

Supplementary

Figure S1. Taste responses of Scnn1^{++/++} and Scnn1^{aa/bb} mice to control stimuli after dietary intervention. After 4 weeks fed with sodium-adequate, low, or high salt diet, Scnn1^{++/++} and Scnn1^{aa/bb} mice were subjected to short-term preference tests using an automated gustometer. To do so, animals were either restricted for 22.5 h with access to 2.0 mL water and 1 g food (attractive restriction conditions, (**A**)) or water-deprived for 22.5 h (aversive restriction conditions, (**B**)). Taste solutions and concentrations were presented in random order. Each data point represents a mean ± STE of 5 s presentations from 10 to 11 animals tested. Statistical testing was based on UNIANOVA and post-hoc analysis using Bonferroni's multiple comparison test. Statistical differences were indicated by different letters between individual groups.

Figure S2. Latency to initiate the first lick for different taste stimuli after access to amiloridecontaining water. Scnn^{1++/++} and Scnn^{1aa/bb} mice receiving sodium-adequate diet had either access to 300 μ M amiloride-containing water 13 h prior to restriction starting or received water without amiloride. The restriction phase lasted for 22.5 h with access to 2.0 mL water ± 300 μ M amiloride and 1 g food. Mean latency to the first lick for each stimulus concentration was determined by an automated gustometer presenting different concentrated solutions of sucrose (**A**), monopotassium glutamate with inosine 5′monophosphate (MPG+IMP; **B**), sodium chloride (NaCl; **C**), NaCl with amiloride (NaCl+amiloride; **D**), or bitter and sour stimuli (**E**). Each bar represents the mean ± STE from 10 to 16 animals tested. Statistical testing was based on UNIANOVA and post-hoc analysis using Bonferroni's multiple comparison test. Different letters indicate statistical significance.

Table S1. Relative expression of ENaC subunits in Scnn1^{++/++} and Scnn1^{aa/bb} mice. Data represent the relative expression of ENaC subunits normalized to β -actin and eEf2 in isolated taste buds and non-gustatory tissue of Scnn1^{++/++} (n = 4) and Scnn1^{aa/bb} (n = 6) mice fed with a sodium-adequate diet. Mean variances between Scnn1^{++/++} and Scnn1^{aa/bb} animals are indicated in %. Statistical testing was based on Student's *t*-test. Differences were considered to be significant if p < 0.05, as indicated in bold.

	ENaC subunit	Scnn1++/++ [33] (mean ± STABW)	Scnn1ªª/bb (mean ± STABW)	Scnn1 ^{aa/bb} / Scnn1 ^{++/++} (%)	<i>p-</i> Value
	α	0.0102 ± 0.0015	0.0151 ± 0.0053	148	0.071
fuP	β	0.0025 ± 0.0009	0.0062 ± 0.0030	247	0.049
	γ	0.0044 ± 0.0018	0.0093 ± 0.0026	212	0.011
	α	0.0390 ± 0.0054	0.0606 ± 0.0111	155	0.007
CV+foP	β	0.0015 ± 0.0002	0.0027 ± 0.0007	174	0.011
	γ	0.0012 ± 0.0002	0.0020 ± 0.0005	166	0.015
non-gustatory epithelium	α	0.0208 ± 0.0032	0.0228 ± 0.0061	110	0.567
	β	0.0007 ± 0.0002	0.0011 ± 0.0004	147	0.150
	γ	0.0008 ± 0.0001	0.0008 ± 0.0001	95.0	0.623
kidney	α	0.0341 ± 0.0005	0.0698 ± 0.0235	204	0.018
	β	0.0157 ± 0.0026	0.0260 ± 0.0086	166	0.052
	γ	0.0278 ± 0.0145	0.0425 ± 0.0112	153	0.107
distal colon	α	0.0268 ± 0.0085	0.0357 ± 0.0104	133	0.195
	β	0.0026 ± 0.0013	0.0051 ± 0.0017	193	0.045
	γ	0.0052 ± 0.0054	0.0091 ± 0.0068	173	0.374

Table S2. Statistical significance of different factors on the short-term preference tests of Scnn1^{++/++} and Scnn1^{aa/bb} animals after dietary intervention. After 4 weeks fed with sodium-adequate, low, or high salt diet, 10 to 11 Scnn1^{++/++} and Scnn1^{aa/bb} mice were subjected to short-term preference tests using an automated gustometer. To do so, animals were either restricted for 22.5 h with access to 2.0 mL water and 1 g food (attractive restriction conditions) or water-deprived for 22.5 h (aversive restriction conditions). Statistical significance (*p*-value) of lick responses to different concentrations of taste solutions based on diet (sodium-adequate, low, or high), genotype (Scnn1^{++/++} versus Scnn1^{aa/bb}), and diet X genotype interactions are shown. Statistical testing was based on UNIANOVA and post-hoc analysis using Bonferroni's multiple comparison test. Differences were considered to be statistically significant if *p* < 0.05, as indicated in bold.

Protocol	Substance	Concentration	Diet	Genotype	Diet X genotype
		10	0.736	0.761	0.609
		30	0.022	0.021	<0.001
	sucrose	100	0.182	0.412	0.376
		300	0.461	0.784	0.842
		1000	0.479	0.176	0.151
		1	0.282	<0.001	<0.001
		3	0.013	0.032	0.002
	MPG+IMP	10	0.957	<0.001	<0.001
		30	0.914	0.824	0.962
		100	0.166	0.985	0.545
		10	0.140	0.214	0.089
attractivo		30	0.009	0.122	0.014
attractive	NaCl	100	0.739	<0.001	0.029
		300	0.303	0.034	0.042
		1000	0.359	0.004	0.049
		10	0.250	0.058	0.125
	NaCl+amilorid e	30	0.599	0.127	0.431
		100	0.352	0.204	0.297
		300	0.430	0.078	0.205
		1000	0.596	0.490	0.548
	amiloride	0.1	0.414	0.001	0.012
	IMP	0.1	0.380	0.457	0.724
	denatonium	1	0.293	0.663	0.764
	citric aid	100	0.113	0.006	0.009
aversive		0.1	0.460	0.002	0.006
		0.3	0.545	0.001	0.035
	denatonium	1	0.308	0.030	0.038
		3	0.893	0.256	0.662
		10	0.914	0.240	0.884
		1	0.124	<0.001	0.003

Protocol	Substance	Concentration	Diet	Genotype	Diet X genotype
	citric acid	3	0.380	0.963	0.364
		10	0.362	<0.001	<0.001
		30	0.209	0.045	0.105
		100	0.005	0.022	0.003
		10	0.171	0.081	0.090
		30	0.861	0.632	0.759
	NaCl	100	0.183	0.505	0.525
		300	0.002	0.050	<0.001
		1000	<0.001	<0.001	<0.001
	NaCl+amilorid e	10	0.068	0.754	0.035
		30	0.002	0.144	<0.001
		100	0.067	0.307	0.284
		300	0.002	0.354	0.007
		1000	0.001	0.001	<0.001
	amiloride	0.1	0.389	0.002	0.028
	sucrose	300	0.009	0.815	0.007
	sucralose	10	0.080	0.166	0.025
	MPG+IMP	100	0.001	0.004	<0.001

Table S3. Statistical significance of different factors on the short-term preference tests of Scnn1^{++/++} and Scnn1^{aa/bb} animals. After 4 weeks fed with sodium-adequate, low, or high salt diet, 10 to 11 Scnn1^{++/++} and Scnn1^{aa/bb} mice were subjected to short-term preference tests using an automated gustometer. To do so, animals were either restricted for 22.5 h with access to 2.0 mL water and 1 g food (attractive restriction conditions) or water-deprived for 22.5 h (aversive restriction conditions). Data represent the statistical significance (*p*-value) of diet, genotype, concentration, and a different combination of them, based on all tested concentrations of one substance (first 4 listed substances for each protocol were tested for 5 concentrations, whereas the remaining were only checked for 1 concentration). *p*-Values were based on UNIANOVA and post-hoc analysis using Bonferroni's multiple comparison test. Differences were considered to be statistically significant if *p* < 0.05, as indicated in bold.

Protocol	Substance	Substance Factor	
		diet	0.797
		concentration	<0.001
	sucrose	diet X concentration	0.134
		genotype	0.743
		genotype X concentration	0.181
		diet X genotype	0.889
		diet X genotype X concentration	0.034
		diet	0.918
		concentration	<0.001
		diet X concentration	0.119
	MPG+IMP	genotype	0.001
		genotype X concentration	0.005
attractive		diet X genotype	0.031
attractive		diet X genotype X concentration	0.026
	NaCl	diet	0.360
		concentration	0.030
		diet X concentration	0.005
		genotype	<0.001
		genotype X concentration	0.640
		diet X genotype	0.001
		diet X genotype X concentration	0.004
		diet	0.075
		concentration	0.067
	NaCl+amiloride	diet X concentration	0.871
		genotype	0.001
		genotype X concentration	0.522

Protocol	Substance	Factor	<i>p</i> -Value
		diet X genotype	<0.001
		diet X genotype X concentration	0.974
		diet	0.414
	amiloride	genotype	0.001
		diet X genotype	0.012
		diet	0.380
	IMP	genotype	0.457
		diet X genotype	0.724
		diet	0.293
	denatonium	genotype	0.663
		diet X genotype	0.764
		diet	0.113
	citric aid	genotype	0.006
		diet X genotype	0.009
		diet	0.089
		concentration	<0.001
	denatonium	diet X concentration	0.757
		genotype	<0.001
		genotype X concentration	<0.001
		diet X genotype	<0.001
		diet X genotype X concentration	0.002
		diet	0.015
		concentration	<0.001
	citric acid	diet X concentration	0.497
		genotype	<0.001
aversive		genotype X concentration	<0.001
		diet X genotype	<0.001
		diet X genotype X concentration	<0.001
		diet	<0.001
		concentration	<0.001
		diet X concentration	0.012
	NaCl	genotype	0.060
		genotype X concentration	0.004
		diet X genotype	<0.001
		diet X genotype X concentration	<0.001
	NaCl+amiloride	diet	<0.001
		concentration	<0.001

Protocol	Substance	Factor	<i>p</i> -Value
		diet X concentration	<0.001
		genotype	0.758
		genotype X concentration	0.132
		diet X genotype	0.002
		diet X genotype X concentration	<0.001
		diet	0.389
	amiloride	genotype	0.002
		diet X genotype	0.028
		diet	0.009
	sucrose	genotype	0.815
		diet X genotype	0.007
		diet	0.080
	sucralose	genotype	0.166
		diet X genotype	0.025
		diet	0.001
	MPG+IMP	genotype	0.004
		diet X genotype	<0.001

Table S4. Statistical significance of different factors on the short-term preference tests of Scnn1^{++/++} and Scnn1^{aa/bb} animals after amiloride intervention for 36 h. After receiving sodium-adequate diet, animals either had access to water or amiloride-containing water (300 μ M), following short-term preference testing in an automated gustometer. Data represent the statistical significance (*p*-value) of an intervention (water with or without amiloride), genotype (Scnn1^{++/++} versus Scnn1^{aa/bb}), and intervention X genotype on different taste solutions and their concentrations. Statistical testing was based on UNIANOVA and post-hoc analysis using Bonferroni's multiple comparison test for data points of 10 to 16 animals. Differences were considered to be statistically significant if *p* < 0.05, as indicated in bold.

Substance	Concentration	Intervention	Genotype	Intervention X genotype
	10	0.002	0.160	0.001
sucrose	100	0.007	0.427	0.002
	1000	<0.001	0.776	<0.001
	1	0.633	0.531	0.198
MPG+IMP	10	0.001	0.003	<0.001
	100	<0.001	0.036	<0.001
	10	0.008	0.162	0.033
NaCl	100	<0.001	0.001	<0.001
	1000	<0.001	0.011	<0.001
NaCl+amiloride	10	<0.001	0.019	<0.001
	100	<0.001	0.525	<0.001
	1000	0.002	0.030	0.002
denatonium	10	0.583	0.599	0.684
citric aid	100	0.006	0.488	0.026

Table S5. Statistical significance of different factors on the short-term preference tests of Scnn1^{++/++} and Scnn1^{aa/bb} animals after access to amiloride-containing drinking water for 36 h. After receiving sodium-adequate diet, animals either had access to water or amiloride-containing water (300 μ M), following short-term preference testing in an automated gustometer. Data represent the statistical significance (*p*-value) of intervention (water with or without amiloride), genotype, concentration, and different combination/interaction of them based on all 5 concentrations tested for 1 stimulus/substance (for denatonium and citric acid only 1 concentration was tested). Test was based on UNIANOVA and post-hoc analysis using Bonferroni's multiple comparison test relying on data of 10 to 16 animals. Differences were considered to be statistically significant if *p* < 0.05, as indicated in bold.

Substance	Factor	<i>v</i> -Value
	intervention	<0.001
	concentration	<0.001
	intervention X concentration	<0.001
sucrose	genotype	0.998
	genotype X concentration	0.564
	intervention X genotype	<0.001
	intervention X genotype X concentration	<0.001
	intervention	<0.001
	concentration	<0.001
	intervention X concentration	<0.001
MPG+IMP	genotype	0.001
	genotype X concentration	0.119
	intervention X genotype	<0.001
	intervention X genotype X concentration	0.001
	intervention	<0.001
	concentration	<0.001
	intervention X concentration	0.003
NaCl	genotype	<0.001
	genotype X concentration	0.019
	intervention X genotype	<0.001
	intervention X genotype X concentration	0.001
	intervention	<0.001
	concentration	<0.001
	intervention X concentration	0.002
NaCl+amiloride	genotype	0.007
	genotype X concentration	0.364
	intervention X genotype	<0.001
	intervention X genotype X concentration	0.014
	intervention	0.583
denatonium	genotype	0.599
	intervention X genotype	0.684
	intervention	0.006
citric aid	genotype	0.488
	intervention X genotype	0.026