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Abstract: Kynurenic acid, a metabolite of the kynurenine pathway of tryptophan catabolism, acts as
an antagonist for both the α7 nicotinic acetylcholine receptor and glycine coagonist sites of the
N-methyl-d-aspartic acid receptor at endogenous brain concentrations. Elevation of brain kynurenic
acid levels reduces the release of neurotransmitters such as dopamine and glutamate, and kynurenic
acid is considered to be involved in psychiatric disorders such as schizophrenia and depression.
Thus, the control of kynurenine pathway, especially kynurenic acid production, in the brain is an
important target for the improvement of brain function or the effective treatment of brain disorders.
Astrocytes uptake kynurenine, the immediate precursor of kynurenic acid, via large neutral amino
acid transporters, and metabolize kynurenine to kynurenic acid by kynurenine aminotransferases.
The former transport both branched-chain and aromatic amino acids, and the latter have substrate
specificity for amino acids and their metabolites. Recent studies have suggested the possibility that
amino acids may suppress kynurenic acid production via the blockade of kynurenine transport or via
kynurenic acid synthesis reactions. This approach may be useful in the treatment and prevention of
neurological and psychiatric diseases associated with elevated kynurenic acid levels.

Keywords: dopamine; kynurenic acid; kynurenine; large neutral amino acid transporter;
neuropsychiatric disorders; neurotransmitter; α7 nicotinic acetylcholine receptor; N-methyl-d-aspartic
acid (NMDA) receptor; tryptophan

1. Introduction

The essential amino acid tryptophan is well known as a precursor of several bioactive compounds
such as serotonin and melatonin. More than 90% of tryptophan is metabolized by the kynurenine
pathway [1], and this pathway plays a critical role in tryptophan catabolism and coenzyme nicotinamide
adenine dinucleotide (NAD+) supply (Figure 1). Recently, many researchers have studied the
kynurenine pathway, because the pathway has interesting intermediates and metabolites. For example,
kynurenine regulates immunoreaction as an aryl hydrocarbon receptor agonist [2], and kynurenic
acid (KYNA) affects brain function as an antagonist for both the α7 nicotinic acetylcholine receptors
(α7nAchRs) and the N-methyl-d-aspartic acid (NMDA) receptor [3,4] and an agonist for the G
protein-coupled receptor (GPR) 35 (GPR35) [5]. 3-hydroxykynurenine is a potential endogenous
neurotoxin and oxidative stress generator [6], and quinolinic acid produces excitotoxicity as an NMDA
receptor agonist [7]. Especially, KYNA function research has dramatically developed since 2001, and
one of the targets for KYNA research is to manipulate KYNA production in the brain to prevent and
improve psychiatric disorders such as schizophrenia and depression. In the present article, we briefly
review recent advances in KYNA research and further describe the ability of amino acids to modulate
KYNA production. The structure of tryptophan, kynurenine, and KYNA are shown in Figure 2.

Nutrients 2020, 12, 1403; doi:10.3390/nu12051403 www.mdpi.com/journal/nutrients

http://www.mdpi.com/journal/nutrients
http://www.mdpi.com
http://dx.doi.org/10.3390/nu12051403
http://www.mdpi.com/journal/nutrients
https://www.mdpi.com/2072-6643/12/5/1403?type=check_update&version=2


Nutrients 2020, 12, 1403 2 of 11

Nutrients 2020, 12, x FOR PEER REVIEW 2 of 11 

 

ability of amino acids to modulate KYNA production. The structure of tryptophan, kynurenine, and 

KYNA are shown in Figure 2. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Tryptophan degradation pathway. (1) Tryptophan 2,3-dioxygenase/Indoleamine 2,3-

dioxygenase (2) formamidase, (3) kynurenine 3-monoxygenase, (4) kynureninase, (5) kynurenine 

aminotransferase, (6) 3-hydroxyanthranilic acid oxygenase, (7) 2-amino-3-carboxymuconate-6-

semialdehyde decarboxylase, (8) nonenzymatic reaction, (9) quinolinate phosphoribosyltransferase, 

(10) nicotinic acid (nicotinamide) mononucleotide adenylyltransferase, (11) NAD+ synthetase, (12) 

NAD+ degrading enzyme, (13) nicotinamide phosphoribosyltransferase, (14) nicotinamide 

methyltransferase, (15) 2-Py-forming N1-methylnicotinamide oxidase, and (16) 4-Py-forming N1-

methylnicotinamide oxidase. Abbreviations: NAD+: nicotinamide adenine dinucleotide; 2 Py: N1-

methyl-2-pyridone-5-carboxamide; and 4 Py: N1-methyl-4-pyridone-3-carboxamide. 

 
 

 

 

 

 

 

 

Figure 2. Structures of tryptophan, kynurenine, and kynurenic acid. 

Figure 1. Tryptophan degradation pathway. (1) Tryptophan 2,3-dioxygenase/Indoleamine
2,3-dioxygenase (2) formamidase, (3) kynurenine 3-monoxygenase, (4) kynureninase,
(5) kynurenine aminotransferase, (6) 3-hydroxyanthranilic acid oxygenase,
(7) 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase, (8) nonenzymatic reaction,
(9) quinolinate phosphoribosyltransferase, (10) nicotinic acid (nicotinamide) mononucleotide
adenylyltransferase, (11) NAD+ synthetase, (12) NAD+ degrading enzyme, (13) nicotinamide
phosphoribosyltransferase, (14) nicotinamide methyltransferase, (15) 2-Py-forming
N1-methylnicotinamide oxidase, and (16) 4-Py-forming N1-methylnicotinamide oxidase. Abbreviations:
NAD+: nicotinamide adenine dinucleotide; 2 Py: N1-methyl-2-pyridone-5-carboxamide; and 4 Py:
N1-methyl-4-pyridone-3-carboxamide.
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2. Function of Kynurenic Acid in the Brain

In 1989, Kessler et al. found that KYNA competitively inhibited glycine coagonist site of the
NMDA receptor at low concentration with an IC50 of 8 µmol/L [3]. A decade later, Hilmas et al. found
that KYNA noncompetitively inhibited α7nAchRs with an IC50 of 7 µmol/L using the patch-clamp
technique with cultured hippocampal neurons [4]. Furthermore, Wang et al. found that KYNA is
ligand for GPR35, whose EC50s are 10.7, 7.4, and 39.2 µmol/L in mouse, rat, and human, respectively [5].
Since physiological concentrations of brain KYNA are 5 pmol/g wet wt, 15 pmol/g wet wt, and
150 pmol/g wet wt in mouse, rat and human, respectively [8], elevation of brain KYNA has been
considered to affect these receptors. Effects of KYNA increase on the neurotransmitter release were
investigated using microdialysis technique, and KYNA concentration-dependently and reversibly
reduced extracellular glutamate, dopamine, and γ-aminobutyric acid (GABA) to less than 50% of
baseline concentrations [9–11]. Conversely, inhibition of endogenous KYNA formation by reverse
dialysis of KYNA synthesis inhibitor (S)-4-(ethylsulfonyl) benzoylalanine (S-ESBA) reversibly increases
dopamine, glutamate, and GABA levels in the rodent brain [11–13]. Although these findings suggest
that changes of brain KYNA levels affect neurotransmitter release via modulation of above receptors,
understanding the mechanism of action of KYNA is difficult. There is disagreement about the
interaction between KYNA and α7nAchRs, because several studies failed to reproduce evidence for
action of KYNA on nicotinic receptors. [14]. Schematic representation of the interaction between KYNA
and the receptors is shown in Figure 3.
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Behavioral studies showed that changes in brain KYNA levels affect several psychiatric functions in
experimental animals. Elevation of endogenous KYNA concentration produces disruptions in prepulse
inhibition [15] and habituation of auditory-evoked potentials [16], indicating that elevated KYNA levels
interfere with normal reductions in processing and responding to irrelevant stimuli. Elevation of brain
KYNA levels also affects cognitive function. For example, rats with elevations of endogenous KYNA
exhibit spatial working memory deficits in a radial arm maze task [17]. These rats also exhibit impaired
contextual fear memory consisting of two pairings of a tone and foot shock, and are slower to learn to
discriminate between different contexts with or without foot shock [18]. On the other hand, reduction of
endogenous KYNA levels by genetic and pharmacological manipulation improves cognitive functions.
Mice with a targeted deletion of kynurenine aminotransferase II (KAT II), a major biosynthetic
enzyme of brain KYNA, show reduced brain KYNA levels and significantly increased performance in
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three cognitive paradigms that rely in part on the integrity of hippocampal function, namely, object
exploration and recognition, passive avoidance, and spatial discrimination [19]. Intracerebroventricular
administration of selective KAT II inhibitor S-ESBA improves kynurenine-induced cognitive deficits on
performance in the Morris water maze [20]. Systemic administration of KAT II inhibitor, PF-04859989,
also dose-dependently reduces brain KYNA, prevents amphetamine- and ketamine-induced disruption
of auditory gating, and improves performance in a sustained attention task [21]. It also prevents
ketamine-induced disruption of performance in a working memory task and a spatial memory
task in rodents and nonhuman primates, respectively. These findings support the hypotheses that
endogenous KYNA impacts cognitive function and that inhibition of KAT II, and consequent lowering
of endogenous brain KYNA levels, improves cognitive performance under conditions considered
relevant for schizophrenia.

In humans, elevated KYNA levels are observed in the cerebrospinal fluid and cortex of patients
with schizophrenia and bipolar disorder [22–27]. In the brain, kynurenine and KYNA levels in
schizophrenic cases are 1.5 times higher than matched control subjects [24]. Similar observations
reported that kynurenine and KYNA concentrations in the cerebrospinal fluid (CSF) were 2 and 1.5 times
higher in patients with schizophrenia, respectively, than with healthy volunteers, whereas tryptophan
concentrations did not differ between the groups [26]. Patients with bipolar disorder have 1.5 times
increased levels of KYNA in their CSF compared with healthy volunteers, and the levels of KYNA are
positively correlated with age among bipolar patients but not in healthy volunteers [28]. Haplotype
analysis shows an association between kynurenine 3-monoxygenase (KMO) gene polymorphisms
and CSF concentrations of KYNA in patients with schizophrenia [29]. In the bipolar disorder and
schizophrenia patients, KMO mRNA levels are reduced in the brain compared with nonpsychotic
patients and controls, and the KMO Arg452 allele is associated with increased levels of CSF KYNA
and reduced brain KMO expression [30]. KMO is the primary enzyme responsible for kynurenine
degradation. These results support the hypothesis that KYNA is involved in the pathophysiology of
psychiatric diseases such as schizophrenia and bipolar disorder.

3. Kynurenic Acid Synthesis

Tryptophan degradation is initiated by tryptophan 2,3-dioxygenase (TDO) and indoleamine
2,3-dioxygenase (IDO), and these enzymes metabolize tryptophan to N-formylkynurenine, which
is further degraded to kynurenine by formamidase. Kynurenine is catabolized to KYNA,
3-hydroxykynurenine, and anthranilic acid by KAT, KMO, and kynureninase, respectively. In the
brain, 3-hyroxykynurenine and further downstream kynurenine pathway metabolites are synthesized
in microglia, whereas KYNA is formed in astrocytes [31]. Approximately 40% of the kynurenine
in brain is synthesized in astrocytes from tryptophan, and the remainder comes from plasma [32].
TDO-deficient mice show higher plasma tryptophan and kynurenine levels [33], and IDO-deficient
mice show normal level of serum tryptophan and very low level of kynurenine [34]. These results
suggest that most tryptophan is degraded by TDO in the liver, and that plasma kynurenine is derived
from nonhepatic tissues and produced by IDO rather than TDO. Skeletal muscle also affects plasma
kynurenine levels. Exercise training increases murine and human KAT expression in the skeletal
muscle, and decreases plasma kynurenine levels by enhancement of kynurenine expenditure in the
skeletal muscle [35]. Figure 4 shows the organ–organ interactions for tryptophan and kynurenine
metabolism (Figure 4).
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Astrocytes uptake peripheral kynurenine from the blood stream via large neutral amino acid
transporters (LATs). There is poor transport of KYNA across the blood–brain barrier, and for this
reason plasma KYNA is not expected to contribute significantly to the brain KYNA pool [36]. LATs are
known to transport both branched chain amino acids (e.g., valine, leucine, and isoleucine) and aromatic
amino acids (e.g., tyrosine, phenylalanine, and tryptophan). Several findings show that LATs transport
amino acids with higher affinity than kynurenine in tumor cell lines [36–39]. There are two LATs
(LAT 1 and LAT 2); the affinity of LAT 1 to large neutral amino acids is higher than that of LAT 2.
LAT 1 exhibits high-affinity transport of large neutral amino acids, including branched chain and
aromatic amino acids, while LAT 2 transports not only large neutral amino acids but also small neutral
amino acids in a fashion that appears to have broader substrate selectivity than LAT 1. [40,41]. LAT 1
is expressed in brain, spleen, placenta, testis, colon, and tumor cells, whereas LAT 2 is expressed at
high levels in the small intestine, kidney, brain, and skeletal muscle. Neither of the LATs is expressed
in the liver. The Km value of LATs for kynurenine is ~160 µmol/L, 80 times higher than plasma
kynurenine concentrations [36,37], whereas the Km values of LAT 1 for leucine, isoleucine, methionine,
phenylalanine, tyrosine, and histidine are 15–30 µmol/L, which are at physiological concentrations [39].

KATs catalyze the irreversible transamination reaction of kynurenine to KYNA. Four KATs have
been identified in the mammalian brain: KAT I (glutamine transaminase K, GTK; EC 2.6.1.64), KAT II
(2-aminoadipate aminotransferase, ADA; EC 2.6.1.7), KAT III (cysteine conjugate β-lyase 2, CCBL2;
EC4.4.1.13), and KAT IV (mitochondrial aspartate aminotransferase, ASAT; EC 2.6.1.1). The Km values
of KAT I, II, III, and IV for kynurenine are 875 µmol/L, 660 µmol/L, 1.5 mmol/L and 724 µmol/L,
respectively [42,43]. Specificity for substrates is different among KATs. KAT I is inhibited by glutamine
(IC50: 0.2 mmol/L); KAT II by lysine metabolite 2-aminoadipic acid, quisqualate, aspartate, and
glutamate (IC50: 0.006, 0.02, 1.2 and 2.1 mmol/L, respectively); KAT III by methionine, glutamine,
histidine, and cysteine; and KAT IV by quisqualate, aspartate, glutamate, and 2-aminoadipic acid (IC50:
0.1, 0.3, 0.9 and 1.5 mmol/L, respectively) [42,43]. KAT II activity accounts for highest proportion (60%)
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of the total KAT activity in the rats and human brain, with 10 and 30% contributed by KAT I and IV,
respectively. In mice brain, KAT IV is the dominant KAT with 60% of total KAT activity [42]. KAT III
contribution to brain KYNA synthesis remains to be determined. These findings suggest that KAT II
plays a central role for KYNA synthesis in the brain, and thus KAT II can be targeted to regulate KYNA
production. KAT II-deficient mice exhibit lower KYNA levels in the brain and increased performance
in cognitive functions [19,44]. KAT II inhibitors successfully prevent elevation of brain KYNA levels
and cognitive dysfunction [20,21].

Several factors increase KYNA production in the brain in vivo. Systemic administration of
kynurenine and KMO inhibitor increase brain KYNA levels by elevation of blood kynurenine
levels [45,46]. Chronic exposure to a high-fat and low-protein/carbohydrate ketogenic diet shows a
several-fold increase in KYNA concentrations in the rat striatum and hippocampus [47]. Experimental
diabetes mellitus type 1 enhances KAT II activity and increases KYNA levels in the rat cortex
and hippocampus [48]. Thioacetamide-induced acute liver failure enhances peripheral kynurenine
production, and thus increases brain KYNA levels [49]. Acute stress increases brain KYNA levels in
the fetus and adulthood [50–52], and reduction of stress-increased KYNA prevents the impairment
of fear discrimination [52]. KMO gene polymorphisms influence CSF KYNA levels in patients with
schizophrenia and bipolar disorder [29,30].

As the de novo synthesized KYNA immediately liberates to the extracellular compartment,
extracellular KYNA levels are dependent on KYNA production, which is regulated by two key factors:
KAT activity and the availability of the KYNA substrate kynurenine [53]. Kynurenine is produced in the
peripheral tissues, and astrocytes uptake kynurenine from blood stream via LATs, catalyze kynurenine
to KYNA via KATs, and then excrete KYNA to the extracellular compartment. Therefore, four points
can affect brain KYNA levels: (1) kynurenine formation in the peripheral tissues, (2) kynurenine uptake
by astrocytes, (3) KYNA synthesis by KATs, and (4) KYNA release from astrocytes. Enhancement of
KAT II activity in the skeletal muscle by exercise is an example to modulate peripheral kynurenine
formation [35]. Although organic anion transporters 1 and 3 transport KYNA, and both transporters
express in the brain and kidney [54], little information is available for KYNA release from astrocytes.
KYNA is also released from other KYNA-producing tissues, including the liver and skeletal muscle
to blood stream, and then excreted to urine. The liver and skeletal muscle dominantly metabolize
kynurenine to KYNA, and small amount of brain-derived KYNA contributes to plasma KYNA levels.
Since elevated inflammatory activity may drive elevations of kynurenine and KYNA levels through
the activation of IDO, peripheral KYNA measurements have been expected to be a predictor of central
KYNA levels. However, studies of peripheral KYNA concentrations in psychiatric disorders have
reported conflicting results [55–57]. Although enhancement of peripheral kynurenine production
increases both peripheral and brain KYNA levels, that of brain kynurenine uptake and KATs activities
does not always affect peripheral KYNA production.

4. Effects of Amino Acids on Kynurenic Acid Production

High tryptophan diets increase brain KYNA levels owing to increased peripheral kynurenine in
a dose-dependent manner, and reduce dopamine release via enhancement of KYNA production in
the rat striatum [58]. The plausible mechanism to increase brain KYNA levels is that the peripheral
tissues produce more kynurenine from the high dose of tryptophan and release more kynurenine
into the blood stream, and astrocytes take up the more circulating kynurenine and metabolize more
kynurenine to KYNA by KATs. Chronic intake of 5 g/d of tryptophan shows two-fold of increase serum
kynurenine concentration in healthy volunteers, suggesting increase of brain KYNA production due to
excess tryptophan intake in humans [59].
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As mentioned above, to modulate KYNA production in the brain, four points are relevant:
(1) kynurenine formation in the peripheral tissues, (2) kynurenine uptake by astrocytes, (3) KYNA
synthesis by KATs, and (4) KYNA release from astrocytes. Since LATs transport kynurenine and
amino acids, including both branched chain and aromatic amino acids, and KATs have broad substrate
specificity, including amino acids and its metabolites, amino acids have the potential to suppress
KYNA production via inhibition of kynurenine uptake and KYNA synthesis in the brain. To this
end, the effects of proteinogenic amino acids on KYNA formation and kynurenine uptake in rat
brain in vitro were comprehensively investigated [60]. Ten out of 19 amino acids (specifically, leucine,
isoleucine, phenylalanine, methionine, tyrosine, alanine, cysteine, glutamine, glutamate, and aspartate)
significantly reduce KYNA formation at 1 mmol/L in rat cortical slices. The amount of KYNA in the
extracellular medium was reduced by 40–60% by eight amino acids (leucine, isoleucine, methionine,
alanine, tyrosine, glutamine, glutamate, and aspartate), and by approximately 25% by phenylalanine
and cysteine at 1 mmol/L. These amino acids show inhibitory effects in a dose-dependent manner, and
partially inhibit KYNA production at physiological concentrations. Leucine, isoleucine, methionine,
phenylalanine, and tyrosine, all LAT substrates, but not other five amino acids also reduce tissue
kynurenine concentrations in a dose-dependent manner, and their inhibitory rates for kynurenine uptake
significantly correlate with KYNA formation. IC50 for KYNA production and kynurenine uptake; Km

values for LATs; and physiological concentration of amino acids, including LAT substrates, are shown
in Table 1. The amino acids that inhibited KYN uptake are consistent with substrate amino acids of LAT
1 rather than LAT 2, suggesting a critical role of LAT 1 in kynurenine uptake in the brain. Km values
of LAT 1 for leucine, isoleucine, methionine, phenylalanine, and tyrosine are 15–30 µmol/L, around
physiological concentrations [38], indicating higher affinity than for kynurenine [39]. Furthermore,
inhibition of LATs suppresses KYNA production via inhibition of kynurenine uptake in vitro and
in vivo [61]. LATs inhibitor 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) inhibits KYNA
production and kynurenine uptake in rat cortical slices in a dose-dependent manner. Administration
of BCH suppresses kynurenine-induced elevations of kynurenine and KYNA levels to 50% and 70% in
the mice brain. These results suggest that five LAT substrates inhibit KYNA formation via blockade
of the KYN transport, while the other amino acids act via blockade of KYNA synthesis in the brain
(Figure 5).

Table 1. Parameters of amino acids for KYNA production, kinetics, and physiological levels [38,39,41,60].

IC50 (µmol/L) Km (µmol/L)
Plasma Level

(µmol/L)KYNA
Production

Kynurenine
Uptake hLAT1 rLAT2

Leucine 36.9 30.4 19.7 119 153
Phenylalanine 22.5 10.4 14.2 45.0 58

Isoleucine 60.1 83.6 25.1 96.7 85
Methionine 184 98.6 20.2 204 54

Tyrosine 970 159 28.3 35.9 64
Histidine – – 12.7 181 69

Valine – – 47.2 – 194
Glutamate 94.9 – – – 77
Cysteine 110 – – 109 11
Alanine 146 – – 187 377

Aspartate 502 – – 80.7 12
Glutamine 647 – 1640 151 711

IC50 values for KYNA production and kynurenine uptake were determined in rat cortical slices [60]. Km values for
expressed human LAT1 and rat LAT2 were determined in Xenopus oocytes [38,41]. Plasma free amino acids were
determined in rats [39].
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Figure 5. Inhibition of kynurenine uptake via LATs by amino acids (A), and inhibition of kynurenic
acid synthesis reaction by amino acids (B). Abbreviations: KAT II; kynurenine aminotransferase II,
KYN; kynurenine, KYNA; kynurenic acid, LATs; large neutral amino acid transporters, LNAA; large
neutral amino acids.

5. Conclusions

Recent studies have shown that KYNA modulates neurofunction by blockade of NMDA and
α7nAch receptors, which is relevant to psychiatric disorders. Research has focused on pharmacologically
manipulating KYNA formation to achieve the intended benefit and avoid harmful outcomes.
Since humans intake several grams of amino acids from diet every day and amino acids are highly
tolerable, chronic intake of amino acids may be a good tool to modulate brain function by manipulation
of KYNA formation in the brain. This approach may be useful in the treatment and prevention of
neurological and psychiatric diseases associated with elevated KYNA levels.
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