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Abstract: “Total” folate in blood has usually been measured to evaluate the folate status of
pregnant women. However, folate is composed of many metabolites. The main substrate is
5-methyltetrahydrofolate (5-MTHF), with folic acid (FA) representing a very small component as an
unmetabolized species in blood. We longitudinally evaluated 5-MTHF, FA and total homocysteine
in maternal and cord blood from Japanese pregnant women. Subjects were 146 pregnant women
who participated in the Chiba study of Mother and Child Health (C-MACH) prospective cohort
study. Sera were obtained in early and late pregnancy, at delivery, and from cord blood. Species
levels were measured by isotope-dilution mass spectrometry. Both 5-MTHF and FA levels were
lower than reported levels from pregnant women in populations from countries with mandatory
FA fortification. As gestational age progressed, serum 5-MTHF levels decreased, whereas serum FA
levels were slightly reduced only at delivery compared to early pregnancy. A significant negative
association between serum 5-MTHF and total homocysteine was shown at all examined times, but no
associations with FA were evident. At delivery, cord 5-MTHF was significantly higher than maternal
levels, while FA again showed no significant correlation. These results suggest that 5-MTHF is
actively transported to the fetus through placental transporters and may reflect folate status during
pregnancy as a physiologically important species.
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1. Introduction

Folate is an essential micronutrient that mediates the transfer of one-carbon units and is involved
in the biosynthesis of the thymidylates and purines that constitute nucleic acids, in the metabolism of
some amino acids, and in methylation reactions of DNA, histone proteins and neurotransmitters [1].
Folate is essential for cell division, and is thus particularly important for fetal growth and the
development of the uteroplacental organs, and folate requirements thus increase during pregnancy [2,3].
Maternal folate deficiency is associated with elevated homocysteine levels in blood and adverse
pregnancy outcomes, such as congenital disorders, including neural tube defects (NTD) and pregnancy
complications [1,4–6]. Folic acid (FA) is used as a supplement in the mandatory or voluntary fortification
of certain foods. The FA contained in supplements and fortified foods is metabolized in the body
to 5-methyltetrahydrofolate (5-MTHF), through the folate metabolic pathway [7]. In the cytoplasm,
5-MTHF supplies a methyl group to the homocysteine remethylation reaction for methionine synthesis,
and this reaction acts to lower blood homocysteine levels [8].

A study of men and women aged between 29 and 86 years in the United States found that blood
levels of 5-MTHF and FA were higher after fortification than before this measure was introduced [9].
Intervention studies have shown that when healthy adults continued to take supplements containing
400 µg/day of FA or FA-fortified foods for 5–14 weeks, FA was detected as an unmetabolized species
in the blood. This is attributed to dihydrofolate reductase (DHFR), the rate-limiting enzyme in folate
metabolism for reducing dihydrofolate to tetrahydrofolate, exceeding its capacity to metabolize
FA [10–13]. One concern is that blood FA may have negative effects on the fetus [14,15]. Previous
studies have not been consistent in the reported effects of excessive FA intake and the effects are
unclear. [16]. In these studies, “total” folate in blood was measured when examining folate status in
pregnant women, while blood FA levels were not measured [17]. Different folate species, such as FA
and 5-MTHF, must therefore be measured separately.

Liquid chromatography-tandem mass spectrometry [18] (LC-MS/MS) is able to separately evaluate
blood FA and 5-MTHF levels. In epidemiological studies of pregnant women, most reports detected
FA in maternal or cord blood [19–24]. Studies of folate status in pregnant women in the United States
and Germany have shown that serum or plasma 5-MTHF levels were higher in cord blood than in
maternal blood [19,25], and maternal blood 5-MTHF levels were shown to correlate positively with
cord blood [25], and showed a positive correlation between maternal FA levels and cord blood FA
levels [22].

A study of folate status and lifestyles among pregnant women in the United States showed a
negative association between 5-MTHF levels and smoking habits during pregnancy, and a positive
association with folate intake (dietary folate equivalent µg/day). In a report investigating the association
between folate status and preterm delivery in the United States, maternal 5-MTHF levels were negatively
associated with a high incidence of preterm delivery [20]. However, these reports only conducted
measurements at one time point and were not monitored longitudinally during pregnancy. Previous
studies have thus been insufficient to elucidate the dynamics of the molecular species in folate
metabolism during pregnancy. Furthermore, FA fortification of cereals is not mandatory in Japan,
and the recommendation for folate intake according to Japanese Dietary Reference Intakes (DRIs) is
lower than in Western countries [26]. Since the folate measurement data reported by other countries
cannot be applied to Japanese populations, the analysis of blood FA and 5-MTHF levels in Japanese
subjects will be useful for deciding folate nutritional guidelines in the future.

In this study, we aimed to measure serum 5-MTHF, FA and total homocysteine in Japanese
pregnant women, using LC-MS/MS. Additionally, we investigate the longitudinal distribution of
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the aforementioned species and their changes with gestational age, associations with homocysteine,
and relationship to maternal blood and cord blood.

2. Materials and Methods

2.1. Birth Cohort Study

This study was based on the Chiba study of Mother and Child Health (C-MACH), conducted at
the Center for Preventive Medical Sciences, Chiba University and the Research Institute for Science and
Engineering, Waseda University. C-MACH is a cohort study which aims to explore the effects of genetic
and environmental factors, particularly the in-utero environment and the postnatal living environment,
on the health of children [27]. This study was approved by the Biomedical Research Ethics Committee
of the Graduate School of Medicine, Chiba University (ID: 451, 8 November 2013; ID: 462, 4 December
2013; ID: 502, 28 May 2014), the Ethics Review Committee for Human Genome/Gene Analysis Research,
Waseda University (ID: 2013-G002 (3), 13 November 2015), and the Kagawa Nutrition University ethics
review committee (ID: 67, 6 July 2016). All subjects provided informed consent for inclusion before
participating in the study. The study was conducted in accordance with the Declaration of Helsinki.

2.2. Study Design

The study used a longitudinal design. Blood was collected in four sampling periods: maternal
blood in early and late pregnancy (gestational age of 12 and 32 weeks, respectively) and at birth,
and umbilical vein blood at birth. A self-administered questionnaire on lifestyle was conducted during
early and late pregnancy at the same times as blood collection.

2.3. Subjects

C-MACH recruited healthy pregnant women under 13 weeks of pregnancy who visited Onodera
Ladies Clinic and Yamaguchi Women’s Hospital in Chiba prefecture, and Aiwa hospital in Saitama
prefecture, between February 2014 and June 2015. Follow-up was terminated if the subject had a
miscarriage, stillbirth, withdrawal, or transfer [27]. This study included 146 pregnant women attending
Aiwa Hospital, out of 434 pregnant women who participated in C-MACH.

2.4. Mother and Child Information

2.4.1. Lifestyle Data

Information on marital status, parity, smoking habits and alcohol consumption during pregnancy,
and household income were obtained from the self-administered questionnaires conducted during
early and late pregnancy.

2.4.2. Anthropometric Data

Pre-pregnancy body mass index (kg/m2) was calculated from height and pre-pregnancy weight
obtained from the self-administered questionnaire conducted in early pregnancy.

2.4.3. Medical Data of Mother and Infant

Information on maternal age at birth, gestational age, birth weight, birth length and sex were
obtained from hospital medical records.

2.4.4. FA Intake

Information of FA containing supplements and fortified foods about brand name, type, duration
of use, frequency of intake and amount taken was collected from self-administered questionnaires
administered during early and late pregnancy. Based on the method of a previous study [28], the average
daily FA intake (µg/day) was calculated using the number of days FA taken, amount of FA products
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taken per day, and the serving size unit from the FA product label for the 4 weeks prior to the day of
blood collection.

2.5. Measurement of Folate Metabolism-Related Substances in Serum

Simultaneous analysis of FA, 5MTHF, and total homocysteine was performed using the
isotope-dilution mass spectrometry method [29,30].

2.5.1. Blood Collection

Within 2 h after blood collection, centrifugation was performed at 1700× g for 10 min; 0.5 mL of
the supernatant (serum) was dispensed, and stored frozen at −80 ◦C until measurement.

2.5.2. Sample Preparation

Fifty microliters of serum, 10µL of internal standard, and 50µL of 100 mg/mL of tris (2-carboxyethyl)
phosphine and 140 µL of 1% (v/v) formic acid in methanol were mixed for 15 min, and the supernatant
was centrifuged at 16,200× g for 5 min. Supernatant was passed through a 0.2-µm filter and set in
a vial.

2.5.3. Analytical Instruments

The liquid chromatography system was an Agilent 1200 Series (Agilent Technologies Japan,
Tokyo, Japan), the ion source was a Turbo Ion Spray (Applied Biosystems SCIEX, Tokyo, Japan),
and the triple quadrupole mass spectrometer was a 4000 QTRAP (Applied Biosystems SCIEX, Tokyo,
Japan). Various parameters related to the ionization and detection of the standard substance of
the measurement component and the corresponding internal standard substance were optimized
[m/z 460.2–313.2 (5-MTHF), m/z 442.2–295.2 (FA), m/z 136.0–90.0 (homocysteine), m/z 465.2–313.2
(5-MTHF-13C5), m/z 447.2–295.2 (folic acid-13C5), m/z 140.0–93.9 (homocysteine-d4)]. After setting up
these multiple reaction monitoring transitions, simultaneous analysis was performed in Scheduled
MRM mode. The measurement time was 13 min, the mobile phase flow rate was 500 µL/min, A:
perfluoroheptanoic acid 5 mM aqueous solution and B: acetonitrile gradient, and the separation column
used was XSelect HSST3 2.5 µm, 100 × 2.1 (Nihon Waters, Tokyo, Japan).

2.5.4. Measurement and Data Analysis

Sample measurements were performed twice, then the average value was used. Additionally,
a calibration curve was created at 8 points every 24 h and quality control was conducted every 12 h.
In preliminary validity tests, the coefficient of variations of FA, 5-MTHF, and total homocysteine were
9.9%, 4.7% and 4.1%, respectively, for intra-assay and 3.7%, 8.4% and 2.3% for inter-assay, respectively.
Analyst version 1.6.3 analysis software (Applied Biosystems SCIEX, Tokyo, Japan) was used for data
processing and quantification. If the peak could not be detected or the signal-to-noise ratio was less
than 10, the concentration was converted to 0.

2.6. Statistical Analysis

The distributions of serum 5-MTHF, FA and total homocysteine levels used in the analysis were
skewed, so continuous variables are shown as medians and interquartile ranges. The Wilcoxon
signed-rank test was used to compare the folate metabolism-related substance levels in maternal serum
between each blood sampling period (n = 113), and to compare the FA intake between early and late
pregnancy (n = 118). Bonferroni correction was used to adjust for multiple comparisons (p < 0.0167).
The difference between maternal blood and cord blood was tested using the Wilcoxon signed rank test
(n = 114). Spearman’s rank correlation coefficient was used for the correlation between two variables.
The significance level was p < 0.05 (two-tailed test). All statistical analyses were performed using
JMP® Pro version 12.2.0 (SAS Institute Japan, Tokyo, Japan).
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3. Results

Figure 1 shows the participant flowchart for final number of blood sample analysis at each time
point. At the time of recruitment, 146 samples could be measured in early pregnancy, but further
serum samples could not be obtained from some subjects, with 131 samples obtained in late pregnancy,
116 at delivery, and 121 from cord blood.
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Figure 1. Flow of participants among pregnant women participating in Chiba study of Mother and
Child Health (C-MACH).

Table 1 shows the characteristics of mothers who provided valid responses to the lifestyle
questionnaire. All participants in the cohort were Japanese. Mean age (±standard deviation) of
the mother at birth was 32.3 ± 4.6 years. Most subjects were married and did not smoke or drink
during pregnancy. The proportion of pregnant women who took FA in early pregnancy was 54.6%;
this decreased to 32.5% in late pregnancy. FA intake (µg/day) in late pregnancy was significantly lower
than in early pregnancy (p < 0.0001, n = 118).

Table 1. Characteristics of the mothers.

Variables n (%) Mean (SD)

Age at delivery, years 130 32.3 (4.6)

<20 1 0.8
20 to <24 5 3.8
25 to <29 34 26.2
30 to <34 48 36.9
35 to <39 34 26.2
≥40 8 6.2

Missing 16 -

Body mass index before pregnancy, kg/m2 130 21.8 (3.1)

<18.5 15 11.5
18.5 to <25.0 97 74.6
≥25 18 13.8

Missing 16 -

Marital status

Married 129 99.2
Unmarried 1 0.8

Divorced/widowed 0 0.0
Missing 16 -
Parity 129 0.83 (0.78)

0 49 38.0
1 56 43.4
≥2 24 18.6

Missing 17 -
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Table 1. Cont.

Variables n (%) Mean (SD)

Smoking habits in late pregnancy

Never smoked 110 90.9
Ex-smokers who quit before pregnancy 9 7.4

Smokers during late pregnancy 2 1.7
Missing 25 -

Alcohol consumption

Never drank 117 97.5
Drinkers during pregnancy 3 2.5

Missing 26 -

Household income, million
Japanese-yen/year

<2 0 0.0
<2 to <4 22 19.5
4 to <6 34 30.1
6 to <8 32 28.3

8 to <10 15 13.3
≥10 10 8.8

Missing 33 -

FA intake in early pregnancy, µg/day

0 59 45.4
>0 71 54.6

>0 to <100 6 4.6
100 to <200 3 2.3
200 to <300 14 10.8
300 to <400 7 5.4
400 to <500 32 24.6
500 to <600 3 2.3
≥600 6 4.6

Missing 16 -

FA intake in late pregnancy, µg/day

0 81 67.5
>0 39 32.5

0> to <100 3 2.5
100 to <200 6 5.0
200 to <300 5 4.2
300 to <400 0 0.0
400 to <500 23 19.2
500 to <600 2 1.7
≥600 0 0.0

Missing 26 -

SD, standard deviation; -, Percent is not calculated for missing values; FA, folic acid.

Table 2 shows the characteristics of the neonates. The preterm birth rate was 1.7%. Mean birth
weight was 3155 ± 369 g, and the percentage of low birth weight infants was 3.3%.
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Table 2. Characteristics of neonates.

Variables n (%) Mean (SD)

Gestational age at birth

Total, weeks 120 39.5 (1.1)
Preterm births (<37 weeks) 2 1.7

Term births (37 to <42 weeks) 118 98.3
Postterm births (≥42 weeks) 0 0.0

Missing 25 -

Sex

Male 57 48.3
Female 61 51.7
Missing 28 -

Type of delivery

Vaginal 94 87.9
Caesarean 13 12.1

Missing 39 -

Birth weight, g 121 3155 (369)

Low birth weight, <2500 g 4 3.3
Missing 25 -

Birth length, cm 121 49.5 (2.5)

Missing 25 -

SD, standard deviation; -, Percent is not calculated for missing values.

Table 3 shows the distribution of serum 5-MTHF, FA and total homocysteine levels and the
difference between blood sampling periods. Maternal 5-MTHF levels significantly decreased and
total homocysteine significantly increased from early pregnancy to birth as the pregnancy advanced.
Maternal FA levels were significantly decreased at delivery compared to early pregnancy. At birth,
cord 5-MTHF levels were much higher than maternal levels, while FA levels did not differ between
these samples. Cord total homocysteine levels were lower than those in the mother.

Figure 2 shows the results of correlations between maternal blood and cord blood at delivery.
Serum levels of 5-MTHF, FA and total homocysteine showed significant positive correlations between
maternal and cord blood.
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Table 3. Distribution of serum 5-MTHF, FA and total homocysteine levels and difference between blood sampling periods.

Maternal Blood Cord Blood (n = 121)

Early Pregnancy (n = 146) Late Pregnancy (n = 131) At Birth (n = 116)

Analytes Median 25th 75th Median 25th 75th Median 25th 75th Median 25th 75th
5-MTHF nmol/L 32.2 a 20.3 52.8 17.0 b 11.6 31.7 14.1 c 9.8 23.2 44.7 *** 36.5 64.2

FA nmol/L 0.620 a 0.095 1.221 0.620 0.127 1.205 0.433 b 0.000 1.052 0.530 0.000 1.043
Total homocysteine µmol/L 5.38 a 4.58 6.36 5.61 b 4.74 6.96 7.16 c 5.88 9.16 6.02 *** 5.01 7.75

Values are presented as the median with 25th and 75th percentiles. Different letters indicate statistically significant differences between early and late pregnancy, and at birth. (Wilcoxon
signed-rank test with Bonferroni correction, p < 0.0167 (n = 113)). *** p < 0.0001 Wilcoxon signed-rank test, maternal blood at birth vs. cord blood (n = 114). 5-MTHF, 5-methyltetrahydrofolate;
FA, folic acid.
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Table 4 shows the correlation between homocysteine and 5-MTHF and FA at each blood sampling
period (early pregnancy, late pregnancy, at birth, and cord blood). A significant negative correlation
was seen between 5-MTHF to total homocysteine level at all sampling periods, but no significant
correlation with FA was identified.

Table 4. Correlation of 5-MTHF or FA to total homocysteine in each blood sampling period.

Variable 5-MTHF FA

Blood Sampling Period n ρ p-Value ρ p-Value

Early pregnancy 146 −0.356 <0.0001 −0.122 0.142
Late pregnancy 131 −0.518 <0.0001 −0.148 0.093

At birth 116 −0.544 <0.0001 −0.149 0.111
Cord blood 121 −0.394 <0.0001 −0.049 0.590

Spearman correlation coefficient ρ, and p-value. 5-MTHF, 5-methyltetrahydrofolate; FA, folic acid.

4. Discussion

In this study, longitudinal evaluation of 5-MTHF, FA and homocysteine in the serum of maternal
and cord blood was performed on Japanese pregnant women. It was found that 5-MTHF levels
decreased as gestation progressed, whereas serum FA levels were slightly decreased only at delivery
compared to early pregnancy. A cross-sectional analysis showed a significant negative association
between 5-MTHF and total homocysteine at all sampling periods, but no relationship between FA and
homocysteine. At delivery, cord 5-MTHF levels were much higher than maternal levels, while no
significant difference was seen in FA.

Governments such as those in North and South America enforce a policy of mandatory FA
fortification for grain products. However, no such policy has yet been adopted in Japan. In the present
study, median maternal 5-MTHF levels during pregnancy were 14.1–32.2 nmol/L, and median FA levels
were 0.433–0.620 nmol/L. In Germany, median maternal serum 5-MTHF levels (10–90th percentiles)
were 15 (4.0–41.9) nmol/L by LC-MS/MS [19], close to the results of our study. Germany does not
enforce FA fortification, and pregnant women are encouraged to voluntarily take FA supplements [19].
The results of that study might thus be attributable to a similar environment to Japan. On the other hand,
in reports from populations where mandatory FA has been fortified, mean [95% confidence interval
(CI)] plasma FA at 13 weeks of gestation was 2.41 (1.99–2.88) nmol/L by LC-MS/MS [23], mean plasma
5-MTHF at 24 weeks of gestation was 39.2 ± 15.5 nmol/L by LC/MS [31] and 36.6 ± 16.3 nmol/L by
LC/MS [25], median (95% CI) serum 5-MTHF at 27 weeks’ gestation was 65.3 (24.4–75.5) nmol/L by
LC-MS/MS [32], and median (95% CI) serum FA was 0.92 (0.23–1.46) nmol/L by LC-MS/MS [32]. In an
exceptional American study by Bodnar, median serum 5-MTHF (25–75th percentile) at gestational age
9.4 weeks for pregnant women with FA fortification was 34.4 (25.2–47.7) nmol/L by LC-MS/MS [20],
a value close to that in our study. FA supplements are recommended for pregnant women in early
pregnancy in Japan [33]. Furthermore, the proportion of FA intake during early pregnancy in this
study was higher than that reported in a previous study of Japanese pregnant women [34–36], which
may be why concentrations of 5-MTHF in the present study were close to those of Bodnar et al. Serum
5-MTHF and FA in Japanese pregnant women were mostly lower than those in populations from
regions with mandatory FA fortification, due to the expected effects of FA exposure, as mentioned in
previous studies [9].

Maternal blood 5-MTHF in this study decreased as gestational age progressed, whereas FA levels
were slightly decreased only at delivery compared to early pregnancy. This might be due to a decrease
in FA intake and rate of intake in late pregnancy compared to early pregnancy. In a previous study of
pregnant women, total folate similarly decreased as gestational weeks progressed [37–39]. In addition,
5-MTHF is the major folate molecular species, accounting for 82%–93% of folate in blood, whereas
FA constitutes only a small amount of total folate [40–42]. These results suggest that the longitudinal
changes in total folate in previous studies were likely related to 5-MTHF.
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This study investigated the relationship of folate metabolism-related substances between mothers
and cord blood, and found that both 5-MTHF and FA were significantly positively correlated between
maternal and cord blood, cord 5-MTHF levels were much higher than those in maternal blood, while
FA levels did not differ between them. Several previous studies have reported that cord blood
5-MTHF was similarly higher than that in maternal blood [19,25]. In addition, maternal FA may
not actively accumulate to the fetus [23]. Three folate transporters have been found in placental
syncytiotrophoblasts: folate receptor alpha, reduced folate carrier and heme carrier protein 1 [43,44].
The results of these studies thus suggest that FA might be transported to the fetus in a maternal
blood-dependent manner, and 5-MTHF might be actively transported from mother to fetus against
gradients in the placenta [19,25].

Total blood folate is known to be negatively associated with total homocysteine [8,45,46]. In the
elderly (non-pregnant female) population in Germany, plasma 5-MTHF by LC-MS/MS and total
homocysteine levels by gas chromatography–mass spectrometry showed a negative correlation [47],
consistent with the present results. In our study, the relationship between serum 5-MTHF and total
homocysteine levels was examined, and a significant negative correlation was disclosed, but no
relationship was apparent between FA and total homocysteine. Therefore, 5-MTHF may reflect folate
status during pregnancy.

This study had several limitations. First, the study included only one hospital-based population.
Second, compared with the Japan Environment and Children’s Study (JECS) [48], a representative
birth cohort study in Japan, maternal age was higher in the present study (mean, 31.2 ± 5.1 years),
and smoking and drinking rates during pregnancy were lower than in the JECS, at 18.2% and 45.9%,
respectively. Similarly, the distribution of household income was higher than in JECS. Folate status
may be higher than a typical Japanese population, because of the influence of household income [49],
alcohol consumption [31], and smoking habits [25,31]. Third, this study did not investigate blood
during fasting. Previous studies have reported that blood FA and 5-MTHF levels are affected by
the fasting state [50]. Fourth, this study did not investigate genetic polymorphisms affecting folate
metabolism, such as methylenetetrahydrofolate reductase [51,52] and dihydrofolate reductase [13],
which may affect the metabolism of 5-MTHF and FA. Fifth, this study used serum, and homocysteine
values in serum are reportedly slightly higher than in plasma [6]. Re-methylation of homocysteine
involves two methyl group transferring pathways, through 5-MTHF, using cofactor vitamin B12 and
through betaine. In addition, there is a transsulfuration pathway for homocysteine. These related
substances were thus not taken into account [6]. Finally, blood levels of 5-MTHF and FA in the blood
of study subjects could not be evaluated in this study, because thresholds for excess and deficiency
are unknown. In this study, FA was detected in the serum of Japanese pregnant women, and was
considered to be unmetabolized FA, but no causal relationship between blood FA levels and negative
fetal outcomes has been demonstrated. On the other hand, the benefits of FA in preventing NTD appear
incontrovertible [53,54]. Further research is needed to establish optimal blood levels thresholds to
balance NTD prevention with excess disease. In the future, it will be important to follow the children of
the subjects of this study and to evaluate the relationship between FA overdose and health and disease
outcomes in the children, using blood FA concentrations. On the other hand, blood levels of 5-MTHF
should be considered as a more sensitive indicator of maternal folate deficiency. The accumulation of
this information could provide evidence for appropriate FA use and public health policy.

5. Conclusions

The present results suggested that 5-MTHF was more likely to be transferred to the fetus than FA,
correlated negatively with total homocysteine, and represents a physiologically important molecular
species in folate metabolism that may reflect folate status during pregnancy. Further research is needed
to establish optimal blood levels of 5-MTHF and FA for fetuses.
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