though, we had indication for weak instruments with F-statistic < 10
(D5D = 9.91, D6D = 2.23). We repeated the multivariable MR by accounting for weak instruments and
received comparable direct effect estimate for D5D (OR = 1.04 [1.01–1.15]) (Table 2).

Sensitivity Analyses

Additional inclusion of genome-wide significant instruments did not change the observation
of no significant direct causal effect of D6D on the investigated outcomes while the direct effect of
D5D on CAD was slightly attenuated (OR = 1.03 [0.99–1.06]). However, the F-statistics were higher
(D5D = 14.41, D6D = 3.06). When we accounted for weak instruments, the estimates did not largely
change (Table 2).

The multivariable MR-Egger regression showed intercepts that were close to zero, not indicating
presence of directional horizontal pleiotropy (Supplemental Table S7). Exclusion of outlying instruments
(rs174602, rs508768) did not markedly influence estimates, however, they lost precision (e.g., direct
effect of D5D on CAD using only FADS-instruments: 1.03 [0.97–1.09], p-value = 0.336) (Supplemental
Table S8). Exclusion of an additional outlying instrument (rs61897792) did not further change effect
estimates (Supplemental Table S9).

3.2.3. Investigation of Confounding by Linkage Disequilibrium

Finally, when we excluded instruments from FADS2 that are in LD with FADS1-SNPs to rule out
confounding by LD (Supplemental Figure S13), we observed considerably stronger positive total effect
of D6D on T2DM (1.12 [1.06–1.18]) and CAD (1.12 [1.04–1.21]) (Table 3). While the effect estimate was
comparable in multivariable MR for CAD, these analyses lost precision and no significant direct effects
were observed. When we excluded one SNP (rs174602) from the FADS2 instruments that was reported
to be associated with FADS1 expression [43], the results did not change (Supplemental Table S10)
When we included only genome-wide significant hits outside from FADS for D5D, we still observed
positive total effect on T2DM (1.04 [0.99–1.08]) and CAD (1.04 [0.98–1.11]), although not significant.
Multivariable MR did not indicate direct effects of D5D on risk of T2DM or CAD (Table 3).
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Table 3. Total and direct effects of estimated desaturase activities and risk of type 2 diabetes and coronary artery disease accounting for confounding by LD.

T2DM CAD

Method N (SNPs) OR (95% CI) p-Value Intercept (SE),
p-Value N (SNPs) OR (95% CI) p-Value Intercept (SE),

p-Value

D6D MR-Egger 3 † 0.87
(0.55–1.37) 0.538 0.050 (0.045), 0.267 3 † 1.26

(0.21–7.70) 0.804 −0.022 (0.176), 0.902

IVW * 3 † 1.12
(1.06–1.18) <0.001 3 † 1.12

(1.04–1.21) 0.002

MVIVW * 3 † 0.74
(0.34–1.62) 0.453 3 † 1.12

(0.34–3.69) 0.850

D5D IVW * 2 ‡ 1.04
(0.99–1.08) 0.087 2 ‡ 1.04

(0.98–1.11) 0.236

MVIVW * 2 ‡ 1.01
(0.95–1.07) 0.790 2 ‡ 1.00

(0.93–1.08) 0.996

MVIVW * 3 † 1.29
(0.75–2.21) 0.362 3 † 1.00

(0.48–2.09) 1.000

* Fixed effect model; † including only FADS1-independent (R2 < 0.45) FADS2 variants (rs174602, rs498793, rs7118175); ‡ including only genome-wide hits for D5D (rs2608073, rs11644601).
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4. Discussion

Within this study, we applied a two-sample MR approach to investigate causal effects of estimated
desaturase activities on the risk of T2DM and CAD. Our univariable MR indicated that PUFA-generating
desaturases are causally involved in the development of both, T2DM and CAD. For D6D these effects
became more prominent if we accounted for confounding by LD in our genetic instruments. However,
due to low precision, attribution of the direct causal effect on T2DM to D6D activity remains suggestive.
For CAD, results from the multivariable MR suggested a direct effect only for D5D activity, but we
were not able to exclude confounding by LD. It was therefore not possible to disentangle the causal
impact of the single desaturases on CAD risk.

4.1. D6D and Risk of Type 2 Diabetes and Coronary Artery Disease

The D6D catalyzes the desaturation of linoleic acid (LA) that shows inverse association with
cardiovascular disease mortality [44] and cardiovascular events [45]. The product of the D6D,γ-linolenic
acid (GLA) and higher D6D activity itself are positively associated with T2DM [2,14]. Our results
from univariable MR are in line with a previous MR study reporting that a genetically determined
high D6D activity [14] predicted higher T2DM risk. Also, low levels of LA, representing a D6D
substrate, were associated with increased risk of T2DM in recent MR analysis [12]. However, selecting
instruments for D6D is affected by the strong LD in the FADS gene cluster, where one LD block spans
FADS1 and parts of the FADS2 gene [1]. Therefore, genetic instruments for D6D (from FADS2) cannot
be easily separated from those for D5D (FADS1).

We tried to overcome this problem of confounding by LD for D6D by restricting the selected
instruments to those from the FADS2 gene that are not in LD with variants from FADS1. This sensitivity
analysis revealed stronger total effects of D6D on both T2DM and CAD, which further supports a causal
role of D6D. Still, due to the considerable loss of precision in the multivariable MR the allocation of the
T2DM-risk augmenting effect of D6D activity exclusively to those PUFAs being substrate or product
of D6D activity (LA and GLA) remains relatively uncertain. More likely, downstream formation of
PUFAs from GLA mediate an important part of the total effect of D6D.

4.2. D5D and Risk of Type 2 Diabetes and Coronary Artery Disease

Regarding D5D, alignment of our results from univariable MR with non-genetic observational
studies is more complex. D5D, catalyzes the conversion of DGLA to arachidonic acid (AA).
Our univariable MR suggested links of higher D5D with higher risk of T2DM. This is in line
with a recent MR study showing higher T2DM risk with higher levels of AA [12]. In contrast to
that, observational studies relate higher estimated D5D activity and higher AA levels to lower T2DM
risk [2,14]. A direct link of D5D with T2DM was, however, not observable in multivariable MR. Also,
instruments for D5D (FADS1) are largely confounded by LD with FADS2 variants and we were not able
to overcome this LD problem by using instruments outside the FADS region. Therefore, our finding of
a higher T2DM risk among participants with genetically high D5D activity in univariable MR reflects
most likely the genetic linkage with D6D rather than an independent effect.

In contrast to T2DM, the observational evidence that links higher estimated D5D activity to lower
cardiovascular mortality and CHD risk is rather limited [4,5], where an inverse association of high
D5D activity was limited to participants who were homozygous for the major allele (AA genotype;
rs174547) [5]. A previous MR on fatty acids showed a positive effect of higher AA levels on CVD
risk [13], although this study did not evaluate fatty acid ratios as estimate of D5D activity. While our
univariable MR analysis supports a total causal effect of D5D activity on CAD, interpreting these
findings as reliable evidence for causal effects is limited. We had significant MR-Eggers test, indicating
that directional (unbalanced) horizontal pleiotropy was present or that the InSIDE assumption was
violated or both [46]. We did not identify outliers, that could explain this finding. Furthermore,
although we identified a significant direct effect of D5D on CAD when using only FADS-instruments,



Nutrients 2020, 12, 2261 12 of 17

this result was sensitive to inclusion of genome-wide instruments and outlier exclusions. As pointed
out above, it is virtually impossible to account for confounding by LD. Restricting our analysis to
variants outside of the FADS-gene region hampered precision of the D5D estimates to an extent that
made them uninformative. Hence, we do not consider effect of D5D on CAD risk to be robust and will
therefore restrain from causal interpretation.

4.3. Biological Mechanisms

PUFAs play a crucial role in cell membrane fluidity and thereby influence insulin receptor binding
affinity and endothelial function [47] which might represent one mechanism how altered desaturation
of fatty acids influences the risks of T2DM [48] and CAD [49]. Additionally, PUFAs affect transcription
factors such as sterol regulatory element binding protein 1 and peroxisome proliferators activating
receptors regulating genes involved in control of lipid flux into and out of the liver, which is important
in terms of reducing hepatic lipid accumulation and hence hepatic insulin resistance [50]. Furthermore,
PUFAs are substrate for the formation of various lipid-related metabolites, e.g., eicosanoids, leukotriens,
prostaglandins, thromboxanes, lipoxins, endo-cannabinoids, or resolvins, which themselves are highly
bioactive [47]. AA-related eicosanoids may increase vasoconstriction and platelet activation and
aggregation, promoting atherosclerotic plaque formation as pathological processes in the development
of CAD [51].

4.4. Strengths and Limitations

By using instruments from the FADS region, we used well established genetic candidates from
the genic region of the investigated exposures that explain up to ~30 % (rs174555 and D5D) of the
variance in the traits (R2 ranging from 5 to 10% for D6D and 1 to 30% for D5D). Although we had
indication for weak instruments within the multivariable MR, we retrieved comparable estimates when
we accounted for that. Besides genetic candidates, we also used genome-wide screen and identified
two novel hits for D5D that have not been reported by previous GWAS on estimated desaturase
activities [8,9]. Although our genome-wide significance cut-off might be too strict, we would not have
found additional hits using the common threshold of p < 5 × 10−8. Furthermore, we wanted to be
more conservative, as we did not replicate those findings in an independent population. Nevertheless,
our MR results incorporating those genome-wide hits were comparable to the main analysis when
using only FADS variants.

We minimized potential incorrect causal inference due to horizontal pleiotropy by restricting
genetic instruments on those that plausibly act directly on the traits as they were located in the coding
genes [52]. Furthermore, we corrected for correlated and uncorrelated horizontal pleiotropy using
CAUSE method and still retained indication for causal effect of both desaturases and cardiometabolic
outcomes. Additionally, there must be no LD with other variants that might influence the expression or
activity of a different protein as this can reintroduce confounding by LD [52]. Similar to the pleiotropy
situation, this would violate key assumptions of MR [50]. We addressed confounding by LD by
accounting for the LD structure in the main analysis and by restricting genetic instruments to those
that are not in LD with instruments for the respective other desaturase. Still, there might be criticism
as the two instruments (rs498793, rs7118175) for D6D used in sensitivity analyses showed significant
associations with D5D levels and might therefore be considered as not independent from FADS1;
however, we did not identify genome-wide significant instruments for D6D outside of FADS which
could have been used instead.

One limitation of our analysis lies in the exclusion of prevalent cases in the EPIC-Potsdam sample
which was used for instrument selection and might have weakened the exposure betas. However,
compared to the overall study sample this number was small and we aimed to exclude bias from
reverse confounding due to the fact that prevalent cases might have different desaturase activity [52].
Also, our multivariable MR might be underpowered; however, we did no power calculation, as this
is—to our knowledge—only developed for continuous outcomes [53]. Furthermore, we did not directly
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measure desaturase activities. In humans, D6D and D5D are mainly expressed in the liver [54,55].
However, direct measurement of liver desaturase activity would require liver biopsies which is not
possible in population-based settings. Therefore, product-to-precursor ratios of fatty acids measured
in blood fractions represent well-established surrogate markers of estimated liver desaturase activity
in epidemiological research [1,56]. Another limitation refers to the selection of the outcome GWAS
for CAD. Ideally, the exposure and outcome data should arise from the same population in terms of
ancestry. For T2DM, this was fulfilled; however, for CAD, also Asian individuals contributed to the
meta-analysis [19]. Nevertheless, this should not increase the likelihood of finding an association when
there is none [57], hence our results on D6D and CAD might still be informative in terms of effect
directions of causality [31].

5. Conclusions

In conclusion, our results suggest that D6D is causally linked to cardiometabolic risk. However,
the effect is likely not directly due to its substrate or product fatty acids, but rather due to the
downstream production of fatty acids (DGLA and AA) and their products resulting from high D6D
activity. For D5D, our MR approach suggests a causal risk-increasing effect for T2DM and CAD risk;
however, we were not able to fully rule out confounding by LD. Interventions that affect desaturase
activities in PUFA metabolism may have an impact on the pathogenesis of cardiometabolic diseases.
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