
Weeks	-1	1	2	3	4	5	6	
LF	uo	LF diet						
HF	natio	HF diet						
HF_2'-FL	cclimation	HF diet with HF_2'-FL (1, 2, 5, or 10%) in drinking water						
Major procedures	Ψ¢					CCK	OGTT	

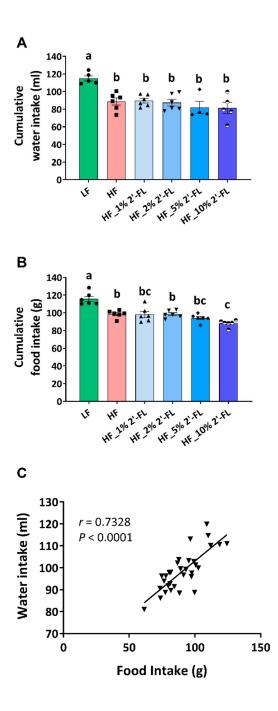

Figure S1. Experimental design of the study. After 1-week acclimation, 36 male C57/BL6 mice (n = 6/group; 6 week old) were split into six weight-matched groups and fed ad libitum either a low-fat (LF; 10% kcal as fat; Research Diets D12450J), high-fat (HF; 45% kcal as fat; Research Diets D08091803B), or HF diet with 2'-FL (HF_2'-FL; with 2'-FL provided by BASF, Germany) at 1, 2, 5, or 10% (w/v) in drinking water for 6 weeks. CCK, cholecystokinin sensitivity test; HF, high fat; HF_x% 2'-FL, HF with x% 2'-FL (w/v) in drinking water; LF, low fat; OGTT, oral glucose tolerance test; 2'-FL, 2-fucosyllactose.

Figure S2. Effect of 10% 2'-FL supplementation on the composition of the gut microbiota. Principal components analysis on all taxonomic levels of mice fed an LF, HF, or HF/2'-FL diet for 6 weeks; between LF and HF (A), LF and 10% 2'-FL (B), and HF and 10% 2'-FL (C). he METAGENassist platform was used for multivariate statistical analysis. $n = 5 \sim 6/group$. HF, high fat; HF/2'-FL, HF with 10% 2'-FL (w/v) in drinking water; low fat; 2'-FL, 2-fucosyllactose.

Figure S3. Histogram of the LDA scores from LEfSe analysis, showing the most differentially abundant taxa at all taxonomic levels enriched in microbiota from mice fed an LF, HF, or 2FL (in drinking water, w/v) diet for 6 weeks. $n = 5 \sim 6/group$. The LEfSe method was used to identify taxa that were significantly differentially abundant for each group. Differences in abundances among groups were assessed using Kruskal–Wallis test with Dunn's post hoc test. The threshold of the logarithmic linear discriminant analysis score was 4.0. HF, high fat; 2FL, HF with 10% 2'-FL (w/v) in drinking water; LEfSe, linear discriminant analysis effect size; LF, low fat; P_G_, Parabacteroides goldsteinii;.

Figure S4. Water intake. Cumulative water (A) and food (B) consumption and the correlation between water and food intake (C) in mice fed an HF_2'-FL (1, 2, 5, or 10% (w/v) in drinking water) diet for 6 wk. One-factor ANOVA was performed for statistical analysis. Differences between groups were analyzed by using Tukey's post hoc tests. Correlation water and food intakes was determined by using the parametric Pearson correlation analysis. Values are means \pm SEMs, n = 6/group. Labeled means at a time without a common letter differ, P < 0.05. HF_x% 2'-FL, HF with x% 2'-FL (w/v) in drinking water; 2'-FL, 2-fucosyllactose.

Diet Ingredient	LF -	D12450J	HF - D08091803B		
	g	kcal	g	kcal	
Casein	200	800	200	800	
L-Cystine	3	12	3	12	
Corn Starch	401.29	2025	176.8	707	
Maltodextrin 10	125	500	100	400	
Sucrose	68.8	275	68.8	275	
Cellulose (Solka floc, 200 FCC)	50	0	50	0	
Soybean Oil	25	225	25	225	
Lard	20	180	177.5	1598	
Mineral Mix S10026	10	0	10	0	
Dicalcium Phosphate	13	0	13	0	
Calcium Carbonate	5.5	0	5.5	0	
Potassium Citrate, 1 H20	16.5	0	16.5	0	
Vitamin Mix V10001	10	40	10	40	
Choline Bitartrate	2	0	2	0	
FD&C Yellow Dye #5	0.04	0	0	0	
FD&C Red Dye #40	0	0	0	0	
FD&C Blue Dye #1	0.01	0	0.05	0	
Total	1055.05	4057	858.13	4057	
Protein, % kcal	20		20		
Fat, % kcal	10		45		
Carbohydrates, % kcal	70		35		
Energy, kcal/g	3.82		4.7		

Table S1. Diet composition of LF and HF diets¹

¹ Diets prepared by Research Diets, Inc. HF, high-fat; LF, low-fat

 Table S2. Primer sequences used for RT-PCR

Gene	Accession no.	Forward primers (5' to 3')	Reverse primers (5' to 3')
GAPDH	NM_008084.3	ACGGTCAGGTCATCACTATC	GATGCCACAGGATTCCATAC
IL-1β	NM_008361.4	ACAGATCGGCTCCTACTT	CGGGTCTGCTCATAGTAATG
IL-6	NM_001314054.1	AAACAGTCCAGGCTTCTC	ATGGCTGGGAACCATTAG
MCP-1	NM_011333.3	CGATGTCTAAGAGAGAAAGGG	GGAAACAGGTACCCACAAA
PPARγ	NM_011146.3	GAGCATCTCCCTCACAATTC	GGGTGCAGCGAACTTTAT
CADDII	-1	nhata dahadaa aanaaa II 10 intanlaad	in 1 hater II (interdential (MCD

GAPDH, glyceraldehyde 3-phosphate dehydrogenase; IL-1 β , interleukin-1 beta; Il-6, interleukin-6; MCP-1, monocyte chemoattractant protein-1; PPAR γ , peroxisome proliferator-activated receptor gamma.

Table S3. ANOVA data summary

	F(DFn, DFd)	P value	
Two-way ANOVA of body weight			
Interaction	F (30, 180) = 4.927	P<0.0001	
Diet	F(5, 30) = 3.691	P=0.0101	
Time	F(6, 180) = 258.4	P<0.0001	
Two-way ANOVA of fat mass			
Interaction	F (5, 30) = 3.889	P=0.0078	
Diet	F(5, 30) = 8.018	P<0.0001	
Time	F (1, 30) = 84.02	P<0.0001	
Two-way ANOVA of lean mass			
Interaction	F (5, 30) = 0.4699	P=0.7956	
Diet	F(5, 30) = 0.1447	P=0.9801	
Time	F (1, 30) = 19.94	P=0.0001	
One-way ANOVA (factor: diet)			
Cumulative energy intake	F (5, 30) = 3.445	P=0.0141	
Feed efficiency	F(5, 30) = 6.703	P=0.0003	
c-Fos positive cells in the NTS	F (2, 13) = 2.131	P=0.1584	
c-Fos positive cells in the AP	F (2, 13) = 1.291	P=0.3079	
Cecal acetic acid level	F (2, 14) = 1.359	P=0.2887	
Cecal butyric acid level	F (2, 14) = 4.593	P=0.0293	
Cecal citric acid	F (2, 15) = 0.4953	P=0.6190	
Cecal formic acid	F(2, 14) = 2.006	P=0.1714	
Cecal glyceric acid	F(2, 15) = 6.461	P=0.0095	
Cecal glycolic acid	F(2, 15) = 0.3647	P=0.7004	
Cecal hexanoic acid	F (2, 14) = 0.4263	P=0.6611	
Cecal isobutyric Acid	F (2, 15) = 1.917	P=0.1815	
Cecal isovaleric Acid	F (2, 14) = 0.4263	P=0.6611	
Cecal lactic acid	F (2, 14) = 7.456	P=0.0062	
Cecal propionic acid	F (2, 14) = 0.1683	P=0.8468	
Cecal pyruvic acid	F(2, 15) = 4.834	P=0.0240	
Cecal succinic acid	F(2, 15) = 1.506	P=0.2535	
Cecal valeric acid	F (2, 15) = 1.234	P=0.3192	
Cecal indole-3-acetic acid	F(2, 15) = 1.234	P=0.3192	
Cecal indole-3-butyric acid	The samples all had a sta	andard error of zero.	
Cecal indole-3-lactic acid	Not detected		
Cecal indole-3-propionic acid	F(2, 14) = 0.1647	P=0.8498	
Cecal serotonin level	F (2, 15) = 14.65	P=0.0003	
Cecal IL-1β mRNA	F(2, 14) = 4.261	P=0.0359	
Cecal IL-6 mRNA	F (2, 14) = 3.465	P=0.0599	
MCP-1 mRNA in WAT	F (2, 15) = 5.299	P=0.0182	
White adipocyte size	F (2, 11) = 10.33	P=0.0030	
Plasma LBP level	F (2, 14) = 6.733	P=0.0089	

Plasma Lcn-2 level	F (2, 13) = 2.751	P=0.1009	
ORO-positive area in the liver	F (2, 14) = 0.3141	P=0.7355	
Hepatic TG level	F (2, 15) = 1.463	P=0.2628	
Hepatic PPARy mRNA	F (2, 15) = 6.815	P=0.0078	
Cumulative food intake (g)	F (5, 30) = 15.72	P<0.0001	
Cumulative water intake (g)	F (5, 26) = 7.315	P=0.0002	

Differences between groups were analyzed by using Tukey's post hoc tests. Differences were considered significant if P < 0.05. AP, area postrema; IL-1 β , interleukin 1 beta; IL-6, interleukin 6, LBP, lipopolysaccharide (LPS)-binding protein; Lcn-2; lipocalin-2; MCP-1; monocyte chemoattractant protein-1; NTS, nucleus of the solitary tract; ORO, Oil Red O; PPAR γ , peroxisome proliferator-activated receptor

gamma; TG, triglyceride; WAT, white adipose tissue.