Role of vitamin D in preventing and treating selected extraskeletal diseases – an umbrella review

Content of supplement

Abbreviations	2
Table S1: Search strategy in PubMed.	3
Table S2: Meta-analyses of RCTs - Asthma	11
Table S3: Meta-analyses of prospective cohort studies – Asthma	15
Table S4: Systematic Reviews of RCTs – Asthma	18
Table S5: Systematic Reviews of prospective cohort studies – Asthma	20
TableS6: Meta-analyses of RCTs – COPD	
Table S7: Meta-analyses of prospective cohort studies – COPD	22
Table S8: Systematic Reviews of RCTs – COPD	23
Table S9: Systematic Reviews of prospective cohort studies - COPD	25
Table S10: Meta-analyses of RCTs – ARI	
Table S11: Meta-analyses of prospective cohort studies – ARI	32
Table S12: Systematic Reviews of RCTs – ARI	33
Table S13: Systematic Reviews of prospective cohort studies - ARI	34
Table S14: Meta-analyses of RCTs – Cognitive decline	
Table S15: Meta-analyses of prospective cohort studies – Dementia and cognitive decline	37
Table S16: Systematic Reviews of RCTs – Cognitive decline	41
Table S17: Systematic Reviews of prospective cohort studies - Dementia and cognitive decline	43
Table S18: Meta-analyses of RCTs – Depression	46
Table S19: Meta-analyses of prospective cohort studies – Depression	49
Table S20: Systematic Reviews of RCTs- Depression	50
Table S21: Systematic Reviews of prospective cohort studies – Depression	54
Table S22: Meta-analyses of RCTs – MS	56
Table S23: Systematic Reviews of RCTs – MS	61
Table S24: Systematic Reviews of prospective cohort studies – MS	65
Table S25: Meta-analysis of prospective cohort studies – T1DM	67
Table S26: Systematic Reviews of RCTs – T1DM	68
Figure S1: PRISMA flow diagram – Asthma	4
Figure S2: PRISMA flow diagram – COPD	5
Figure S3: PRISMA flow diagram – ARI	
Figure S4: PRISMA flow diagram – Dementia and cognitive decline	7
Figure S5: PRISMA flow diagram – Depression	8
Figure S6: PRISMA flow diagram – MS	
Figure S7: PRISMA flow diagram – T1DM	10
References	70

Abbreviations

25(OH)D AECOPD aIRR	25-hydroxyvitamin-D acute exacerbation COPD adjusted incidence rate ratio
ARI	acute respiratory tract infection(s)
ARR	annualised relapse rate
CI	confidence interval
CIS	clinically isolated syndrome
COPD	chronic obstructive pulmonary disease
EDSS	expanded disability status scale
FCP	fasting C-peptide
FeNO	fraction of exhaled nitric oxide
FEV1	forced expiratory volume in 1 second
FFQ	food frequency questionnaire
FIS	fatigue impact scale
HR	hazard ratio
IFN-β	interferon-beta
IL	interleukin
i.m.	intramuscular
IPD	individual patient data
IU	international unit(s)
LRTI	lower respiratory tract infection(s)
MA	meta-analysis
MD	mean difference
MRI	magnetic resonance imaging
MS	multiple sclerosis
MSFC	multiple sclerosis functional composite
NR	not reported
OR	odds ratio
PFT	pulmonary function test
PMS	premenstrual syndrome
RCT	randomised controlled trial
RR	relative risk
RRMS	relapsing-remitting multiple sclerosis
RTI	respiratory tract infection(s)
SCP	stimulated C-peptide
SMD	standardised mean difference
SR	systematic review
T1DM	type 1 diabetes mellitus
TMT	trail making test
URTI	upper respiratory tract infection(s)

Table S1: Search strategy in PubMed¹.

Study type	Metaanalysis[tiab] OR "Meta analysis"[tiab] OR "Meta analyses"[tiab] OR Meta-analy*[tiab] OR "systematic review"[tiab] OR systematic[sb] ² OR "Meta-
	Analysis [mh]"
Vitamin D	"vitamin d" [tiab] OR "vitamin d3" [tiab] OR "vitamin d2" [tiab] OR cholecalciferol [tiab] OR ergocalciferol [tiab] OR calcidiol [tiab] OR "25- hydroxyvitamin D" [tiab] OR 25-hydroxycholecalciferol [tiab] OR hydroxycholecalciferol [tiab] OR calcifediol [tiab] OR calcitriol [tiab] OR "1,25- dihydroxyvitamin D" [tiab] OR 1,25-dihydroxycholecalciferol [tiab] OR dihydroxycholecalciferol [tiab] OR "1-alpha-hydroxyvitamin D" [tiab] OR alfacalcidiol [tiab] OR Paricalcitol [tiab] OR "vitamin d" [mh]
ARI	<pre>"respiratory tract infection" [tiab] OR "respiratory tract infections" [tiab] OR RTI [tiab] OR "respiratory infection" [tiab] OR "respiratory infections" [tiab] OR ARI [tiab] OR ARTI [tiab]OR LRTI [tiab] OR URTI [tiab] OR "common cold" [tiab] OR pneumonia [tiab] OR influenza [tiab] OR flu [tiab] OR "respiratory tract infections" [mh] OR "respiratory tract diseases" [mh]</pre>
Asthma	asthma [tiab] OR "asthma" [mh]
COPD	COPD [tiab] OR "chronic obstructive pulmonary disease" [tiab] OR "chronic obstructive lung disease" [tiab] OR exacerbation [tiab] OR exacerbations [tiab] OR emphysema [tiab] OR bronchitis [tiab] OR "pulmonary disease, chronic obstructive" [mh]
Dementia and cognitive decline	dementia [tiab] OR dementias [tiab] OR alzheimer [tiab] OR alzheimers [tiab] OR alzheimer's [tiab] OR cognitive [tiab] OR cognition [tiab] OR "lewy body disease" [tiab] OR "frontotemporal lobar degeneration" [tiab] OR neurodegenerative [tiab] OR neurodegeneration [tiab] OR dementia [mh] OR "cognitive dysfunction" [mh]
Depression	depression [tiab] OR depressions [tiab] OR depressive [tiab] OR "affective disorder" [tiab] OR "affective disorders" [tiab] OR mood [tiab] OR "depression" [mh] OR "depressive disorder" [mh]
T1DM	"type 1 diabetes" [tiab] OR "diabetes mellitus type 1" [tiab] OR "Diabetes Mellitus, Type 1" [mh]
MS	"multiple sclerosis" [tiab] OR "neuroinflammatory autoimmune disease" [tiab] OR "multiple sclerosis" [mh]

¹ Identical search terms for the systematic literature searches across the Cochrane Reviews library

² PubMed systematic reviews filter before December 2018

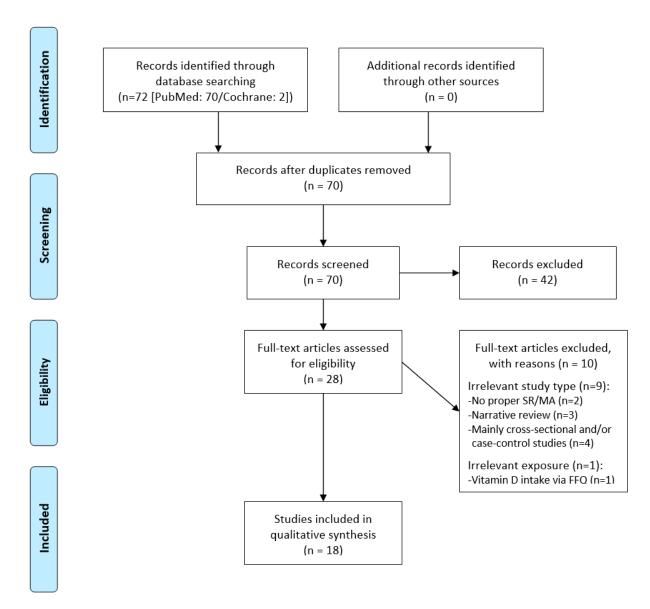


Figure S1: PRISMA flow diagram – Asthma

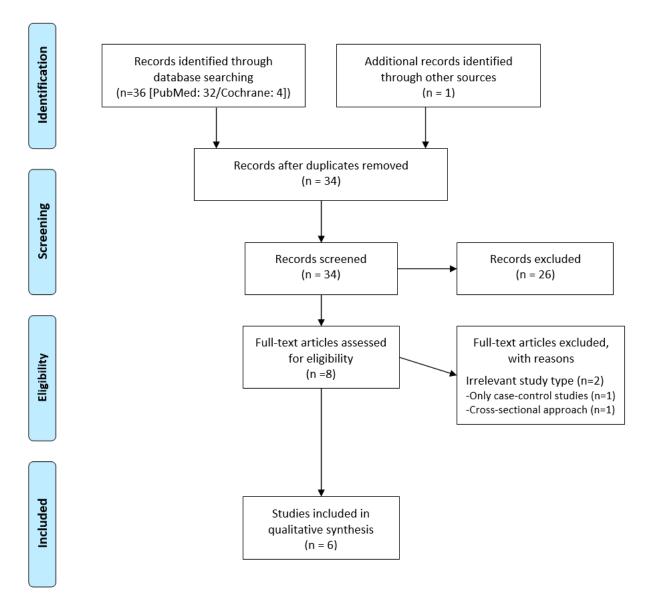


Figure S2: PRISMA flow diagram – COPD

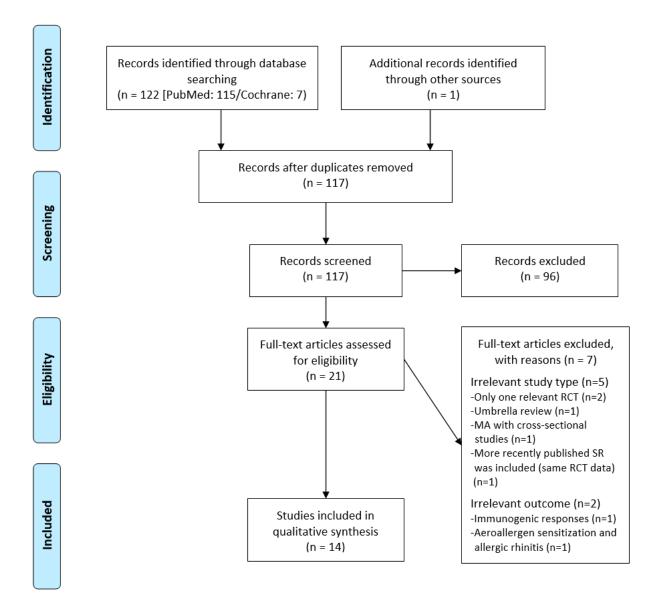


Figure S3: PRISMA flow diagram – ARI

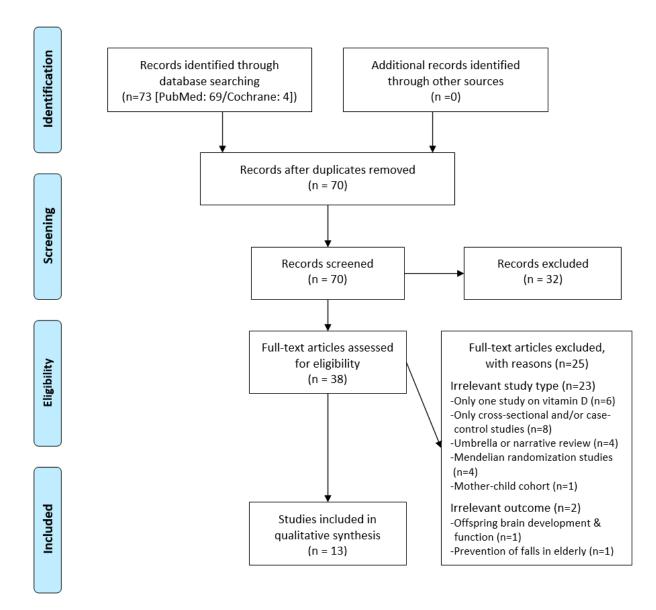


Figure S4: PRISMA flow diagram – Dementia and cognitive decline

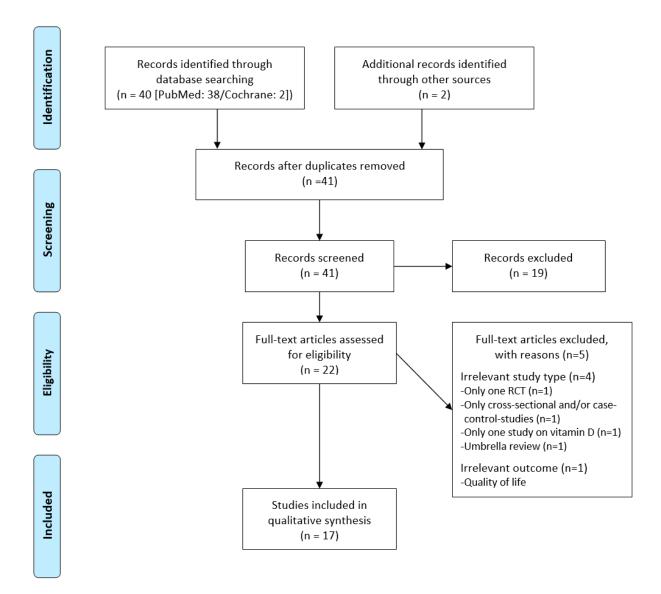


Figure S5: PRISMA flow diagram – Depression

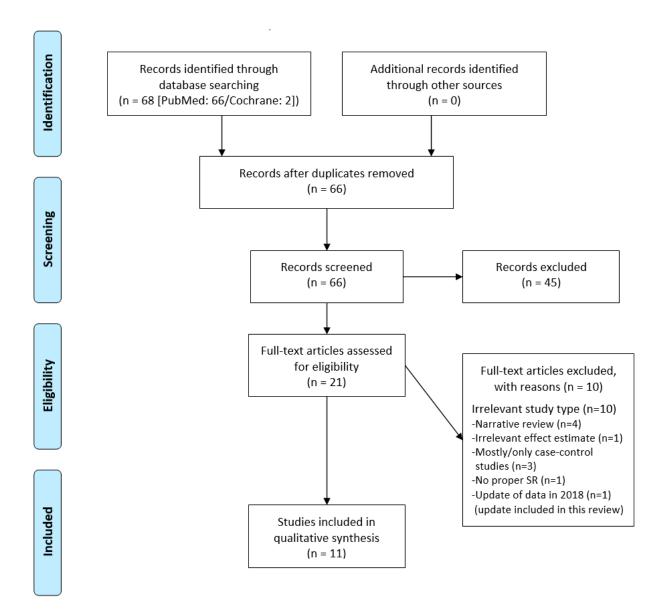


Figure S6: PRISMA flow diagram – MS

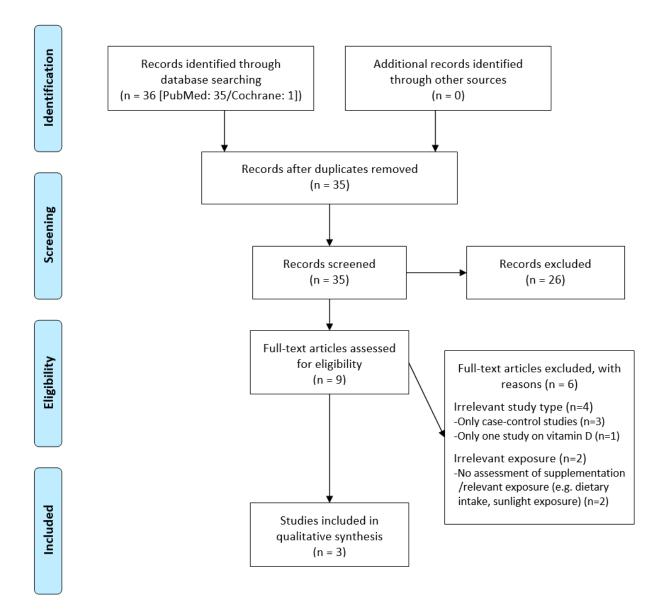


Figure S7: PRISMA flow diagram – T1DM

Meta-analy	ses of RCTs						1
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results/ Summary statistics (95% CI)	AMSTAR 2
Jolliffe et al. 2017 [1]	7	n= 955 participants with asthma (297 children, 658 adults) Both sexes Age: 1.6-85 yr	Vitamin D₃ 1200 IU/d (4 mth) 500 IU/d (6 mth) 100,000 IU bolus, then 4000 IU/d (28 wk) 120,000 IU bolus once/2 mth (1 yr) 800 IU/d, first 2 mth (6 mth) 2000 IU/d (15 wk) 100,000 IU bolus, then 400 IU/d (6 mth)	Placebo Placebo Placebo Placebo Placebo 400 IU/d	Rate of asthma exacerbations requiring treatment with systemic corticosteroidsProportion of people with ≥ 1 exacerbation treated with systemic corticosteroids (secondary outcome)Asthma exacerbation resulting in emergency department attendance or hospital admission or both (secondary outcome)Asthma exacerbation as defined in primary trial (secondary outcome)	Overall results: aIRR 0.74 (0.56, 0.97) Adjusted OR 0.75 (0.51, 1.09) Adjusted OR 0.46 (0.24, 0.91) Adjusted OR 0.81 (0.58, 1,11)	No assessment, because IPD-MA
Vahdaninia et al. 2017 [2]	3	n= 1493 mother-child- pairs/ 337 events Both sexes Age: NR	<u>Vitamin D3</u> 2400 IU/d (3.5-4 mth + 1 wk) 200,000 IU bolus (vitamin D3) or 800 IU/d (until	Placebo No treatment	Asthma or wheeze incidence assessed at 3 years of age	RR 0.81 (0.67, 0.98)	Moderate

Table S2: Meta-analyses of RCTs - Asthma

Author,	ses of RCTs Included	Participants	Vitamin D dose	Control/	Outcome	Results/	AMSTAR 2
year	studies (n)	(n), gender, age	Vitaliin D uose	Comparator		Summary statistics (95% CI)	
			delivery vitamin D ₂ ; 3 mth + 1 wk) <u>Vitamin D</u> 4000 IU/d (5-7.5 mth)	No treatment			
Martineau et al. 2016 [3]	9	n= 1093 participants with asthma (435 children, 658 adults)	<u>Vitamin D3</u> 100,000 IU bolus, then 4000 IU/d (28 wk) 100,000 IU bolus, then 400 IU/d (6 mth)	Placebo Placebo, then 400 IU/d	Rate ratio of exacerbations requiring treatment with systemic corticosteroids (primary outcome)	RR 0.64 (0.46, 0.90) (3 studies)	High
		Majority of participants: mild/moderate asthma 25(OH)D concentrations	1000 IU/d (12 mth) 1000 IU/wk (3 mth) 500 IU/d (6 mth) 120,000 IU/2 mth	Placebo Placebo Placebo Placebo	≥ 1 exacerbations requiring visits to an emergency department or hospitalisation (secondary outcome)	OR 0.39 (0.19, 0.78) (7 studies)	
		at baseline: 48-89 nmol/l; small minority: < 25 nmol/l	(12 mth) 800 IU/d (2 mth) 1200 IU/d (24 wk) 60,000 IU/mth (6 mth)	Placebo Placebo Placebo	People with ≥ 1 exacerbation (secondary outcome) Asthma control test (secondary outcome)	OR 0.53 (0.28, 0.99) (7 studies) MD -0.08 (-0.70, 0.54) (3 studies)	_
		Both sexes Age: 1 - ≥18 yr			FEV1 (% of predicted value) (secondary outcome)	MD 0.48 (0.93, 1.89) (4 studies)	
Luo et al. 2015 [4]	7	n= 903 participants with asthma	<u>Vitamin D</u> (frequency: NR)		Rate of asthma exacerbation	RR 0.66 (0.32, 1.37) (3 studies)	Moderate

Author,	ses of RCTs Included	Participants	Vitamin D dose	Control/	Outcome	Results/	AMSTAR 2
year	studies	(n), gender,	Vitanini D uose	Comparator	outcome	Summary statistics (95% CI)	11110111112
yeur	(n)	age		comparator			
		3 studies in children (mean age 9 yr), 4 in adults	1000 IU +calcium (6mth) 1000 IU subcutaneous,12 mth)	Calcium + Placebo Placebo	FEV1 (% of predicted value)	SMD -0.02 (-0.15, 0.11) (4 studies)	
		(mean age 40- 55 yr) 25(OH)D	650 IU (subcutaneous, 12 mth)	Placebo	FeNO	SMD -0.02 (-0.16, 0.12) (2 studies)	
		concentrations at baseline: 49.8-60 nmol/l	100,000 IU, then 4000 IU (oral, 28 wk)	Placebo	Asthma control test	SMD -0.05 (-0.17, 0.06)	-
		Both sexes Age: 9-59 yr	60,000 IU (oral, 6 mth) 40,000 IU (oral, 9 wk) 120,000 IU (oral,	Placebo Placebo Placebo		(2 studies)	
			12 mth)	1 Idcebb			
Riverin et al. 2015 [5]	8	n= 573 children diagnosed with asthma	<u>Vitamin D3</u> 650 IU/d (12 mth) 60,000 IU/mth (6 mth) 500 IU/d (6 mth)	Placebo No treatment Placebo	Emergency department visits and/or hospitalisation admissions for asthma exacerbations	Significantly less emergency department visits for children treated with vitamin D (1 study, n=100)	High
		Both sexes Age: 3-18 yr	1000 IU/d (12 mth)	No treatment	Rate of asthma exacerbations (secondary outcome)	RR 0.41 (0.27, 0.63) (3 studies)	
			500 IU/d (6 mth) 1200 IU/d (4 mth)	Placebo No treatment	Asthma symptom scores (secondary outcome)	SMD 0.10 (-0.59, 0.80) (3 studies)	

Author,	ses of RCTs Included	Participants	Vitamin D dose	Control/	Outcome	Results/	AMSTAR 2
year	studies	(n), gender,		Comparator		Summary statistics (95% CI)	
	(n)	age					
			1000 IU/wk (12 mth)	Placebo	FEV1 (% of predicted	MD 0.00 (-3.17, 3.1)	
			600 IU/d (1 mth)	Placebo	value) (secondary outcome)		
Xiao et al.	2	n= 478	Vitamin D ₃	NR	Asthma exacerbation	RR 0.28 (0.12, 0.64)	High
2015 [6]		children with	1200 IU/d (4 mth)		triggered by		
		newly	500 IU/d (6 mth)		respiratory infections		
		diagnosed	500 IU/a (8 mm)				
		asthma					
		Both sexes					
		Age: 10-12 yr					
Fares et al.	2	n=102	Vitamin D ₃	Placebo	FEV1 (% of predicted	MD -0.54 (-5.28, 4.19)	High
2015 [7]	2	children with	1000 IU/week (1 yr)	1 lacebo	value)	(2 studies)	111611
2010 [7]		asthma			value)	(2 studies)	
		usunnu	500 IU (frequency: NR;				
		Both sexes	6 mth)				
		Age: 5-18 yr					
Pojsupap	3	n= 578	<u>Vitamin D₃</u>	Placebo	Asthma exacerbations	RR 0.41 (0.27, 0.63) (3 studies)	Moderate
et al. 2015		children and	1200 IU/d (15-17 wk)				
[8]		adolescents	500 IU/d (26 wk)				
		2/3 studies	(0,000 HI/ (1, (0 (1))				
		included	60,000 IU/mth (26 wk)				
		asthmatic					
		patients. One					
		study enrolled					
		430 school					
		children; 26%					

Meta-analy	Meta-analyses of RCTs								
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results/ Summary statistics (95% CI)	AMSTAR 2		
		diagnosed with asthma Both sexes Age: 5-18 years							

Table S3: Meta-analyses of prospective cohort studies – Asthma

Meta-analy	ses of prospe	ective cohort stud	ies				
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results/ Summary statistics (95% CI)	AMSTAR 2
Shen et al. 8 2018 [9]	8	n= 35,000 mother-child- pairs	25(OH)D in maternal blood or cord blood	-	Asthma incidence assessed at > 5 years of age	Highest vs. lowest category of 25(OH)D (8 studies): OR 0.96 (0.79, 1.18)	High
		asthma incidence in adulthood				≥ 75 nmol/l vs. < 50 nmol/l (5 studies): OR 1.11 (0.92, 1.33)	
		(1 study) Both sexes			Asthma incidence assessed at ≤ 5 years of age	Highest vs. lowest category of 25(OH)D (6 studies): OR 0.81 (0.65, 1.01)	
		Age: NR				≥ 75 nmol/l vs. < 50 nmol/l (6 studies): OR 0.93 (0.85, 1.03)	

Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results/ Summary statistics (95% CI)	AMSTAR 2
Pacheco- González et al. 2018 [10]	14	n= 33,521 mother-child- pairs Both sexes Age: NR	25(OH)D in maternal blood or cord blood	-	Asthma incidence in childhood assessed between 3-14 years of age	Highest vs. lowest category of 25(OH)D: OR 0.91 (0.78, 1.06)	High
Song et al. 2017 [11]	15 (14 birth cohorts and 1 nested case- control study) Meta- analysis of 12 cohort studies	n= 12,758 mother-child- pairs/ 1795 events Both sexes Age: ≤ 18 yr	25(OH)D in maternal blood or cord blood mean maternal 25(OH)D ranged from 44 to 74 nmol/l	-	Incidence of childhood asthma	Highest vs. lowest category of 25(OH)D (12 studies): RR 0.87 (0.75, 1.02) Per 10 nmol/l increase of maternal 25(OH)D levels (7 studies): RR 0.99 (0.95, 1.02) An U-shaped dose-response relationship was found between 25(OH)D levels and risk of childhood asthma, with the lowest risk at approx. 70 nmol/l of 25(OH)D, and remained protective until a concentration of about 130 nmol/l. Further increase tended to be a risk factor for childhood asthma.	High
Feng et al. 2017 [12]	10	n= 8871 mother-child-	25(OH)D in maternal blood or cord blood	-	Asthma incidence in childhood assessed at 4-14 years of age	Highest vs. lowest category of 25(OH)D (8 studies): OR 0.84 (0.70, 1.01)	High

Author,	Included	Participants	Vitamin D dose	Control/	Outcome	Results/	AMSTAR 2
year	studies	(n), gender,		Comparator		Summary statistics (95% CI)	
	(n)	age					
		pairs/ 1494 events Both sexes Age: NR				Each 10 nmol/l increment in 25(OH)D (8 studies): OR 0.99 (0.97, 1.02)	
Wei et al. 2016 [13]	4	n= 3666 mother-child- pairs Both sexes Age: NR	25(OH)D in maternal blood or cord blood (3 studies) or intake of vitamin D via food or supplement (1 study)	-	Asthma incidence in childhood assessed at 5-6 years of age	Highest vs. lowest category of 25(OH)D: OR 0.98 (0.94, 1.02)	High
Man et al. 4 2015 [14]	4	n=1291 events Both sexes	25(OH)D (maternal blood or cord blood) Deficiency: <50 nmol/l	-	Incidence of childhood asthma	Vitamin D deficiency (4 studies): RR 1.57 (1.26, 2.02)	Low
		Age: 0-<12 yr	Insufficiency: < 75 nmol/l			Vitamin D insufficiency (2 studies): RR 1.25 (1.01, 1.55)	
Cassim et al. 2015 [15]	11	n= range: 14 to 6487 mother- child-pairs Both sexes Age: 1-20 yr	25(OH)D in maternal blood or cord blood 25(OH)D levels in childhood (4 cohorts)	Asthma incidence	Parental reports, physician diagnosis of asthma, use of inhaler medication for asthma	No association between 25(OH)D levels and asthma incidence (studies= 5/6). Increasing maternal serum 25(OH)D during pregnancy increased the risk of asthma in offspring at age of 9 (1 study). Investigated incident asthma in children with serum 25(OH)D	Very low
						measured in childhood found no association. (3/4 studies)	

Meta-analy	yses of prospe	ective cohort stud	lies				
Author,	Included	Participants	Vitamin D dose	Control/	Outcome	Results/	AMSTAR 2
year	studies	(n), gender,		Comparator		Summary statistics (95% CI)	
	(n)	age					
			25(OH)D levels in	Asthma		High vs. low 25(OH)D levels	
			childhood	exacerbations		(2 cohort studies and 2 cross-	
				requiring		sectional studies):	
				hospitalisation		RR 0.64 (0.50, 0.81)	
				and treatment			
				with oral			
				steroids			

Table S4: Systematic Reviews of RCTs – Asthma

Systematic 1	Reviews of R	CTs					
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results	AMSTAR 2
Shen et al. 2018 [9]	2	n= 1499 mother-child- pairs Both sexes Age: NR	Vitamin D ₃ 2400 IU/d 4000 IU/d + multivitamin with 400 IU	Placebo Placebo + multivitamin with 400 IU vitamin D	Asthma incidence assessed from birth to 3 years of age	Non-significant trends of vitamin D supplementation during pregnancy on preventing the development of offspring asthma.	High
Fares et al. 2015 [7]	4	n= 149 children with asthma Both sexes Age:5-18 yr	Vitamin D ₃ 1000 IU/wk (1yr) 1000 IU/d (1yr) 600 IU/d (+multivitamin supplement) (4wk)	No treatment Placebo Placebo	Asthma symptoms	Improvement in asthma symptoms in the vitamin D supplemented study group, but no statistically significant difference between the groups (3 studies).	High

Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results	AMSTAR 2
			500 IU (frequency: NR; 6 mth)	Placebo		No effect of vitamin Dsupplementation on the asthmasymptom score (1 study).The RCTs used differentinstruments to measure theoutcome, therefore results werenot pooled in a meta-analysis.	
Pojsupap et al. 2015 [8]	5	n= 625 children and adolescents 4/5 studies included asthmatic patients. One study enrolled 430 school children; 26% diagnosed with asthma Both sexes Age: 5-18 years	Vitamin D ₃ 600 IU/d (4 wk) 1200 IU/d (15-17 wk) 500 IU/d (26 wk) 1000 IU/d (26, 52 wk) 60,000 IU/month (26 wk)	Placebo	PFT Asthma symptom scores	Greater improvements in PFTs for the vitamin D group (2/4 studies) Report of pre- and postintervention (2/3 studies). No difference in symptom score between groups (1/2 studies) and a greater reduction in asthma symptoms in the placebo group (1/2 studies).	Moderate

Systematic	Reviews of p	prospective cohor	t studies				
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results	AMSTAR 2
Jat and Khairwa 2017 [16]	3 (birth cohorts)	n= 3991 mother-child- pairs	25(OH)D in maternal blood or cord blood	-	asthma incidence assessed at age of 4 to 14	Inverse association between 25(OH)D concentrations and asthma/severe asthma at age of 4; no association between 25(OH)D and severe asthma at age of 8 (1 study). No association between cord blood vitamin D levels and incidence of asthma at age of 5 for insufficiency and deficiency compared to sufficiency (1 study) In a pregnancy cohort asthma at age of 14 was not related to vitamin D levels.	Moderate
Cassim et al. 2015 [15]	4 (2 cohort studies, 2 cross- sectional studies)	n= range: 226 to 1024 mother-child- pairs Both sexes Age: 1-20 yr	25(OH)D levels in childhood	-	Asthma exacerbations requiring hospitalisation and treatment with oral steroids	High vs. low 25(OH)D levels: RR 0.64 (0.50, 0.81)	Very low

Table S5: Systematic Reviews of prospective cohort studies – Asthma

Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results	AMSTAR 2
Harvey et al. 2014 [17]	3	n= 2234 mother-child- pairs Both sexes Age: NR	25(OH)D in maternal blood or cord blood	-	Asthma incidence	 Cord blood levels of 25(OH)D had no association with incident asthma at age of 5. No association between maternal 25(OH)D and offspring asthma at age of 4-6. Children whose mothers had a 25(OH)D level in pregnancy of > 75 nmol/l had an increased risk of asthma at age of 9 compared to children whose mothers had a level < 30 nmol/l. 	High
Rajabbik et al. 2014 [18]	3	n= 4684 children Both sexes Age: 8-15.5 yr	Serum 25(OH)D	-	Asthma incidence	Low serum 25(OH)D level was associated with an increased risk of developing asthma late in childhood (2 studies), while one found no association.	High

TableS6: Meta-analyses of RCTs – COPD

Meta-analy	Meta-analyses of RCTs										
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results/ Summary statistics (95% CI)	AMSTAR 2				
Jolliffe et al. 2019 [19]	3 (individual participant data)	n=472 Both sexes (66.7% men) Age: 40-86 yr	<u>Vitamin D3</u> 100,000 IU/mth (12 mth) 120,000 IU/2 mth (12 mth) 1200 IU/d (6 mth)	NR	Rate of COPD exacerbations	Overall results: aIRR 0.94 (0.78, 1.13)Baseline 25(OH)D levels < 25 nmol/l (87 participants): aIRR 0.55 (0.36, 0.84)Baseline 25(OH)D levels \geq 25 nmol/l (382 participants): aIRR 1.04 (0.85, 1.27)	Low				

Table S7: Meta-analyses of prospective cohort studies – COPD

Meta-analy	ses of prospe	ctive cohort stud	ies				
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results/ Summary statistics (95% CI)	AMSTAR 2
Zhu et al. 2016 [20]	2 cohort and 5 case- control studies	n= 2091 COPD patients Both sexes Age: NR	25(OH)D	-	Severity of COPD	25(OH)D level of severe-very severe COPD patients vs. mild- moderate COPD patients: SMD -0.87 (-1.51, -0.22).	High
	2 cohort and 3 case- control studies	n= 278 AECOPD patients & 563 stable COPD patients Both sexes Age: NR			COPD exacerbations	25(OH)D level of AECOPD patients vs. stable COPD patients: SMD -0.43 (-0.70, -0.15)	

Meta-analys	ses of prospe	ctive cohort stud	ies				
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results/ Summary statistics (95% CI)	AMSTAR 2
Zhu et al. 2015 [21]	8	n=6313 COPD patients/2418 controls*	25(OH)D Deficiency: 25(OH)D	-	COPD	25(OH)D levels of COPD patients vs. controls (4 studies): SMD 0.19 (-0.13, 0.51)	Moderate
		(for 3 studies data NR) Both Sexes	<50 nmol/l			Deficiency rates COPD patients vs. controls (4 studies): RR 0.96 (0.75, 1.21)	
		Age: NR			Severity of COPD	Deficiency rates of 25(OH)D (mild COPD vs. moderate/ severe COPD) (3 studies): RR 0.72 (0.63, 0.83)	
						Deficiency rates of 25(OH)D (moderate COPD vs. severe COPD) (n=4): RR 0.74 (CI 0.56, 0.98)	

Table S8: Systematic Reviews of RCTs – COPD

Systematic	Reviews of R	RCTs					
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results	AMSTAR 2
Ferrari et al. 2018 [22]		510 COPD patients Both Sexes Age: NR	<u>Vitamin D3</u> Dose: NR	NR	Exacerbation frequency	Vitamin D ₃ supplementation reduced the risk of moderate and severe exacerbation in COPD patients with 25(OH)D levels <50 nmol/l or < 25nmol/l (2/3 studies).	Very low

Author,	Reviews of F	Participants	Vitamin D dose	Control/	Outcome	Results	AMSTAR 2
year	studies	(n), gender,		Comparator			
5	(n)	age		1			
Autier et al. 2017 [23]	3	n=512 COPD patients Both Sexes Age: NR	<u>Vitamin D</u> very high doses (7 d – 1 yr)	Calcitriol 10 IU/d or placebo	Respiratory function and time to first exacerbation	No effect of vitamin D supplementation on the investigated outcome parameters.	Low
Zhu et al. 2015 [21]	5	n=596 COPD patients (300 vitamin D, 296 with placebo) Both sexes Age: NR	<u>Vitamin D</u> 100,000 IU/mth (6 mth) 120,000 IU/2 mth (6 mth) 2000 IU/d (6 wk) 100,000 IU/mth (1 yr) 100,000 IU/mth (1 yr)	Placebo	Exacerbations, maximal oxygen uptake, inspiratory Muscle strength	Beneficial effect of vitamin D intake in COPD patients (4/5 studies). Inhibition of exacerbations and improvement of FEV1 within severe COPD patients or patients with baseline 25(OH)D levels <50 nmol/l. Improvements in inspiratory muscle strength and maximal oxygen uptake.	Moderate
Autier et al. 2014 [24]	1	n= 182 Sex and age: NR	<u>Vitamin D</u> 3560 IU/d (12 mth)	Placebo	Exacerbation	No improvement.	Low

Systematic	Reviews of p	prospective cohort	t studies				
Author, year	Included studies	Participants (n), gender,	Vitamin D dose	Control/ Comparator	Outcome	Results	AMSTAR 2
Ferrari et al. 2018 [22]	(n) 6	age n= 2473 COPD patients Both sexes Age: NR	25(OH)D	-	Exacerbation frequency	No association between exacerbation frequency and vitamin D levels (majority of studies).	Very low
Autier et al. 2014 [24]	2	n=1070 Both sexes Age: NR	25(OH)D	-	Exacerbation	Data from two studies of patients with COPD showed decreases in risk of exacerbation with high 25(OH)D concentrations	Low

Table S9: Systematic Reviews of prospective cohort studies – COPD

Table S10: Meta-analyses of RCTs – ARI

Meta-analys	ses of RCTs						
Author,	Included	Participants	Vitamin D dose	Control/	Outcome	Results/	AMSTAR 2
year	studies	(n), gender,		Comparator		Summary statistics (95% CI)	
	(n)	age					
Martineau	25	n= 10,933	Vitamin D ₃		Proportion of	Adjusted OR 0.88 (0.81, 0.96)	No
et al. 2019		participants	2000 IU/d (3 mth)	Placebo	participants	(25 studies)	assessment,
[25]		Both sexes	1200 IU/d (4 mth)	Placebo	experiencing at least one ARI		because IPD-MA
		Age: 0-95 yr	100,000 IU bolus (3 mth)	Placebo	ARI rate	Adjusted incidence rate ratio 0.96 (0.92, 0.997) (25 studies)	
			400 IU/d (6 mth)	Placebo	Time to first ARI	Adjusted HR 0.95 (0.89, 1.01) (8 studies)	

Meta-analy	yses of RCTs						
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results/ Summary statistics (95% CI)	AMSTAR 2
			500 IU/d (6 mth)	Placebo			
			1400 IU/wk (6 mth)	Placebo			
			100,000 IU bolus/mth (1y)	Placebo			
			100,000 IU bolus/3 mth (1.5 yr)	Placebo			
			300 IU/d (7 wk)	Placebo			
			2x 200,000 IU/mth, then 100,000 IU/mth (1,5 yr)	Placebo			
			4000 IU/d (1yr)	Placebo			
			1000 IU/d (6 mth)	Placebo			
			1000 IU/d (average: 13 mth)	Placebo			
			60,000 IU/mth or 30,000 IU/mth (1 yr)	Placebo			
			10,000 IU/wk (8 wk)	Placebo			
			2000 IU/d (2 mth)	Placebo			
			Mothers: 1000 or 2000 IU/d Infants: 400 or 800 IU/d (9 mth: 3 mth	Placebo			

Author,	yses of RCTs Included	Participants	Vitamin D dose	Control/	Outcome	Results/	AMSTAR 2
year	studies	(n), gender,	vituinin D uose	Comparator		Summary statistics (95% CI)	11110 I MK 2
yeur	(n)	age		comparator			
			in pregnancy, 6 mth in				
			infants)				
			120,000 IU/2 mth (1yr)	Placebo			
			Older adults:	Placebo+			
			96,000 IU/2 mth + 400	400 IU/d			
			IU/d (1 yr)				
			Carers:	Carers:			
			120,000 IU/2 mth (1 yr)	Placebo			
			20,000 IU/wk (17 wk)	Placebo			
			2000 IU/d (12 wk)	Placebo			
			100,000 IU bolus, then 4000 IU/d (28 wk)	Placebo			
			800 IU/first 2 mth (6 mth)	Placebo			
			2000 IU//d (15 wk)	Placebo			
			100,000/mth, + ≤ 1000 IU/d (1 yr)	Placebo + 400- 1000 IU/d			
Das et al.	7	n= 1529	Vitamin D ₃	Placebo	Time to resolution of	MD -0.95 (-6.14, 4.24)	High
2018 [26]		participants	1000 IU		acute pneumonia	(3 studies)	
		Both sexes	children < 1 yr; 5 d		Duration of	MD 0 40 (8 41 0 40)	_
		Age: 1 mth –	2000 IU		Duration of	MD 0.49 (-8.41, 9.40)	
		5 yr	children > 1 yr; 5 d		hospitalisation	(4 studies)	

Meta-analys	ses of RCTs						
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results/ Summary statistics (95% CI)	AMSTAR 2
			100,000 IU bolus (i.m.; 3 mth)				
			100,000 IU bolus (29 mth)				
			100,000 IU bolus (2 mth)				
			50,000 IU/d for 2 d (12 mth)				
			1000 IU children < 1 yr; 5 d 2000 IU				
			children > 1 yr; 5 d 100,000 IU bolus (12 mth)				
Vuichard Gysin et al. 2016 [27]	14	n= 7053 participants	<u>Vitamin D3</u> Years 1-2: 800 IU Year 3: 2000 IU +	Calcium 1200- 1500 mg/d	Risk of clinical RTI	Vitamin D vs. control (14 studies) RR 0.94 (0.88, 1.00)	High
		Both sexes Average age: 19 yr	calcium 1200-1500 mg/d (3 yr) 300 IU/d with	Non fortified	Risk of laboratory confirmed RTI	Vitamin D vs. control (4 studies) RR 0.90 (0.68, 1.21)	
			mongolian milk (7 wk) 1000 IU/d (8 wk)	Milk No treatment	Mean duration of RTI symptoms	Vitamin D vs. control (6 studies) MD -0.06 (-0.29, 0.18)	
			2000 IU/d (12 wk)	Placebo	Number of days absent from	Vitamin D vs. control (3 studies)	

Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results/ Summary statistics (95% CI)	AMSTAR 2
			+/-10,000 IU/wk (8 wk) 400 or 800 IU/d (12 mth) 400 IU/d (6 mth)	Placebo Placebo Placebo	work/school due to RTI Severity of RTI	MD 0.06 (-0.41, 0.54) Vitamin D vs. control (5 studies) OR 0.95 (0.76, 1.18)	
			2000 IU/d (3 mth) 100,000 IU/3 mth (18 mth)	Placebo Placebo			
			Month 0 and 1: 200,000 IU/ mth then 100,000 IU/ mth (18 mth)	Placebo			
			30,000 or 60,000 IU/ mth (12mth)	Placebo +/- calcium			
			20,000 IU/wk (17 wk) 1200 IU/d (4 mth) 2000 IU/d (8 wk)	Placebo Placebo Placebo			
Yakoob et al. 2016 [28]	2	n= 3134 participants Both sexes Age: <12 mth	<u>Vitamin D₃</u> 402 IU/d (12 mth) 100,000 IU/3 mth (18 mth)	No treatment Placebo	Incidence rate of first or only episode of pneumonia	Rate Ratio 1.06 (0.89, 1.26)	High

Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results/ Summary statistics (95% CI)	AMSTAR 2
Xiao et al. 2015 [6]	7	n= 6503 participants Both sexes Age: < 18 yr	Vitamin D₃ 1200 IU/d (4 mth) 100,000 IU bolus (3 mth) 1400 IU/wk (6 mth) 500 IU/d (6 mth) 100,000 IU/3 mth (18 mth) 300 IU/d (7 wk) 1000 IU < 1 yr (age)	NR	Risk of ARI Repeat episodes of pneumonia Risk of pneumonia Hospital admission due to ARI Influenza A	RR 0.79 (0.55, 1.13) (4 studies) RR 1.16 (0.55, 2.45) (2 studies) RR 1.06 (0.90, 1.25) (2 studies) RR 0.95 (0.72, 1.26) (2 studies) RR 0.58 (0.34, 1.00) (1 study)	High
Bergman et al. 2013 [29]	11	n= 5660 participants Both sexes Average age: 16 yr	Vitamin DFrequency: once toevery 3 mthaverage daily doses:800 or 2000 IU (3yr)4000 IU (12 mth)300 IU (7 wk)3344 IU (12 wk)400 IU (6 mth)	Placebo	Risk of RTI	Vitamin D vs. control: OR 0.64 (0.49, 0.84)	High

Meta-analy	ses of RCTs		1				1
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results/ Summary statistics (95% CI)	AMSTAR 2
Mao and Huang 2013 [30]	7	n= 4827 participants Both sexes Age: 1 month- 63 yr	2000 IU (3 mth) 500 IU (6 mth) 100,000 IU (3 mth) 1296 IU (18 mth) 3653 IU (18 mth) 1200 IU (4 mth) <u>Vitamin D</u> 2000 IU/d (3 mth) 400 IU/d (6 mth) 1200 IU/d (6 mth) 1200 IU/d (1,75 mth) 1111-6800 IU/d (6 mth) 100,000 IU/3 mth (18 mth) 200,000 IU/mth (2 mth), then 100,000 IU/mth (18 mth)	Placebo	Risk of RTI	RR 0.98 (0.93, 1.03)	High
Charan et al. 2012 [31]	5	n= 943 participants	<u>Vitamin D</u> 400 IU/d (6 mth)	Placebo	Incidence of RTI	Vitamin D vs. control (5 studies) OR 0.582 (0.417, 0.812)	Moderate

Meta-analy	Meta-analyses of RCTs										
Author,	Included	Participants	Vitamin D dose	Control/	Outcome	Results/	AMSTAR 2				
year	studies	(n), gender,		Comparator		Summary statistics (95% CI)					
	(n)	age									
		Both sexes	1200 IU/d (4 mth)			Vitamin D vs. control in adult					
		Age: 1 to 15	1000 HI/1 (0 11)			population (3 studies):					
		and \geq 18 yr	1200 IU/d (3 mth)			OR 0.544 (0.278, 1.063)					
			100,000 IU bolus			Vitamin D vs. control in					
			(3 mth)			paediatric population					
						(2 studies):					
			2000 UI/d (3 yr)			OR 0.579 (0.416, 0.805)					

Table S11: Meta-analyses of prospective cohort studies – ARI

Meta-analys	ses of prospe	ctive cohort stud	ies				
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome*	Results/ Summary statistics (95% CI)	AMSTAR 2
Pacheco- Gonzalez et al. 2018 [10]	13	n= 8370 mother-child- pairs Both sexes Age: 0-3 yr	25(OH)D levels in maternal blood or cord blood	-	Risk of RTI	Highest vs. lowest 25(OH)D OR 0.64 (0.47, 0.87)	High
Feng et al. 2017 [12]	10	n= 8359 mother-child- pairs Both sexes Age: NR	25(OH)D levels in maternal blood or cord blood	-	Risk of RTI	Highest vs lowest 25(OH)D (9 studies): OR 0.85 (0.66, 1.09) Per 10 nmol/l increment in 25(OH)D (9 studies): OR 0.97 (0.94, 1.01)	High

* Outcome variable as described in the respective systematic review

Table S12: Systematic Reviews of RCTs – ARI

Systematic	Reviews of R	RCTs					
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome*	Results	AMSTAR 2
Autier et al. 2014 [24]	5	n= 6057 participants Both sexes Age: NR	<u>Vitamin D</u> range: 800-400 IU/d (3- 62 mth)		URTI (11 outcomes were assessed by trials)	Overall 2 outcomes with significant improvements	Low
Das et al. 2013 [32]	2	n= 653 participants Both sexes Age: 1 mth- 5 yr	<u>Vitamin D3</u> 100,000 IU bolus (duration: NR) 1000 IU < 1 yr (age) 2000 IU > 1 yr (age) (5 d)	Placebo	Time period to resolution or recovery from pneumonia	No beneficial effect of vitamin D supplementation in acute (severe and non-severe) pneumonia.	Moderate
Jolliffe et al. 2013 [33]	14	n= 11,431 participants Both sexes Age: NR, infants, children and adults	Vitamin D3 800 IU/d for 2 years, then 2,000 IU/d for 1 year (3 yr) 800 IU/d alone or 800 IU/d + calcium (2 yr) 2000 IU/d (3 mth) 2000 IU/d (1 yr) 1200 IU/d (4 mth) 400 IU/d (6 mth) 100,000 IU single bolus (3 mth)	Placebo Placebo 800 IU/d NR Placebo Placebo	Risk of ARI	Vitamin D supplementation protected against ARI (7 studies) – in the study population as a whole (6 studies) and in a subgroup with profound vitamin D deficiency (1 study) Null effects for all respiratory outcomes investigated (6 studies). Null effect of vitamin D supplementation on primary outcome (pneumonia incidence) with a negative effect on one secondary	Very low

Systematic	Reviews of R	CTs					
Author,	Included	Participants	Vitamin D dose	Control/	Outcome*	Results	AMSTAR 2
year	studies	(n), gender,		Comparator			
	(n)	age					
			1400 IU/wk (6 mth)	Placebo		outcome (vitamin D increased	
			500 IU/d (6 mth)	Placebo		incidence of repeat episodes of radiologically confirmed	
			100,000 IU/mth (1 yr)	Placebo		pneumonia) (1 study)	
			100,000 IU/3 mth (18 mth)	Placebo			
			1111-6800 IU/d (6 mth)	Placebo			
			300 IU/d (7 wk)	Placebo			
			month 1 & 2: 200,000 IU bolus, then 100,000 IU/mth (18 mth)	Placebo			

* Outcome variable as described in the respective systematic review

Table S13: Systematic Reviews of prospective cohort studies – ARI

Systematic 1	Systematic Reviews of prospective cohort studies										
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome*	Results	AMSTAR 2				
Fried et al. 2016 [34]	12	n= 8822 mother-child pairs Both sexes Age: 0-3 yr	25(OH)D levels in maternal blood or cord blood	-	Risk of RTI	LRTI: Significant protective associations between 25(OH)D (6 studies) and LRTI (or URTI (1 study)). Increased ORs of LRTI in children born to mothers with higher 25(OH)D (2 studies).	Moderate				

Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome*	Results	AMSTAR 2
						No association between 25(OH)D levels and LRTI (3 studies). Other RTIs: No association between maternal 25(OH)D levels and other RTIs (2 studies). No association with otitis media (2 studies), increased ORs of any RTI in children with lower maternal 25(OH)D levels (1 study). More recurrent RTIs in children born to vitamin D-deficient mothers (1 study).	
Autier et al. 2014 [24]	3	n= 7787 participants Both sexes Age: NR	25(OH)D	-	Risk of RTI	RR for highest vs. lowest 25(OH)D: 0.50 to 0.95 (1 study) Inverse association between RTI risk and 25(OH)D levels (outcome as a continuous variable) (2 studies)	Low
					Days of absence due to RTI	RR for highest vs. lowest 25(OH)D: 0.50 to 0.95 (1 study)	
Jolliffe et al. 2013 [33]	11 (3 birth cohort studies)	n= 6627 Both sexes	25(OH)D (serum or maternal blood or cord blood)	-	Risk of ARI	Inverse associations between low serum 25(OH)D and risk of ARI (7 studies).	Very low

Systematic	Reviews of p	prospective coho	rt studies				
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome*	Results	AMSTAR 2
		Age: NR; Infants, children and adults				Serum 1,25(OH) ₂ D levels may be protective (as evidenced by higher serum 1,25(OH) ₂ D levels or by administration of 1-alpha- hydroxylated vitamin D metabolites) (2 studies). No association (3 studies) and a positive association (1 study) between higher maternal serum 25(OH)D levels in late pregnancy and increased risk of LRTI in offspring during infancy.	

* Outcome variable as described in the respective systematic review

Table S14: Meta-analyses of RCTs – Cognitive decline

Meta-analyses of RCTs							
Author, year	Included	Participants	Vitamin D dose	Control/	Outcome	Results/	AMSTAR 2
	studies	(n), gender,		Comparator		Summary statistics (95% CI)	
	(n)	age					
Goodwill et al. 2017 [35]	2 RCTs and 1 retro- spective pre-post study	n=314 Sex: NR Age: ≥ 18 yr (two trials with elderly participants)	<u>Vitamin D3</u> 5000 IU Vitamin D3/d (6 wk) <u>Vitamin D2</u> 3x50,000 IU/week (4 wk)	Placebo	Cognition	SMD 0.21 (-0.05, 0.46)	High

Meta-analyses	s of RCTs						
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose 600,000 IU (single	Control/ Comparator	Outcome	Results/ Summary statistics (95% CI)	AMSTAR 2
et al. 2013 (2 open [36] pre-post	n=234 Sex: NR Age: ≥ 18 yr	injection) (6 mth) <u>Vitamin D3</u> 800 or 100,000 IU/mth (7.8 mth)	No vitamin D supplements	impaired executive functions before and after vitamin D supplementation	Effect size -0.50 (-0.69, -0.32)	Moderate	
	designs, 1 double- blind RCTs)		5000 IU/d (6 wk) <u>Vitamin D2</u> 50,000 IU x 3/week (4 wk)	Placebo NR	impaired executive functions at the end of follow-up	Effect size 0.14 (-0.04, 0.32)	

Table S15: Meta-analyses of prospective cohort studies – Dementia and cognitive decline

Meta-analys	ses of prospe	ctive cohort stud	ies				
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results/ Summary statistics (95% CI)	AMSTAR 2
Chen et al. 2018 [37]	10	n=28,640 Both sexes Mean age: 56- 84.6 yr	25(OH)D level		Dementia Alzheimer´s disease	Dementia (10 studies); highest vs. lowest: RR 0.72 (0.59, 0.88) Dose response analysis (7 studies); risk of dementia for every 10 nmol/l increment in 25(OH)D: RR 0.95 (0.93, 0.98) p for nonlinearity = 0.176 (non- significant) Alzheimer's disease (6 studies); highest vs. lowest: RR 0.78 (0.60, 1.00)	High

Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results/ Summary statistics (95% CI)	AMSTAR 2
						Dose response analysis (4 studies); risk of Alzheimer's disease for every 10 nmol/l increment in 25(OH)D: RR 0.93 (0.89, 0.97) p for nonlinearity = 0.804 (non- significant)	
Jayedi et al. 2018 [38]	8 cohorts from 1966-2017 (seven pro- spective and one retro- spective cohort study)	Dementia: n=18,168 (1953 cases) Alzheimer's disease: n= 25,520 (1607 cases) Both sexes Age: ≥ 18 yr	25(OH)D level sufficiency: ≥ 50 nmol/l insufficiency: 25-50 nmol/l deficiency: <25 nmol/l		Dementia Alzheimer's disease	Vitamin D insufficiency (6 studies) and dementia: pooled HR 1.09 (0.95, 1.24)Vitamin D deficiency (5 studies) and dementia: pooled HR 1.33 (1.08, 1.58)Risk of dementia for a 25- nmol/l increment in serum 25(OH)D (7 studies): pooled HR 0.83 (0.70, 0.96)Nonlinear dose-response analysis: U-shaped association with a nadir at ~62 nmol/l serum 25(OH)DRisk of dementia decreased continuously with increasing serum levels of 25(OH)D from a baseline of ~13 nmol/l up to ~80 nmol/l (after excluding the	High

Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results/ Summary statistics (95% CI)	AMSTAR 2
						of dementia for serum 25(OH)D levels > ~88 nmol/l)	
						Vitamin D insufficiency and Alzheimer's disease (4 studies): pooled HR 1.19 (0.96, 1.41) Vitamin D deficiency and Alzheimer's disease (3 studies) HR 1.31 (0.98, 1.65)	-
						risk of Alzheimer's disease for a 25-nmol/l increment of serum 25(OH)D (6 studies): pooled HR 0.83 (CI 0.68, 0.98)	
						nonlinear dose-response analyses: continuous decrement in risk with increasing serum 25(OH)D levels from a baseline of ~13 nmol/l up to ~ 88nmol/l	
Goodwill et al. 2017 [35]	14	n~30,000/ NR Both sexes Age: ≥ 18 yr (in the majority of the included studies participants were >40 yr)	High vs. low 25(OH)D level (no thresholds available)	-	Cognition	Low vitamin D and cognitive decline: OR 1.14 (1.06, 1.23)	High

Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results/ Summary statistics (95% CI)	AMSTAR 2
Sommer et al. 2017 [39]	5 (4 pro- spective studies, 1 retro- spective study)	n=18,933 Both sexes Adults	25(OH)D level no deficiency or sufficient supply: ≥ 50 nmol/l insufficiency: ≥ 25 to <50 nmol/l serious deficiency: < 25 nmol/l	-	Dementia	Serious deficiency (< 25 nmol/l or 7-28 nmol/l) vs. sufficient supply (≥ 50 nmol/l or 54-159 nmol/l) Point estimate: 1.54 (1.19, 1.99) Vitamin D deficiency increased the risk of dementia.	High
Cao et al. 2016 [40]	3	n=12,702 Both sexes Age: ≥ 20 yr	Vitamin D status 25(OH)D	-	Dementia, mild cognitive impairment	Low levels of vitamin D and cognitive decline: RR 1.52 (1.17, 1.98)	Very low
Shen and Ji 2015 [41]	2	n = 8086 Both sexes Average Age: 73.6 yr/NR	Vitamin D status (deficiency: ≤ 50 nmol/l) ≤ 50 vs. > 50 nmol/l	-	Alzheimer's disease Dementia	Risk in vitamin D deficient subjects: Alzheimer's disease risk (n=2): OR 1.21 (1.01, 1.40) Dementia risk (n=1)*: OR 1.63 (1.09, 2.16) *the results including 3 additional cross-sectional studies did not differ: OR 1.49 (1.09, 1.88)	Low

Meta-analys	ses of prospe	ective cohort stud	lies				
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results/ Summary statistics (95% CI)	AMSTAR 2
Annweiler et al. 2013 [36]	3	n=4095/NR Both sexes Mean age: ~75 yr	Vitamin D status (higher vs. lower 25(OH)D concentrations)	-	Cognitive (executive) function Executive function refer to a hetero- geneous set of high- level processes that control and regulate other abilities and behaviours	Risk of incident decline of TMT-B score: OR 1.25 (1.05, 1.48) Participants with lower 25(OH)D concentrations had a 1.25 times greater risk of worsening TMT-B score in longitudinal follow-ups compared to those with higher 25(OH)D concentrations, indicating that low vitamin D status may precede decline of executive functions	Moderate
Etgen et al. 2012 [42]	2	n=497/90 Sex: NR Age:≥ 65 yr	Vitamin D deficiency vs. normal vitamin D concentrations	-	Cognitive impairment	OR 2.49 (1.74, 3.56)	Low

 Table S16: Systematic Reviews of RCTs – Cognitive decline

Systematic I	Reviews of R	CTs					
Author, year	Included studies	Participants (n), gender,	Vitamin D dose	Control/ Comparator	Outcome	Results	AMSTAR 2
	(n)	age					
Lerner et al. 2018 [43]	3	n=222 Men and women Age: NR	<u>Vitamin D</u> dosage: NR	Placebo/NR	Cognitive impairment	Vitamin D ₃ supplements were associated with medium-term improvement in cognitive performance in older adults	Low

·	Reviews of F	1			1		1
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results	AMSTAR 2
						and in particular with better executive functioning Younger adults: Vitamin D status may be important for both executive functioning and mental health (1 study). No effect of vitamin D supplements on cognitive or emotional functioning. (1 study)	
Autier et al. 2014 [24]	1	n=4143 sex: NR Age: elderly	<u>Vitamin D</u> 400 IU/d (84 mth)	NR	Dementia, mild cognitive impairment	No significant differences in incident dementia or mild cognitive impairment, or in global or domain-specific cognitive function.	Low
Balion et al. 2012 [44]	3	n=354 Both sexes Age: 74-87 yr	Vitamin D Oral supplement containing various nutrients including 160 IU/d (12 mth) Nutrient dense drink containing 520 IU/d (24 wk) <u>Vitamin D</u> 2 9000 IU/d (8–40 wk)	Placebo containing calcium and magnesium Placebo drink containing no vitamins or minerals Placebo	Cognitive function	No significant differences between treatment and control group for almost all cognitive tests (2 studies). Significant differences between treatment and control groups for almost all cognitive tests (except long-term memory recall test) (1 study).	High

Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results	AMSTAR 2
Etgen et al. 2012 [42]	2	n = 202 both sexes elderly persons	<u>Vitamin D2</u> 600,000 IU (single injection) 50,000 IU x 3/wk (4 wk)	Placebo No active medical intervention	Cognitive function	Vitamin D ₂ led to a significant improvement of choice reaction time compared with placebo (1 study). Neurocognitive performance did not improve significantly (1 study).	Low

 Table S17: Systematic Reviews of prospective cohort studies – Dementia and cognitive decline

Systematic	Reviews of p	rospective coho	rt studies				
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results	AMSTAR 2
Lerner et al. 2018 [43]	6 cohort	n=11,981 Both sexes Age: NR	Vitamin D status	_	Cognitive impairment	Vitamin D deficiency was associated with cognitive impairment (4/6 studies; 3 studies included elderly participants). Vitamin D ₃ supplements were associated with medium-term improvement in cognitive performance in older adults and in particular with better executive functioning. In younger adults vitamin D status may be important for both executive functioning and	Low

Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results	AMSTAR 2
						mental health (1 study). Another study showed no effect of vitamin D supplementation on cognitive or emotional functioning (1 study).	
Killin et al. 2016 [45]	3	n=11,884 (691 cases) Both sexes Age: NR	Vitamin D status	-	Dementia	Lower vitamin D levels at baseline were associated with an increased risk of developing dementia. Overall strength of evidence: strong evidence = there is a reported association with dementia in the majority of published papers	Low
Autier et al. 2014 [24]	5	Cognitive function: n=10,358 (260 cases) Non- Alzheimer disease: n=40 (6 cases) Sex: NR Age: elderly	Highest vs. lowest 25(OH)D	-	Cognitive function (4 studies), Non- Alzheimer dementia (1 study)	Cognitive function:Decreasing risk for reducedcognitive function with higher25(OH)D (RR of highest vs.lowest quintile 0.50 to 0.95)(3 studies; 2 of themsignificant).Inverse relation between serum25(OH)D concentrations(1 study; multiple linearregression).Non-Alzheimer disease:	Low

Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results	AMSTAR 2
						Significantly decreasing risk (RR of highest vs. lowest quintile < 0.50) for Non- Alzheimer dementia with higher 25(OH)D levels (1 study).	
van der Schaft et al. 2013 [46]	6	n=10,896 Both sexes Age: ≥ 65 years	Serum 25(OH)D concentration	-	Cognitive function	Statistically significant decline on ≥1 cognitive function test or higher frequency of dementia in participants with lower vitamin D levels or intake compared to participants with higher vitamin D levels or intake (4/6 studies).	High
Balion et al. 2012 [44]	2	n= 2464 Both sexes (one study without women) Age:≥ 65 yr	Vitamin D status	-	Cognitive function	 No significant association between vitamin D quartile and baseline cognitive impairment or incident cognitive decline (1 study). Participants deficient in 25(OH)D (25 nmol/l) experienced an increased risk of substantial cognitive decline over 6 years, compared to those with sufficient concentrations (75 nmol/l). Individuals with 25(OH)D concentrations 25 nmol/l declined by an 	High

Systematic	ystematic Reviews of prospective cohort studies										
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results	AMSTAR 2				
						additional 0.3 points per year compared to those sufficient in 25(OH)D (75 nmol/l), even after restricting the sample to individuals without dementia (1 study).					

Table S18: Meta-analyses of RCTs – Depression

Meta-analys	ses of RCTs						
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results/ Summary statistics (95% CI)	AMSTAR 2
Vellekkatt and Menon 2018 [47]	4	n=948 Sex and age: NR	Vitamin D ₃ 50,000 IU/wk (52 wk) 50,000 IU/wk (8 wk) 300,000/150,000 IU (i.m. single dose; 12 wk)	Placebo Placebo No treatment	Depressive symptoms	Effect size: 0.58 (0.45, 0.72)	Moderate
			1500 IU + 20 mg Fluoxetine/d (8 wk)	Fluoxetine			
Gowda et al. 2015 [48]	9	n=4923 Both sexes Age: ≥ 18 yr	<u>Vitamin D</u> 20,000 or 40,000 IU/d (1yr) 50,000 IU/wk (8 wk) 5000 IU/d (6 wk)	Placebo	Depressive symptoms	SMD 0.28 (-0.14, 0.69)	High

Author,	Included	Participants	Vitamin D dose	Control/	Outcome	Results/	AMSTAR 2
year	studies (n)	(n), gender, age		Comparator		Summary statistics (95% CI)	
Spedding 2014 [49]	4	n=4610 Both sexes Age: NR	400 IU/d (+calcium + antidepressants; 2yr) 40,000 IU/wk (6 mth) <u>Vitamin D3</u> 400 or 800 IU/d (5d) 500,000 IU/y (3-5 yr) 1500 IU/d (8 wk) <u>Calcitriol</u> 2,000,000 IU x 2/d (36 mth) <u>Vitamin D</u> range: 400-18,400 IU/d	Placebo or NR	Depression symptoms	Studies were grouped according to the presence of biological flaws (e.g. 25(OH)D not assessed, dose not appropriate): Studies without flaws Meta-analysis (2 studies): SMD 0.78 (0.24, 1.27) Studies with flaws Meta-Analysis (2 studies):	Low
Shaffer et al. 2014 [50]	7	n=3191 Both sexes Age: 18-79 yr	Vitamin D ₃ 600 IU/d (8 wk)	Placebo	Depressive symptoms	SMD -1.1 (-0.7, -1.5) SMD -0.14 (-0.33, 0.05)	High

Meta-analy	vses of RCTs						-
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results/ Summary statistics (95% CI)	AMSTAR 2
			20,000 or 40,000 IU/wk (+ calcium; 1 yr)	Placebo			
			5000 IU/d (6wk)	Placebo			
			400 IU/d (+ calcium; 1 yr)	Placebo			
			20,000 IU/wk (6 mth)	Placebo			
			1500 IU/d + fluoxetine (8 wk)	Placebo + fluoxetine			
			150,000 or 300,000 IU IM injection	no injection			
Li et al. 2014 [51]	6	n=1203 71 depressed patients	Vitamin D ₃ 20,000 or 40,000 IU/wk (12 mth)	Placebo	Depression	Postintervention SMD of depression scores: -0.14 (-0.41, 0.13)	High
		72% females	50,000 IU/wk (8 wk)	Placebo			
		Age: NR	500,000 IU/yr (bolus) (3-5 yr)	Placebo		OR of depression for vitamin D	-
			20,000 IU/wk (6 mth)	Placebo		supplementation vs. placebo (2 studies):	
			1500 IU/d + fluoxetine (8 wk)	Placebo + fluoxetine		0.93 (0.54, 1.59)	
			<u>Calcitriol</u> 10 IU/twice a day (3 yr)	Placebo			

Meta-analys	ses of prospe	ective cohort stud	lies				
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results/ Summary statistics (95% CI)	AMSTAR 2
Wang et al. 2018 [52]	3	n=4593 Women Age: NR	Vitamin D status Vitamin D deficiency: 25(OH)D <30 nmol/l	-	Antepartum depression	OR 1.47 (0.92, 2.35)	High
	4	n=2228 Women Age: NR	Vitamin D status Vitamin D deficiency: 25(OH)D <50 nmol/l	-	Postpartum depression	OR 3.67 (1.72, 7.85)	High
Ju et al. 2013 [53]	4	n=12,648 (2663 cases)	Vitamin D status	-	Depression	10 ng/ml increase in 25(OH)D levels: OR 0.92 (0.87, 0.98)	Moderate
		Both sexes Age: ≥40 yr				15 ng/ml increase in 25(OH)D levels: OR 0.88 (0.81, 0.96)	
						20 ng/ml increase in 25(OH)D levels: OR 0.85 (0.76, 0.95)	•
Anglin et al. 2013	3	n=8815	Vitamin D status	-	Depression	Lowest vs. highest vitamin D status: HR 2.21 (1.40, 3.49)	Moderate
[54]		Both sexes Age: ≥50 yr				Change in the ln(HR) of depression per 20 nmol(L change in vitamin D level: β = -0.19 (-0.41, 0.04)	
						Vitamin D deficiency using cut- off points of 50 nmol/l and 37.5 nmol/l: HR 1.04 (0.59, 1.86)	
						The HRs of depression for those with and without vitamin D levels below 50 nmol/l	

Table S19: Meta-analyses of prospective cohort studies – Depression

Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results/ Summary statistics (95% CI)	AMSTAR 2
						(2 studies) were pooled with the HR of depression for vitamin D below vs. above 37.5 nmol/l (1 study).	
						Vitamin D deficiency using cut- off points of 50 nmol/l and 75 nmol/l: HR 1.31 (0.97, 1.77)	-

 Table S20: Systematic Reviews of RCTs- Depression

Systematic	Reviews of R	RCTs	•				
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results	AMSTAR 2
Aghajafari et al. 2018 [55]	2 (sec- ondary analysis of 1 RCT)	n=279 Women Age: NR	Vitamin D 2000 IU/d from 26-28 week to birth 1 study: NR	Placebo for 1 study: NR	Antenatal depression	Low vitamin D levels in early pregnancy were associated with higher depressive symptom scores in early and late pregnancy. Significant association between lower levels of vitamin D and antenatal depression (1 study).	High
	3 (sec- ondary analyses of 2 RCTs)	n=1319 Women Age: NR	<u>Vitamin D</u> 2000 IU/d from 26-28 week to birth NR (2 studies)	Placebo NR (2 studies)	Postpartum depression	No association (2 studies); vitamin D supplementation was effective in decreasing postpartum depression levels (1 study).	High

5	Reviews of R						
Author, year	Included studies	Participants (n), gender,	Vitamin D dose	Control/ Comparator	Outcome	Results	AMSTAR 2
	(n)	age					
Lerner et al. 2018 [43]	2	n=2159 Both sexes Age: NR	<u>Vitamin D₃</u> 1500 IU/d + fluoxetine (8 wk) <u>Vitamin D</u> 800 IU/d (6 mth)	Placebo + fluoxetine NR	Depression	Vitamin D + Fluoxetine combination was superior to fluoxetine alone in controlling depressive symptoms (1 study). Vitamin D supplementation did not lead to an improvement in mental health scores (1 study).	Low
Föcker et al. 2017 [56]	21	n=43,340 Both sexes Age: adults	Vitamin D 400 IU/d + 377 mg calcium/d (1 yr) 400 or 800 IU/d (5 d) 100,000 IU once 4000 IU/wk (1 yr) 800 IU/d + 1000 mg calcium/d (6 mth) 20,000 or 40,000 IU/wk (1 yr) 8,000,000 IU/d + 500 mg calcium/d (2 menstrual cycles) 50,000 IU/wk (8 wk) 9200 IU/d (8 wk) + calcium	377 mg calcium/d 0 IU/d Photo- therapy/mth 600 IU/d No treatment Placebo Placebo Placebo No treatment	Mental health (Mood, Depression, Seasonal affective symptoms, Fibromyalgia, Wellbeing, PMS)	No effect on mental health (11 studies); beneficial effect on parameters of mental health (10 studies).	Very low

	Reviews of I						
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results	AMSTAR 2
			5000 IU/d (6 wk)	Placebo			
			500,000 IU once (3- 5 yr)	Placebo			
			2000 IU/d (8 d)	500 mg vitamin C			
			400 IU/d + 1000mg calcium (3 yr)	Placebo			
			20,000,000 IU/d (3 yr) or 20,000,000 IU/d+ hormone therapy	hormone therapy or placebo			
			40,000 IU/wk (6 mth)	Placebo			
			1500 IU/d + 20 mg fluoxetine	20 mg fluoxetine			
			150,000 or 300,000 IU single injection (3 mth)	injection			
			5000 IU/d (8.1-10 d)	2x 500 mg vitamin C/d			
			2800 IU/d (12 wk)	Placebo			
			200,000 IU then 25,000 IU/2 wk (4 mth)	Placebo			
			2000 IU/d (from 26- 28 wk of gestation until childbirth)	Placebo			

Author,	Reviews of F Included	Participants	Vitamin D dose	Control/	Outcome	Results	AMSTAR 2
-	studies	(n), gender,	Vitalilli D dose	Comparator	Outcome	Results	AWISTAK 2
year	(n)	age		Comparator			
Autier et al. 2017 [23]	5	n=1111 Sex and age: NR	<u>Vitamin D</u> very high doses (2-12 mth)	NR	Mood disorders	No effect (4 studies); vitamin D supplementation reduced mood disorders significantly (1 study)	Low
Sarris et al. 2016 [57]	2 (open label CT, double blind RCT)	n=81 Sex and age: NR	<u>Vitamin D3</u> 1500 IU/d (8 wk) 300,000 IU once (4 wk)	Placebo antidepressant only	Depressive symptoms	Statistically significant reduction in depression rating scores in the treatment group compared with the control group in both studies between baseline and endpoint/over the course of the study	Low
Spedding 2014 [49]	15	n=42,258 Both sexes Age: NR	<u>Vitamin D</u> 400 - 18,400 IU/d (doses not precisely specified: were depicted in bar graph; duration: NR)	NR	Depression symptoms	Studies were grouped according to the presence of biological flaws (e.g. 25(OH)D not assessed, dose not appropriate, high baseline 25(OH)D levels) These flaws limit the ability of these studies to demonstrate a change in vitamin D status in the intervention group. Studies without flaws: 6/7 studies showed improvement in depression symptoms.	Low

Systematic	Reviews of F	RCTs					
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results	AMSTAR 2
						6/9 studies showed no effect on depression symptoms.	
Autier et al. 2014 [24]	7	n=7191 Sex and age: NR	<u>Vitamin D</u> range: 400-5720 IU/d (0.2-60 mth)	NR	Mood disorders (depression)	No effect (5 studies); vitamin D supplementation reduced mood disorders significantly (2 studies)	Low

Table S21: Systematic Reviews of prospective cohort studies – Depression

Systematic	Reviews of p	rospective cohor	t studies				
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results	AMSTAR 2
Aghajafari et al. 2018 [55]	2	n=4592 Women Age: NR	Vitamin D status	-	Antenatal depression	Significant association between lower levels of vitamin D and antenatal depression.	High
	4	n=1455 women age: NR	Vitamin D status	-	Postpartum depression	Lower vitamin D concentration was associated with increased and higher levels of vitamin D were associated with decreased odds of PPD as well as reduced symptoms (3 studies). No association (1 study).	High
Trujillo et al. 2018 [58]	2	n=4279 Women Age: 26.7-31 yr	Vitamin D status	-	Antenatal depression	Serum vitamin D deficiency and insufficiency were significantly associated with an increased likelihood of depression (2 studies).	High

Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results	AMSTAR 2
						1-unit increase of log serum vitamin D levels was significantly associated with a 46% decreased likelihood of depression (1 study).	
	4	n=1441 Women Age: 26-31 yr	Vitamin D status	-	Postpartum depression	Significant inverse association between serum vitamin D levels and depression scores (3 studies). No association (1 study).	High
Amini et al. 2018 [59]	6	n=2416 Women Age: NR	Vitamin D status	-	Postpartum depression	In all studies low 25(OH)D was associated with reduced depressive symptoms	Low
Lerner et al. 2018 [43]	3	n=~ 5600 Both sexes (children and adults) Age: ≤10-65 yr	Vitamin D status	-	Depression	Low vitamin D levels were associated with presence and severity of depression (3 studies). Significant association between low serum vitamin D measured at age 9.8 years and higher scores on depressive symptoms assessed at age 13.8 years but not at age 10.6 years (1 study)	Low
Sparling et al. 2017 [60]	8	n=6705 Women Age: NR	Vitamin D status	-	Postpartum depression	Protective associations and linear trends between vitamin D concentrations and depression (6/8 studies). No	High

Systematic	Reviews of p	prospective coho	t studies				
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results	AMSTAR 2
						significant protective association (2/8 studies).	
Autier et al. 2014 [24]	5	n=6016 514 cases Sex and age: NR	Vitamin D status	-	Mood disorders (depression)	 Highest vs. lowest 25(OH)D: increased frequency of mood disorders associated with low 25(OH)D (4 studies) Significant inverse association with mood disorders (1 study; outcome as a continuous variable) 	Low

Table S22: Meta-analyses of RCTs – MS

Meta-analys	ses of RCTs						
Author,	Included	Participants	Vitamin D dose	Control/	Outcome	Results/	AMSTAR 2
year	studies	(n), gender,		Comparator		Summary statistics (95% CI)	
	(n)	age					
Mc	12	n= 950	Vitamin D ₂		ARR	Overall, 12 studies:	High
Laughlin		participants	6000 IU/d for 2 wk,	1000 IU/d		MD -0.04 (-0.17, 0.09)*	
et al. 2018		with RRMS or	then adjusted dose			Vitamin D vs. placebo,	
[61]		CIS (111 with	(target 25(OH)D levels			4 studies:	
		CIS)	of 130–175 nmol/l)			MD 0.00 (-0.10, 0.10)*	
		D 1	(6 mth)		EDSS	Overall, 5 studies:	
		Both sexes	Vitania D		6000	MD -0.04 (-0.19, 0.03)*	
		Age: ≥ 15 yr	$\frac{\text{Vitamin } D_3}{\text{Vitamin } D_3}$	000 TI (1		· · · · · · · · · · · · · · · · · · ·	_
			4370 IU/d (12 mth)	800 IU/d	Number of new T2	Overall, 5 studies:	
			10,400 IU/d (6 mth)	800 IU/d	MRI lesions	MD -0.74 (1.41, -0.06)*	
				000 10 / a		Vitamin D vs. placebo,	1
			2857 IU/d (24 mth)	Placebo		3 studies:	

Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results/ Summary statistics (95% CI)	AMSTAR 2
			2857 IU/d (12 mth) 7143 IU (24 mth) 14,007 IU/d (12 mth)	Placebo Placebo Placebo	Number of new Gadolinium- enhancing MRI lesions	MD -0.77 (-1.37, -0.17)* Overall, 5 studies: MD -0.14 (-0.56, 0.29)*	
			7143 IU (12 mth) 7143 IU (6 mth) 5000 IU or 10,000 IU/d (6 mth)	Placebo Placebo Placebo		*values of effect estimates (MD and CI) were roughly assessed from depicted forest plots	
			<u>Calcitriol</u> 20 IU/d (12 mth) <u>Alfacalcidol</u> 40 IU/d (6 mth)	Placebo Placebo			
Jagannath 12 et al. 2018 [62]	12	n= 933 participants with RRMS (464 treatment group, 469 control group) Range: 23 to 232	Vitamin D ₂ 6000 IU/d (6 mth) <u>Vitamin D₃</u> 50,000 IU/5 d (3 mth) 40,000 IU/d (28 wk), then 10,000 IU/d (12	1000 IU/d Placebo 4000 IU + 1200 mg calcium/d	ARR	Rate difference at 52 weeks follow-up: -0.05 (-0.17, 0.07) (5 studies) MD at 52 weeks follow-up: -0.25 (-0.61, 0.10) (5 studies)	High
		Both sexes Age: 18-60 yr	wk), then down- titrated to 0 IU/d + 1200 mg calcium/d (52 wk)		Gadolinium- enhancing T1 lesions	MD at 52 weeks follow-up: 0.02 (-0.45, 0.48) (2 studies)	

Meta-anal	yses of RCTs						
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results/ Summary statistics (95% CI)	AMSTAR 2
			50,000 IU/wk (from 12 to 16 weeks' gestation until delivery; 6 mth) 800 IU/d (tablet) + 75,000 IU/3 wk (solution) (=4370 IU/d; 1 yr) 6670 IU/d (4 wk), then 14,007 IU/d (4 wk) 20,000 IU/wk (96 wk) 300,000 IU/mth (i.m. injection; 6 mth) 20,000 IU/wk (12 mth) 10,000 IU/d + multivitamin + 1000mg calcium/d (6 mth) Calcitriol 10 IU/d (2 wk), then 20 IU/d (12 mth) Alfacalcidol 40 IU/d (6 mth)	Routine care 800 IU/d (tablet) + placebo (solution) Placebo Placebo Placebo 400 IU/d + multivitamin + 1000mg calcium/d Placebo Placebo	Serious adverse events Minor adverse events	Risk difference: 0.01 (-0.03, 0.04) (8 studies) Risk difference: 0.02 (-0.02, 0.06) (8 studies)	

2	ses of RCTs	1	1	1			
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results/ Summary statistics (95% CI)	AMSTAR 2
Zheng et al. 2018 [63]	6	n= 337 participants (169 treatment group/ 168 control group) Both sexes (90 men/ 247 women) Age: NR	Vitamin D₃ 40,000 IU/d (28 wk), then 10,000 IU/d (12 wk), then 0 IU/d (52wk) +1200 mg calcium/d 4370 IU/d (12 mth) 20,000 IU/wk +500 mg calcium/d (96 wk) 300,000 IU/mth (i,m., 6 mth) 800,000/wk (12 mth) Calcitriol 10 IU/d (2 wk), then 20 IU/d (12 mth)	≤ 4000 IU/d 800 IU/d 500 mg calcium/d Placebo Placebo Placebo	EDSS ARR	MD -0.01 (-0.34, 0.33) (6 studies) MD 0.05 (0.01, 0.10) (5 studies)	Moderate
Hempel et al. 2017 [64]	5	n= 295 participants Both sexes Age: ≥ 18 yr (2 studies: NR)	Vitamin D ₃ escalating doses up to 40,000 IU/d (28 wk), then 10,000 IU/d, then 0 IU/d + 1200 mg Calcium/d (52 wk) 20,000 IU/wk (96 wk) 300,000 IU/wth (i.m. injection; 6 mth)	Placebo	EDSS	SMD -0.15 (-0.33, 0.02)	Moderate

Meta-analys	ses of RCTs						
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results/ Summary statistics (95% CI)	AMSTAR 2
			20,000 IU/wk (1 yr) <u>Calcitriol</u> low dose (12 yr)				
James et al. 2013 [65]	5	n= 254 participants (129 high-dose treated MS patients, 125 controls) Sex: NR Age: ≥ 15 yr	Vitamin D ₃ 40,000 IU/d (28 wk), then 10,000 IU/d (12 wk), then 0 IU/d (52 wk) 20,000 IU/week + 500 mg calcium/d (96 wk) 20,000 IU/wk (1 yr) <u>Vitamin D</u> 2 13,000 IU/d (6 mth)	4000 IU/d if desired 500 mg calcium/d Placebo 1000 IU/d	Relative risk of relapse	Vitamin D vs. control OR 0.98 (0.44, 2.17)	Low
			<u>Calcitriol</u> 10 IU/d (2 wk), then 20 IU/d (12 mth)	Placebo			

Table S23: Systematic Reviews of RCTs – MS

Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results	AMSTAR 2
Iacopetta et al. 2018 [67]	et al. 2018 and 1	nd 1 participants 50,000/w (i.m. injection) Sex and Age: NR 50,000 IU/wk (12 mth)	injection)	No injection Placebo	MS risk	In patients with optic neuritis (associated with MS) who supplemented vitamin D ₃ MS risk reduction was 68.4% (1 study).	Low
trial)	trial)		300,000 IU/mth im. injection (6 mth) Escalating doses up to 20 IU/d (12 mth)	Placebo Placebo Placebo	EDSS	After 8 weeks of treatment with vitamin D, MS patients had a significant reduction in the mean EDSS scores (1 study). No effect on EDSS score after 6 and 12 months of treatment with vitamin D ₃ (3 studies).	
			800 IU/d Placebo	Relapse rate	No effect on relapse rate with supplementation of vitamin D ₃ (3 studies).		
			12,000 IU/d (6 mth)	l (6 mth) 1000 IU/d	FIS score	Decreased mean relative FIS score compared to placebo (1 study).	
			40 IU/d (6 mth)		MRI disease activity	Supplementation of vitamin D ₃ reduced MRI disease activity (1 study). Supplementation of vitamin D ₂ had no effect on MRI lesions (1 study).	
Bagur et al. 2017 [68]	7	n= 267 participants Both sexes Age: ≥ 18 yr	<u>Vitamin D</u> 1000 IU/d (48 wk) 4000-40,000 IU/d (28 wk)	NR	MRI disease activity	Reduction in brain lesions (4 studies). Reduction of MRI disease activity (1 study).	Low

Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results	AMSTAR 2
			20,000 IU/d (12 wk) 200-10,200 IU/d		EDSS	Reduced disease activity measured by EDSS (1 study).	_
			(72 wk)		ARR	No effect on relapse rate (1 study).	
			2800 IU/d (96 wk) 2800 IU/d (12 wk)				
			7000 IU/d (12 wk)				
Autier et al. 2014 [24]	6	n= 241 participants Sex and age: NR	Vitamin D range: 2840- 32,000 IU/d (6-24 mth)	NR	15 different outcomes assessed by trials (e.g. relapse, disability)	None of the trials showed significant improvements.	Low
Ganesh et	7	n= 363	Vitamin D ₂		EDSS	No effect (3 studies)	High
al. 2013 [69]		NR, 6 mth) Both sexes Age: NR	6000 IU (frequency: NR, 6 mth) <u>Vitamin D3</u>	(frequency: NR)	Gadolinium- enhancing lesions change in volume of T2 lesions	No effect (2 studies); lower increase in T2 burden of disease in vitamin D group (1 study)	
			40,000 IU/d (52 wk)	NR	ARR	No effect (3 studies)	
			300,000 IU/mth (i.m. injection; 6 mth)	NR			
			20,000 IU/w (96 wk)	NR			
			800 IU +75,000 IU/3 wk (1yr)	800 IU/3 wk			
			20,000 IU (frequency: NR,1yr)	NR			

Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results	AMSTAR 2
			<u>Calcitriol</u> Up to 20 IU/d (duration: NR)	NR			
Pozuelo- Moyano et al. 2013 [70]	oyano etparticipants2013(131 treatment)	participants (131 treatment group/ 134 control group) Sex: NR	<u>Vitamin D2</u> 1000 IU + high-dose supplement/d (6 mth) <u>Vitamin D3</u> 300,000 IU/mth (6 mth) 20,000 IU/wk (2 yr) 20,000 IU/wk (1 yr) <u>Calcitriol</u> 10 IU/d (2 wk), then	1000 IU/d + placebo NR NR	EDSS, MSFC	No significant difference (3 studies). Follow-up EDSS after adjustment for baseline EDSS was higher for high-dose vitamin D ₂ than for low-dose vitamin D ₂ (1 study). Significant reduction in EDSS (1 study), but due to the small sample size the trial was not powered to address clinical outcomes.	High
			20 IU/d (1 yr)		ARR T2 lesion load and new T2 or T1 Gadolinium- enhancing lesions	 No significant difference between treatment and control group (3 studies). 4 relapses with high-dose vitamin D₂ vs. none with low- dose vitamin D₂ (1 study) Significant reduction in the number of T1 enhancing lesions and trends in MRI burden of disease (1 study). 	

5	-	prospective cohor					
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results	AMSTAR 2
Iacopetta et al. 2018 [67]	5	n= 717 participants Sex and Age: NR	25(OH)D		MS risk	 Higher levels of 25(OH)D were associated with lower incidence of MS and MS-related disability in women. Every 10 nmol/l increase of 25(OH)D reduced the MS risk by 19% (1 study). Women supplemented with vitamin D had a 40% lower risk of developing MS vs. women with not supplement (1 study). Increasing 25(OH)D was associated with lower relapse rate; each 10 nmol/l increase in 25(OH)D the risk was reduced by 9% after adjusting for age and sex (1 study). Higher reported sun exposure, rather than 25(OH)D levels were associated with less depressive symptoms and fatigue in MS patients (1 study). 	Low
Autier et al. 2014 [24]	3	n= 917 participants cases= 257	25(OH)D		Risk of relapse. disability	Decreases in risk of relapse and disability with high 25(OH)D concentrations in MS patients (2 studies).	Low

 Table S24: Systematic Reviews of prospective cohort studies – MS

Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results	AMSTAR 2
		Sex and age: NR				No association reported (1 study).	
Ganesh et al. 2013 [69]	5	n= 903 participants Both sexes Age: NR	25(OH)D		Risk of relapse	 Inverse association between 25(OH)D levels and relapse risk (2 studies). 25(OH)D was associated with lower relapse risk only in those on IFN-β (1 study). Lower 25(OH)D levels during pregnancy or post-partum were not associated with increased risk of post-partum relapse (in birth cohort). No association of 25(OH)D levels and relapse risk (2 studies). 	High
					Exacerbation rate	Exacerbation rate decreased with each doubling of 25(OH)D levels.	
					Clinical or radiological variables	Each 10 ng/mL increase in 25(OH)D was associated with lower risk of new T2 lesion (1 study).	
						No association of 25(OHD) levels with MRI lesions.	

Systematic	Systematic Reviews of prospective cohort studies								
Author, year	Included studies (n)	Participants (n), gender, age	Vitamin D dose	Control/ Comparator	Outcome	Results	AMSTAR 2		
					EDSS	EDSS progression was not associated with 25(OH)D levels (1 study). Each 10 ng/mL increase in 25(OH)D levels was associated with lower subsequent disability.			

Table S25: Meta-analysis of prospective cohort studies – T1DM

Author,	Included	Participants	Vitamin D dose	Control/	Outcome	Results/	AMSTAR 2
year	studies	(n), gender,	+ insulin	Comparator		Summary statistics (95% CI)	
	(n)	age					
Dong et al. 2013 [71]	2 cohort studies 6 case- control studies	Cohort studies: n=10,657 Case-control studies: n=8103 (1860 cases and 6243 controls) Both sexes Age: 0-31	Cohort studies: Questionnaire or FFQ + 25(OH)D Case-control studies: Questionnaire or interview	NR	Risk of developing T1DM	Inverse association between vitamin D intake and risk of T1DM (5/8 studies). OR = 0.71 (0.51, 0.98) (2 case-control + 6 cohort studies) Subgroup analysis by study design: OR = 0.68 (0.49–0.94) (6 case-control studies) RR = 0.62 (0.11–3.45) (2 cohort studies)	Low

2	Reviews of R	1	Γ				T
Author, year	Included studies	Participants (n), gender,	Vitamin D dose	Control/ Comparator	Outcome	Results	AMSTAR 2
Gregoriou et al. 2017 [72]		-	Vitamin D3 2000 IU/d (18 mth) 70 IU/kg body weight/d (12 mth) Calcitriol 10 IU/on alternate days (1 yr) 10IU/d (2 yr) 10 IU/d (9 mth) Alfacalcidol 20 IU/d (1 yr) 10 IU/once or twice daily (based on serum Ca; 6 mth)		Changes in daily insulin doses (IU/d)	 Insulin doses were significantly lower (treatment vs. control) after 3 and 6 months, but no effect was seen at 12 months (1 study, calcitriol) Daily insulin doses were comparable between groups after 9 and 24 months (2 studies, calcitriol) Daily insulin doses were significantly different in the between-subject comparison, with lower values in (1 study, alfacalcidol) Daily insulin doses were significantly increased in CG, while no change was observed in treatment group (1 study, vitamin D₃) No effect on HbA1c levels 	High
				indices (HbA1c, FCP, SCP)	during or after treatment (1 study, calcitriol) The cumulative incidence of progression to undetectable		

 Table S26: Systematic Reviews of RCTs – T1DM

Author, year	Included studies	Participants (n), gender,	Vitamin D dose	Control/ Comparator	Outcome	Results	AMSTAR 2
	(n)	age				 of monitoring was lower (treatment vs. control; 1 study, vitamin D₃) Within-subject comparisons showed that the differences in FCP between TG and CG were highest at 3 and 6 months of treatment. FCP levels were reduced in treatment vs. control (1 study, alfacalcidol) FCP levels decreased significantly in CG between baseline and months 6 and 12 of therapy, but no changes were observed in TG. Also, FCP levels were maintained or increased (treatment vs. control; 1 study, alfacalcidol) SCP increase in the first 12 months and reduced decline after 18 months (treatment vs. 	
Antico et al. 2012 [73]	2	n= 51 cases (diagnosed with T1DM) Sexes and age: NR	Alfacalcidol 20 IU/d (duration: NR)	NR	Insulin requirement β-cell function	control; 1 study, vitamin D ₃) Reduction of insulin requirement and protection of β-cell function	Low

References

- Jolliffe, D.A.; Greenberg, L.; Hooper, R.L.; Griffiths, C.J.; Camargo, C.A.; Kerley, C.P.; Jensen, M.E.; Mauger, D.; Stelmach, I.; Urashima, M.; et al. Vitamin D supplementation to prevent asthma exacerbations: a systematic review and meta-analysis of individual participant data. Lancet Respir Med. 2017, 5, 881–890.
- 2. Vahdaninia, M.; Mackenzie, H.; Helps, S.; Dean, T. Prenatal intake of vitamins and allergic outcomes in the offspring: a systematic review and meta-analysis. J Allergy Clin Immunol Pract 2017, 5, 771-778.e5.
- 3. Martineau, A.R.; Cates, C.J.; Urashima, M.; Jensen, M.; Griffiths, A.P.; Nurmatov, U.; Sheikh, A.; Griffiths, C.J. Vitamin D for the management of asthma. Cochrane Database Syst Rev 2016, 9, CD011511.
- Luo, J.; Liu, D.; Liu, C.-T. Can vitamin D supplementation in addition to asthma controllers improve clinical outcomes in patients with asthma? A meta-analysis. Medicine (Baltimore) 2015, 94, e2185.
- 5. Riverin, B.D.; Maguire, J.L.; Li, P. Vitamin D supplementation for childhood asthma: a systematic review and meta-analysis. PLoS One 2015, 10, e0136841.
- 6. Xiao, L.; Xing, C.; Yang, Z.; Xu, S.; Wang, M.; Du, H.; Liu, K.; Huang, Z. Vitamin D supplementation for the prevention of childhood acute respiratory infections: a systematic review of randomised controlled trials. Br J Nutr 2015, 114, 1026–1034.
- 7. Fares, M.M.; Alkhaled, L.H.; Mroueh, S.M.; Akl, E.A. Vitamin D supplementation in children with asthma: a systematic review and meta-analysis. BMC Res Notes 2015, 8.
- 8. Pojsupap, S.; Iliriani, K.; Sampaio, T.Z.A.L.; O'Hearn, K.; Kovesi, T.; Menon, K.; McNally, J.D. Efficacy of high-dose vitamin D in pediatric asthma: a systematic review and meta-analysis. J Asthma 2015, 52, 382–390.
- 9. Shen, S.-Y.; Xiao, W.-Q.; Lu, J.-H.; Yuan, M.-Y.; He, J.-R.; Xia, H.-M.; Qiu, X.; Cheng, K.K.; Lam, K.B.H. Early life vitamin D status and asthma and wheeze: a systematic review and metaanalysis. BMC Pulm Med 2018, 18, 120.
- 10. Pacheco-González, R.M.; García-Marcos, L.; Morales, E. Prenatal vitamin D status and respiratory and allergic outcomes in childhood: a meta-analysis of observational studies. Pediatr Allergy Immunol 2018, 29, 243–253.
- 11. Song, H.; Yang, L.; Jia, C. Maternal vitamin D status during pregnancy and risk of childhood asthma: a meta-analysis of prospective studies. Mol Nutr Food Res 2017, 61.
- 12. Feng, H.; Xun, P.; Pike, K.; Wills, A.K.; Chawes, B.L.; Bisgaard, H.; Cai, W.; Wan, Y.; He, K. In utero exposure to 25-hydroxyvitamin D and risk of childhood asthma, wheeze, and respiratory tract infections: a meta-analysis of birth cohort studies. J Allergy Clin Immunol 2017, 139, 1508–1517.
- 13. Wei, Z.; Zhang, J.; Yu, X. Maternal vitamin D status and childhood asthma, wheeze, and eczema: a systematic review and meta-analysis. Pediatr Allergy Immunol 2016, 27, 612–619.
- 14. Man, L.; Zhang, Z.; Zhang, M.; Zhang, Y.; Li, J.; Zheng, N.; Cao, Y.; Chi, M.; Chao, Y.; Huang, Q.; et al. Association between vitamin D deficiency and insufficiency and the risk of childhood asthma: Evidence from a meta-analysis. Int. J. Clin Exp Med 2015, *8*, 5699–5706.
- 15. Cassim, R.; Russell, M.A.; Lodge, C.J.; Lowe, A.J.; Koplin, J.J.; Dharmage, S.C. The role of circulating 25 hydroxyvitamin D in asthma: A systematic review. Allergy 2015, 70, 339–354.
- 16. Jat, K.R.; Khairwa, A. Vitamin D and asthma in children: a systematic review and meta-analysis of observational studies. Lung India 2017, 34, 355–363.

- Harvey, N.C.; Holroyd, C.; Ntani, G.; Javaid, K.; Cooper, P.; Moon, R.; Cole, Z.; Tinati, T.; Godfrey, K.; Dennison, E.; et al. Vitamin D supplementation in pregnancy: a systematic review. Health Technol Assess 2014, 18, 1–190.
- 18. Rajabbik, M.H.; Lotfi, T.; Alkhaled, L.; Fares, M.; El-Hajj Fuleihan, G.; Mroueh, S.; Akl, E.A. Association between low vitamin D levels and the diagnosis of asthma in children: a systematic review of cohort studies. Allergy Asthma Clin Immunol 2014, 10.
- Jolliffe, D.A.; Greenberg, L.; Hooper, R.L.; Mathyssen, C.; Rafiq, R.; Jongh, R.T. de; Camargo, C.A.; Griffiths, C.J.; Janssens, W.; Martineau, A.R. Vitamin D to prevent exacerbations of COPD: systematic review and meta-analysis of individual participant data from randomised controlled trials. Thorax 2019.
- 20. Zhu, M.; Wang, T.; Wang, C.; Ji, Y. The association between vitamin D and COPD risk, severity, and exacerbation: an updated systematic review and meta-analysis. Int J Chron Obstruct Pulmon Dis 2016, 11, 2597–2607.
- 21. Zhu, B.; Zhu, B.; Xiao, C.; Zheng, Z. Vitamin D deficiency is associated with the severity of COPD: a systematic review and meta-analysis. Int J Chron Obstruct Pulmon Dis 2015, 10, 1907–1916.
- 22. Autier, P.; Mullie, P.; Macacu, A.; Dragomir, M.; Boniol, M.; Coppens, K.; Pizot, C.; Boniol, M. Effect of vitamin D supplementation on non-skeletal disorders: a systematic review of metaanalyses and randomised trials. Lancet Diabetes Endocrinol 2017.
- 23. Autier, P.; Boniol, M.; Pizot, C.; Mullie, P. Vitamin D status and ill health: a systematic review. Lancet Diabetes Endocrinol 2014, 2, 76–89.
- 24. Ferrari, R.; Caram, L.M.O.; Tanni, S.E.; Godoy, I.; Rupp de Paiva, S.A. The relationship between Vitamin D status and exacerbation in COPD patients- a literature review. Respir Med 2018, 139, 34–38.
- Martineau, A.R.; Jolliffe, D.A.; Greenberg, L.; Aloia, J.F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A.A.; Goodall, E.C.; et al. Vitamin D supplementation to prevent acute respiratory infections: individual participant data meta-analysis. Health Technol Assess 2019, 23, 1–44.
- 26. Das, R.R.; Singh, M.; Naik, S.S. Vitamin D as an adjunct to antibiotics for the treatment of acute childhood pneumonia. Cochrane Database Syst Rev 2018, 7, CD011597.
- 27. Vuichard Gysin, D.; Dao, D.; Gysin, C.M.; Lytvyn, L.; Loeb, M. Effect of vitamin D₃ supplementation on respiratory tract infections in healthy individuals: a systematic review and meta-analysis of randomized controlled trials. PLoS One 2016, 11, e0162996.
- 28. Yakoob, M.Y.; Salam, R.A.; Khan, F.R.; Bhutta, Z.A. Vitamin D supplementation for preventing infections in children under five years of age. Cochrane Database Syst Rev 2016, 11, CD008824.
- 29. Bergman, P.; Lindh, A.U.; Björkhem-Bergman, L.; Lindh, J.D. Vitamin D and respiratory tract infections: a systematic review and meta-analysis of randomized controlled trials. PLoS One 2013, *8*, e65835.
- 30. Mao, S.; Huang, S. Vitamin D supplementation and risk of respiratory tract infections: a metaanalysis of randomized controlled trials. Scand J Infect Dis 2013, 45, 696–702.
- 31. Charan, J.; Goyal, J.P.; Saxena, D.; Yadav, P. Vitamin D for prevention of respiratory tract infections: a systematic review and meta-analysis. J Pharmacol Pharmacother 2012, 3, 300–303.
- 32. Das, R.R.; Singh, M.; Panigrahi, I.; Naik, S.S. Vitamin d supplementation for the treatment of acute childhood pneumonia: a systematic review. ISRN Pediatr 2013, 2013, 459160.
- 33. Jolliffe, D.A.; Griffiths, C.J.; Martineau, A.R. Vitamin D in the prevention of acute respiratory infection: systematic review of clinical studies. J Steroid Biochem Mol Biol 2013, 136, 321–329.

- 34. Fried, D.A.; Rhyu, J.; Odato, K.; Blunt, H.; Karagas, M.R.; Gilbert-Diamond, D. Maternal and cord blood vitamin D status and childhood infection and allergic disease: a systematic review. Nut Rev 2016, 74, 387–410.
- 35. Goodwill, A.M.; Szoeke, C. A systematic review and meta-analysis of the effect of low vitamin D on cognition. J Am Geriatr Soc 2017, 65, 2161–2168.
- 36. Annweiler, C.; Llewellyn, D.J.; Beauchet, O. Low serum vitamin D concentrations in Alzheimer's disease: a systematic review and meta-analysis. J Alzheimers Dis 2013, 33, 659–674.
- 37. Chen, H.; Xue, W.; Li, J.; Fu, K.; Shi, H.; Zhang, B.; Teng, W.; Tian, L. 25-hydroxyvitamin D levels and the risk of dementia and Alzheimer's disease: a dose-response meta-analysis. Front Aging Neurosci 2018, 10, 368.
- 38. Jayedi, A.; Rashidy-Pour, A.; Shab-Bidar, S. Vitamin D status and risk of dementia and Alzheimer's disease: a meta-analysis of dose-response. Nutr Neurosci 2018, 15, 1–10.
- Sommer, I.; Griebler, U.; Kien, C.; Auer, S.; Klerings, I.; Hammer, R.; Holzer, P.; Gartlehner, G. Vitamin D deficiency as a risk factor for dementia: a systematic review and meta-analysis. BMC Geriatr 2017, 17.
- 40. Cao, L.; Tan, L.; Wang, H.-F.; Jiang, T.; Zhu, X.-C.; Lu, H.; Tan, M.-S.; Yu, J.-T. Dietary patterns and risk of dementia: a systematic review and meta-analysis of cohort studies. Mol Neurobiol 2016, 53, 6144–6154.
- 41. Shen, L.; Ji, H.-F. Vitamin D deficiency is associated with increased risk of Alzheimer's disease and dementia: evidence from meta-analysis. Nutr J 2015, 14.
- 42. Etgen, T.; Sander, D.; Bickel, H.; Sander, K.; Förstl, H. Vitamin D deficiency, cognitive impairment and dementia: a systematic review and meta-analysis. Dement. Geriatr Cogn Disord 2012, 33, 297–305.
- 43. Lerner, P.P.; Sharony, L.; Miodownik, C. Association between mental disorders, cognitive disturbances and vitamin D serum level: current state. Clin Nutr ESPEN 2018, 23, 89–102, doi:10.1016/j.clnesp.2017.11.011.
- 44. Balion, C.; Griffith, L.E.; Strifler, L.; Henderson, M.; Patterson, C.; Heckman, G.; Llewellyn, D.J.; Raina, P. Vitamin D, cognition, and dementia: a systematic review and meta-analysis. Neurology 2012, 79, 1397–1405.
- 45. Killin, L.O.J.; Starr, J.M.; Shiue, I.J.; Russ, T.C. Environmental risk factors for dementia: a systematic review. BMC Geriatr. 2016, 16.
- 46. van der Schaft, J.; Koek, H.L.; Dijkstra, E.; Verhaar, H.J.J.; van der Schouw, Y.T.; Emmelot-Vonk, M.H. The association between vitamin D and cognition: a systematic review. Ageing Res Rev 2013, 12, 1013–1023.
- 47. Vellekkatt, F.; Menon, V. Efficacy of vitamin D supplementation in major depression: a metaanalysis of randomized controlled trials. J Postgrad Med 2018.
- 48. Gowda, U.; Mutowo, M.P.; Smith, B.J.; Wluka, A.E.; Renzaho, A.M.N. Vitamin D supplementation to reduce depression in adults: meta-analysis of randomized controlled trials. Nutrition 2015, 31, 421–429.
- 49. Spedding, S. Vitamin D and depression: a systematic review and meta-analysis comparing studies with and without biological flaws. Nutrients 2014, *6*, 1501–1518.
- 50. Shaffer, J.A.; Edmondson, D.; Wasson, L.T.; Falzon, L.; Homma, K.; Ezeokoli, N.; Li, P.; Davidson, K.W. Vitamin D supplementation for depressive symptoms: a systematic review and metaanalysis of randomized controlled trials. Psychosom Med 2014, *76*, 190–196.
- 51. Li, G.; Mbuagbaw, L.; Samaan, Z.; Falavigna, M.; Zhang, S.; Adachi, J.D.; Cheng, J.; Papaioannou, A.; Thabane, L. Efficacy of vitamin D supplementation in depression in adults: a systematic review. J Clin Endocrinol Metab 2014, 99, 757–767.

- 52. Wang, J.; Liu, N.; Sun, W.; Chen, D.; Zhao, J.; Zhang, W. Association between vitamin D deficiency and antepartum and postpartum depression: a systematic review and meta-analysis of longitudinal studies. Arch Gynecol Obstet 2018, 298, 1045–1059.
- 53. Ju, S.-Y.; Lee, Y.-J.; Jeong, S.-N. Serum 25-hydroxyvitamin D levels and the risk of depression: a systematic review and meta-analysis. J Nutr Health Aging 2013, 17, 447–455.
- 54. Anglin, R.E.S.; Samaan, Z.; Walter, S.D.; McDonald, S.D. Vitamin D deficiency and depression in adults: systematic review and meta-analysis. Br J Psychiatry 2013, 202, 100–107.
- 55. Aghajafari, F.; Letourneau, N.; Mahinpey, N.; Cosic, N.; Giesbrecht, G. Vitamin D deficiency and antenatal and postpartum depression: a systematic review. Nutrients 2018, 10.
- 56. Föcker, M.; Antel, J.; Ring, S.; Hahn, D.; Kanal, Ö.; Öztürk, D.; Hebebrand, J.; Libuda, L. Vitamin D and mental health in children and adolescents. Eur Child Adolesc Psychiatry 2017, 26, 1043–1066.
- 57. Sarris, J.; Murphy, J.; Mischoulon, D.; Papakostas, G.I.; Fava, M.; Berk, M.; Ng, C.H. Adjunctive nutraceuticals for depression: a systematic review and meta-analyses. Am J Psychiatry 2016, 173, 575–587.
- 58. Trujillo, J.; Vieira, M.C.; Lepsch, J.; Rebelo, F.; Poston, L.; Pasupathy, D.; Kac, G. A systematic review of the associations between maternal nutritional biomarkers and depression and/or anxiety during pregnancy and postpartum. J Affect Disord 2018, 232, 185–203.
- 59. Amini, S.; Jafarirad, S.; Amani, R. Postpartum depression and vitamin D: a systematic review. Crit Rev Food Sci Nutr 2018.
- 60. Sparling, T.M.; Nesbitt, R.C.; Henschke, N.; Gabrysch, S. Nutrients and perinatal depression: a systematic review. J Nutr Sci 2017, 6, e61.
- 61. McLaughlin, L.; Clarke, L.; Khalilidehkordi, E.; Butzkueven, H.; Taylor, B.; Broadley, S.A. Vitamin D for the treatment of multiple sclerosis: a meta-analysis. J Neurol 2018, 265, 2893–2905.
- 62. Jagannath, V.A.; Filippini, G.; Di Pietrantonj, C.; Asokan, G.V.; Robak, E.W.; Whamond, L.; Robinson, S.A. Vitamin D for the management of multiple sclerosis. Cochrane Database Syst Rev 2018, 9, CD008422.
- 63. Zheng, C.; He, L.; Liu, L.; Zhu, J.; Jin, T. The efficacy of vitamin D in multiple sclerosis: a metaanalysis. Mult Scler Relat Disord 2018, 23, 56–61.
- 64. Hempel, S.; Graham, G.D.; Fu, N.; Estrada, E.; Chen, A.Y.; Miake-Lye, I.; Miles, J.N.V.; Shanman, R.; Shekelle, P.G.; Beroes, J.M.; et al. A systematic review of modifiable risk factors in the progression of multiple sclerosis. Mult Scler 2017, 23, 525–533.
- James, E.; Dobson, R.; Kuhle, J.; Baker, D.; Giovannoni, G.; Ramagopalan, S.V. The effect of vitamin D-related interventions on multiple sclerosis relapses: a meta-analysis. Mult Scler 2013, 19, 1571–1579.
- 66. Berezowska, M.; Coe, S.; Dawes, H. Effectiveness of vitamin D supplementation in the management of multiple sclerosis: a systematic review. Int J Mol Sci 2019, 20.
- 67. Iacopetta, K.; Collins-Praino, L.E.; Buisman-Pijlman, F.T.A.; Liu, J.; Hutchinson, A.D.; Hutchinson, M.R. Are the protective benefits of vitamin D in neurodegenerative disease dependent on route of administration? A systematic review. Nutr Neurosci 2018.
- 68. Bagur, M.J.; Murcia, M.A.; Jiménez-Monreal, A.M.; Tur, J.A.; Bibiloni, M.M.; Alonso, G.L.; Martínez-Tomé, M. Influence of diet in multiple sclerosis: a systematic review. Adv Nutr 2017, 8.
- 69. Ganesh, A.; Apel, S.; Metz, L.; Patten, S. The case for vitamin D supplementation in multiple sclerosis. Mult Scler Relat Disord 2013, 2, 281–306.
- 70. Pozuelo-Moyano, B.; Benito-León, J.; Mitchell, A.J.; Hernández-Gallego, J. A systematic review of randomized, double-blind, placebo-controlled trials examining the clinical efficacy of vitamin D in multiple sclerosis. Neuroepidemiology 2013, 40, 147–153.

- 71. Dong, J.-Y.; Zhang, W.-G.; Chen, J.J.; Zhang, Z.-L.; Han, S.-F.; Qin, L.-Q. Vitamin D intake and risk of type 1 diabetes: a meta-analysis of observational studies. Nutrients 2013, *5*, 3551–3562.
- 72. Gregoriou, E.; Mamais, I.; Tzanetakou, I.; Lavranos, G.; Chrysostomou, S. The effects of vitamin D supplementation in newly diagnosed type 1 diabetes patients: systematic review of randomized controlled trials. Rev Diabet Stud 2017, 14, 260–268.
- 73. Antico, A.; Tampoia, M.; Tozzoli, R.; Bizzaro, N. Can supplementation with vitamin D reduce the risk or modify the course of autoimmune diseases? A systematic review of the literature. Autoimmun Rev 2012, 12, 127–136.