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Abstract: Non-alcoholic fatty liver disease (NAFLD) is considered a worldwide healthcare problem
that mirrors the increased prevalence of obesity. Gut microbiota plays a crucial role in the progression
and treatment of NAFLD. Bofutsushosan (BTS), a pharmaceutical-grade Japanese traditional medicine,
has long been prescribed in Japan for obesity and obesity-related syndrome. Although BTS has been
reported to exert an anti-obesity effect in obese patients as well as various obesity-model animals,
its effect on gut microbiota is unknown. Here, the effects of BTS on obesity, liver damage, and the
gut microbiome in genetically obese mice, ob/ob, were studied. Seven-week-old ob/ob mice were
fed a standard diet with (BTS group) or without (CONT group) 5% BTS for 4 weeks. By comparison
to the CONT group, the BTS group showed reduced body weight gain and hyperlipidemia as
well as improved liver function. Moreover, gut microbiota in the CONT and BTS group formed a
significantly different cluster. Specifically, the genera Akkermansia, Bacteroides and an unknown genus
of the family Enterobacteriaceae expanded dramatically in the BTS group. Noteworthy, the population
of Akkermansia muciniphila, which is reported to elicit an anti-obesity effect and improve various
metabolic abnormalities, was markedly increased (93-fold) compared with the CONT group. These
results imply that BTS may be a promising agent for treating NAFLD.
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is a progressive fatty liver injury that excludes other
causative disorders in patients who do not abuse alcohol. Approximately 25% of NAFLD patients
subsequently develop non-alcoholic steatohepatitis (NASH), which increases the risk of developing
liver cirrhosis and hepatocellular carcinoma [1,2]. Many studies have demonstrated a strong positive
relationship between NAFLD and obesity, and lifestyle modifications are the first-line approach
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to manage patients with NAFLD [3–6]. The rapid increase in the prevalence of obesity indicates
the importance of environmental effects on pathogenesis and the intestinal tract, which provides
the microenvironment.

Recent research suggests the gut microbiota is deeply involved in human health and various
disease states including obesity and NAFLD [7–10]. As a “virtual metabolic and endocrine organ”,
gut microbiota influence the health of the host by digesting or metabolizing ingested materials to
absorbable, and sometimes biologically active, molecules [11,12]. The gut and liver are connected
via the portal vein. As such, the liver is exposed to microbial metabolites such as short-chain fatty
acids and secondary bile acids [13]. For example, secondary bile acids, which are metabolized from
primary bile acid by gut microbiota, have different affinities for the farnesoid X receptor (FXR). Because
FXR is involved in many metabolic processes, the gut microbiota affects host metabolism by affecting
secondary bile acids [14,15]. Conversely, bile acids are known to have antibacterial activity [16].
From this perspective, the gut microbiota and liver influence each other. Managing the gut microbiota
is now recognized as a potential therapeutic target for obesity and NAFLD [17]. For example, several
strains belonging to Lactobacillus or Bifidobacterium showed anti-obesity effects through species and
strain-specific mechanisms [18]. Moreover, Akkermansia muciniphila is anticipated to be the next
generation of beneficial microbe [19]. Everard et al. reported A. muciniphila increases metabolic activity
and elicits an anti-obese effect in diet-induced obese (DIO) mice, whereas heat-killed A. muciniphila
does not [20].

Japanese traditional or “Kampo” medicines are standardized with regard to the quality and
quantity of their ingredients and have been approved by the Japanese Ministry of Health and Welfare.
Bofutsushosan (BTS), one such Kampo medicine, has long been prescribed in Japan for obesity
and obesity-related syndrome. The biological activities of BTS have been demonstrated by clinical
studies, including a randomized double-blind placebo-controlled study as well as basic studies [21–23].
Ono et al. reported that BTS attenuated development of NASH through induction of adiponectin
signaling and phosphorylation of the protein kinase Akt [24]. BTS contains 18 crude drugs, some of
which are reported to possess anti-obesity activity (Table S1). Although the mechanisms of action of
BTS have been reported in various studies, there is no information regarding its effect on gut microbiota.
BTS is indicated for patients with constipation as well as obesity, showing that the gut may be the
primary target organ of BTS.

Taken together, these observations suggest that BTS might change the gut microbiota to exert
preventive action on the development of NAFLD. The aim of this study was to examine the effect of
dietary supplementation of BTS on obesity, liver damage, and the gut microbiome of genetically obese
ob/ob mice.

2. Materials and Methods

2.1. Bofutsushosan (BTS)

BTS was supplied by Tsumura & Co. (Tokyo, Japan) in the form of a powdered extract. The BTS was
obtained by spray-drying a hot water extract mixture comprising the following 18 crude components
(ratios shown in parentheses): Angelicae Radix (1.2), Paeoniae Radix (1.2), Cnidii Rhizoma (1.2), Gardeniae
Fructus (1.2), Forsythiae Fructus (1.2), Menthae Herba (1.2), Zingiberis Rhizoma (0.3), Schizonepetae Spica
(1.2), Saposhnikoviae Radix (1.2), Ephedrae Herba (1.2), Rhei Rhizoma (1.5), Natrium Sulfricum (0.7),
Atractylodis Rhizoma (2.0), Platycodi Radix (2.0), Scutellariae Radix (2.0), Glycyrrhizae Radix (2.0), Gypsum
(2.0), and Kasseki (3.0).

2.2. Animals

All experimental procedures were performed according to the Guidelines for the Care and Use
of Laboratory Animals of Tsumura & Co. Ethical approval for the experimental procedures used
in this study was obtained from the Laboratory Animal Committee of Tsumura & Co (approval no.
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06–28, 07–94). Male ob/ob mice (B6.Cg-Lepob/J, six-week-old) and C57BL/6J (six-week-old) were
purchased from Charles River Laboratories Japan, Inc. (Kanagawa, Japan). The ob/ob mice are known
as leptin-deficient obese mice with the hyperphagia phenotype.

After one week of acclimatization (Week 0), male, seven-week-old ob/ob and C57BL/6J mice were
randomly divided into groups and fed a standard diet, MF (Oriental Yeast Co., Ltd., Tokyo Japan) or
MF supplemented with 5% (w/w) BTS, for four weeks. The dosage of BTS for murine experiments was
determined according to previous reports [24]. Body weight was measured weekly (Week 0, 1, 2, 3, 4).
Daily food intake was measured at Week 1, 2, and 4. The present study design is as shown in Figure 1.
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Figure 1. Study design.

2.3. Histopathological Examination and Blood Biochemistry

At the end of the diet period, all mice were fasted overnight and blood and liver samples obtained
under anesthesia. The livers were immediately fixed in 15% buffered formalin. The liver tissues
were dehydrated in ethanol and embedded in paraffin according to conventional methods. Sections
(45 µm thickness) were stained with hematoxylin and eosin (HE) and examined by light microscopy.
Blood samples were centrifuged (1700× g, 15 min, 4 ◦C) and the supernatants collected. Glucose (Glc),
total cholesterol (T-Cho), triglyceride (TG), aspartic acid transaminase (AST), and alanine transaminase
(ALT) in plasma were measured using an automated biochemical analyzer Toshiba TBA-40FR (Canon
Medical Systems Co., Ltd., Tochigi, Japan). The measurement procedures were performed according to
the manufacturer’s instructions (FUJIFILM Wako Pure Chemical Corp., Tokyo, Japan).

2.4. 16S rRNA Gene Metagenome Sequencing of Stool Samples

During dietary administration, stools were collected weekly and stored at −80 ◦C until use.
DNA was extracted from 10–30 mg stool sample using QIA Amp DNA stool mini kit (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions with slight modifications. In brief, stools
were mixed with elution buffer supplied as part of the kit and vortexed for 3 min at 1800 rpm
using a MicroSmash cell disrupter (Tomy Seiko Co. Ltd., Tokyo, Japan) with zirconia beads.
The homogenized samples were centrifuged (10,000× g for 30 min) to obtain lysate. Subsequent
processing followed the manufacturer’s protocol. DNA concentrations were measured by NanoDrop
(LMS. Co. Ltd., Tokyo, Japan). The preparation of 16S rRNA gene metagenome library for
MiSeq (Illumina, Inc., San Diego, CA, USA) was performed according to the manufacturer’s
protocol. Briefly, 10 ng of DNA template was amplified using Advantage-HF 2 PCR kit (Takara
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Bio Inc., Shiga, Japan) with universal primers for the 16S rRNA V3–V4 region (forward primer:
5′ TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG 3′, reverse
primer: 5′ GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC
3′). Subsequently, index sequences for each sample were added to both ends of the purified PCR
fragments. The concentrations of each amplicon were measured by Quant-iT PicoGreen dsDNA Assay
Kit (Thermo Fisher Scientific, Inc., Waltham, MA, USA) and mixed equally. The library was applied to
MiSeq Reagent Kit v3 (Illumina, Inc.) and sequence determined using the manufacturer’s standard
protocol. Sequence data were processed as follows using the 16S rRNA sequence analysis pipeline,
QIIME 1.8.0 [25]. Initially, both sequence reads were joined and sequences with a phred quality
score below 20 removed. Chimera elimination by Usearch was performed to remove contaminated
sequences. The open reference operational taxonomic unit (OTU) picking was performed against
Greengenes 13_8 97% OTU representative sequences. A summary of taxonomy in each sample was
obtained using the script “summarize_taxonomy_through_plots.py” in QIIME 1.8.0. The sequences
were subsequently deposited to the DDBJ database (BioProject Accession; PRJDB9243).

2.5. Quantitative PCR (qPCR)

qPCR for A. muciniphila was performed using a specific primer for A. muciniphila and universal
primer for all bacteria [26]. All primers were purchased from Thermo Fisher Scientific, Inc. as custom
primers. DNA extract from stool samples was used as template. Reactions were performed by a
standard method using a SYBR Green PCR Kit (Thermo Fisher Scientific, Inc.) and QuantStudio 7 Flex
Real-Time PCR system (Thermo Fisher Scientific, Inc.).

2.6. Statistical Analysis

Alpha diversity metrics were calculated using the script “alpha_diversity.py” in QIIME 1.8.0.
Beta diversity analysis was performed by non-metric multidimensional scaling (NMDS) using
Bray–Curtis dissimilarity “metaMDS”. Cluster difference was tested by permutational multivariate
analysis of variance (PERMANOVA) using “adonis” in package “vegan” [27] in R 3.5.2 (The R
Foundation Conference Committee). The Hierarchical cluster analysis was performed using “hclust” in
package “stats” in R 3.5.2. The distance between each variable used Bray–Curtis dissimilarity indices,
and the distances between each cluster were obtained by Ward’s method. Univariate analysis between
two groups were performed with the Mann–Whitney U test using R 3.5.2.

3. Results

3.1. Pharmacological Effects of BTS on Obesity, Food Intake, and Hyperlipidemia in ob/ob Mice

We first examined time-dependent changes in body weight of leptin-deficient ob/ob mice and
wild-type C57BL/6J mice fed a diet supplemented with BTS for 4 weeks. Three groups were studied:
CONT group (ob/ob mice fed standard diet), BTS group (ob/ob mice fed standard diet containing 5%
BTS), and WILD group (C57BL/6J mice fed standard diet). The body weights at Week 0 (seven-week-old)
in the CONT, BTS, and WILD groups were 40.7 ± 2.2, 40.9 ± 1.5, 22.9 ± 0.6 g, respectively. Figure 2A
shows the percent of body weight in each week against Week 0. CONT group showed a marked
increase in body weight (26.3% ± 6.4%) over the 4 week study period. By contrast, the BTS group
gained weight more slowly (13.9% ± 3.7%). The profile obtained for the BTS group was similar to
that of the WILD group. Moreover, the BTS group showed no apparent abnormality during the
experimental period.
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Figure 2. Effects of dietary administration of Bofutsushosan (BTS) on body weight and food intake.
Seven-week-old ob/ob and C57BL/6J mice were administered a standard diet with or without 5% (w/w)
BTS for 4 weeks. (A) Change of relative body weight based on the value at Week 0. Closed circle,
C57BL/6 mice (WILD group); open circle, ob/ob mice fed a standard diet (CONT group); gray triangle,
ob/ob mice fed a standard diet supplemented with 5% BTS (BTS group). Data are shown as mean ± SE
(n = 6). (B) Mice were housed two per cage. Food intake was measured per cage. Closed, open, and
gray columns represent WILD, CONT, and BTS groups, respectively. Data are shown as mean ± SE
(n = 3). *; p < 0.05 by Student’s t-test with Bonferroni’s correction (CONT vs. BTS).

We next evaluated food intake at Week 1, 2, and 4 (Figure 2B). Food intake in the CONT group was
more than in the WILD group, as reported earlier [28], whereas that in the BTS group was significantly
decreased compared with the CONT group.

Plasma levels of Glc, TG, T-Cho, AST, and ALT were measured to evaluate the effect of BTS on
sugar/lipid metabolism and liver injury. We also compared these parameters with seven-week-old
mice, i.e., starting age of treatment. As shown in Table 1 (Experiment A), plasma levels of TG, T-Cho,
AST, and ALT in ob/ob mice were significantly higher than those of wild-type mice, indicating that
metabolic abnormality in ob/ob mice had already occurred by 7 weeks of age. Blood parameters of
the CONT and BTS groups at Week 4 showed a significant decrease of T-Cho, AST, and ALT in the
BTS group by comparison with the CONT group, whereas Glc and TG levels were not significantly
different (Table 1 (Experiment B)).

Table 1. Plasma metabolic parameters.

Glc (mg/dL) T-Cho (mg/dL) TG (mg/dL) AST (IU/L) ALT (IU/L)

Experiment A.
C57BL/6J 119.3 ± 10.0 47.0 ± 1.4 29.0 ± 11.0 18.8 ± 2.9 11.3 ± 1.9

ob/ob 198.3 ± 45.9 104.5 ± 18.2 * 73.3 ± 14.2 * 110.3 ± 24.6 * 126.8 ± 26.9 *

Experiment B
CONT group 145.3 ± 24.3 107.5 ± 9.9 19.8 ± 2.8 163.0 ± 29.7 167.0 ± 25.9

BTS group 118.0 ± 41.8 86.8 ± 6.0 * 17.0 ± 1.6 65.2 ± 25.8 * 55.2 ± 24.0 *

Experiment A, Plasma metabolic parameters in C57BL/6J and ob/ob mice (seven-week-old) fed a standard diet;
Experiment B, Plasma metabolic parameters in ob/ob mice with or without BTS administration for 4 weeks.
The plasma samples were collected after overnight fasting and metabolic parameters measured. Data are shown as
average ± SD (n = 5). Glc; glucose, T-Cho; total cholesterol, TG; triglyceride, AST; Aspartate transaminase, ALT;
Alanine transaminase, *: p < 0.05 by Student’s t-test.

An evaluation of hepatic histopathology at Week 4 was performed. The WILD group showed
accumulation of glycogen and minimal fat, and few inflammatory cells (Figure 3A,D). Livers from
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the CONT group showed different sizes of lipid vacuoles, hepatocyte ballooning, and accumulation
of inflammatory cells (Figure 3B,E). However, in the BTS group, there was reduced cellular lipid
accumulation, hepatocyte ballooning, and accumulation of inflammatory cells compared with the
CONT group (Figure 3C,F).

Taken together, BTS suppressed the development of abnormalities in lipid metabolism and liver
damage associated with ob/ob mice.
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Figure 3. Representative microscopic images of the liver of mice treated with or without BTS. The liver
was taken from mice fed with or without 5% (w/w) BTS for 4 weeks. The specimens were stained with
hematoxylin and eosin and examined by light microscopy. (A,D) WILD group, (B,E) CONT group,
(C,F) BTS group, (A–C) × 20 magnitude, (D–F) × 40 magnitude.

3.2. BTS-Dependent Changes of Gut Bacteria, Including those of the Genus Akkermansia

Stool microbiota from ob/ob mice and the wild-type C57BL/6J mice were analyzed by 16S rRNA
metagenome sequencing. The number of trimmed, qualified reads in each sample was 6553 ± 2703.
Six thousand types of OTU were detected in whole samples (average 575.7 ± 274.0 OTU/sample).
The weekly changes of relative abundance at phylum and genus levels of microbiota are shown in
Figure 4A,B, respectively. First, we examined the microbiota in ob/ob mice and wild-type mice at
7 weeks of age. No significant difference was found in the relative abundance of phyla exceeding
1%, while several genera showed significant differences between ob/ob mice and the wild-type mice
(Table S2).
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Figure 4. Microbiota composition in stool samples of mice fed a diet with or without BTS. Stools
were collected weekly from mice fed with or without 5% (w/w) BTS. Relative abundance of gut
microbiota was determined by 16S metagenome sequence analysis. Average relative abundance at each
sampling point is shown as bar charts of phylum (A) and genus (B) levels (n = 6). B6, C57BL/6J mice
(seven-week-old); ob, ob/ob mice (seven-week-old); CONT, ob/ob mice fed a standard diet; BTS, ob/ob
mice fed a standard diet with 5% BTS.

The shape of microbiota in the BTS group showed a tendency to increase and decrease in the
phylum Bacteroidetes and Firmicutes, respectively. In particular, the phylum Verrucomicrobia appeared
only in the BTS group throughout the treatment period (Figure 4A). The types of genera were also
examined (Figure 4B, Tables S2–S6). Levels of the genus Bacteroides and an unknown genus of the family
Enterobacteriaceae were significantly elevated in the BTS group over the CONT group. By contrast,
levels of the genus Prevotella were significantly lower in the BTS group compared with the CONT
group. Noteworthy, the relative abundance of the genus Akkermansia at Week 1 was 3.17% in the BTS
group, but below the detection limit (0.001%) for the CONT group (Table S3). Specifically, the genus
Akkermansia increased the most in the BTS group compared with the CONT group, which continued
until Week 3 (Tables S3–S6).

The dissimilarity of microbiota in the CONT and BTS groups was visualized using non-metric
multidimensional scaling (NMDS). As shown in Figure 5, microbiota in the CONT and BTS groups
formed a different cluster, showing a statistical difference (p = 0.0050 by PERMANOVA). Because
the BTS cluster persisted throughout the treatment period, the Mann–Whitney rank sum test was
used (Table 2). In all, 21 bacteria showed a statistical difference between the CONT and BTS groups.
In particular, genera Akkermansia, Bacteroides and an unknown genus of the family Enterobacteriaceae,
which clustered in the direction of the BTS group (Figure 5), were present at minor levels in the CONT
group but expanded dramatically (>1% of relative abundance) following BTS treatment (i.e., 10-fold
increase over the CONT group). By contrast, an unknown genus of the family Helicobacteraceae, present
at 1.24% in the CONT group, was below the detection limit in the BTS group. Among genera whose
relative abundance was above 1% in either group, those of the genus Akkermansia were most altered in
the BTS group (93-fold higher).
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Figure 5. Non-metric multidimensional scaling of stool microbiota in ob/ob mice fed a diet with
or without BTS. Similarity of microbiota between CONT and BTS was assessed by non-metric
multidimensional scaling (NMDS). Circle, stool sample; Cross, detected genera; Bold cross, genera
showing significant differences with 10-fold changes between CONT and BTS groups in Table 2.
The limb of each group is shown by a dotted line. The dissimilarity test between CONT and BTS was
performed by permutational multivariant analysis of variance test.

Table 2. Relative abundance of microbiota (genus level) throughout administration of 5% BTS in
ob/ob mice.

Phylum Genus CONT Group (%)
Mean ± SD

BTS Group (%)
Mean ± SD Ratio p-Value

Verrucomicrobia Akkermansia 0.03 ± 0.07 3.14 ± 2.25 93.36 1.60 × 10−6

Bacteroidetes

Bacteroides 0.91 ± 0.85 9.58 ± 6.90 10.50 1.69 × 10−11

Prevotella 5.24 ± 3.14 1.60 ± 0.97 0.30 3.32 × 10−9

Parabacteroides 5.58 ± 5.79 15.53 ± 6.61 2.78 3.83 × 10−8

[Prevotella] BLD 0.78 ± 1.13 777.97 2.31 × 10−4

unknown genus in
order Bacteroidales BLD 0.01 ± 0.01 5.94 2.07 × 10−2
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Table 2. Cont.

Phylum Genus CONT Group (%)
Mean ± SD

BTS Group (%)
Mean ± SD Ratio p-Value

Firmicutes

unknown genus in
family

Erysipelotrichaceae
0.14 ± 0.13 0.84 ± 0.55 6.00 1.77 × 10−9

unknown genus in
order Clostridiales 43.33 ± 11.29 23.36 ± 15.45 0.54 2.87 × 10−6

[Eubacterium] <0.01 0.11 ± 0.14 167.26 1.35 × 10−5

Anaerotruncus BLD 0.01 ± 0.01 9.82 5.19 × 10−4

unknown genus in
family

Christensenellaceae
0.01 ± 0.01 0.02 ± 0.03 4.07 1.06 × 10−2

Clostridium 0.01 ± 0.01 <0.01 0.39 1.41 × 10−2

unknown genus in
family Lachnospiraceae 0.14 ± 0.28 0.05 ± 0.08 0.37 2.38 × 10−2

Streptococcus <0.01 0.01 ± 0.01 6.29 2.44 × 10−2

Coprobacillus <0.01 0.03 ± 0.04 6.40 3.58 × 10−2

Sporosarcina 0.01 ± 0.03 BLD 0.12 4.10 × 10−2

Ruminococcus 0.98 ± 0.70 0.65 ± 0.52 0.66 4.28 × 10−2

Proteobacteria

unknown genus in
family

Enterobacteriaceae
0.06 ± 0.27 2.39 ± 3.55 37.59 2.03 × 10−8

unknown genus in
family Helicobacteraceae 1.24 ± 2.22 <0.01 <0.01 8.06 × 10−3

Tenericutes unknown order in
RF39 0.23 ± 0.26 0.07 ± 0.05 0.30 2.52 × 10−4

Actinobacteria Bifidobacterium BLD 0.03 ± 0.06 30.56 2.42 × 10−3

Relative abundance of microbes throughout administration with 5% (w/w) BTS determined at the genus level.
Statistical differences between CONT and BTS groups were examined by the Mann–Whitney rank sum test, showing
genus with significant alteration in p-value < 0.05. When genus could not be detected, abundance value was
provisionally assigned as 0.001%. Ratio was calculated as BTS group/CONT group. CONT, ob/ob mice fed a
standard diet. BTS, ob/ob mice fed a standard diet with 5% BTS. BLD, below limit of detection in all samples; bold,
relative abundance >1%; underlined bold, ratio was >10 or <0.1 and the relative abundance >1%.

3.3. Relationship Between Particular Microbes and Body Weight Gain

The relationship between microbes in the gut microbiota and body weight gain at Week 4 was
studied (Figure 6A–E). The genera Akkermansia, Bacteroides, and an unknown genus of the family
Enterobacteriaceae exerted a negative correlation between relative abundance of bacteria and body weight
gain in the BTS group but not in the CONT group. An unknown genus in the family Helicobacteraceae
was not found to be relevant. Because Akkermansia muciniphila was most affected by BTS treatment,
the relative abundance of A. muciniphila was validated by qPCR (Figure 6E). Akin to the result obtained
by 16S metagenomics, the relative abundance of A. muciniphila increased only in the BTS group, which
correlated with the suppression of body weight gain.
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Figure 6. Scattered plot of relative abundance of stool bacteria versus relative increase of body weight.
Genera Akkermansia (A), Bacteroides (B), unknown genus in the family Enterobacteriaceae (C), and
unknown genus in the family Helicobacteraceae (D), were analyzed by 16S metagenome sequencing and
plotted versus relative increase of body weight. Only Akkermansia muciniphila was analyzed by qPCR
(E). Open triangle, CONT group; closed circle, BTS group. Increase of body weight (%) was calculated
as follows: 100 × ((body weight at Week 4) − (body weight at Week 0))/(body weight at Week 0).

4. Discussion

This is the first report to analyze the effect of BTS treatment on the pathophysiology and
microbiology of obese model mice (ob/ob). The shape of the gut microbiota in ob/ob mice was rapidly
altered in the BTS group, which persisted throughout the treatment period. Major changes to gut
microbiota were identified in the BTS group: (i) increase of A. muciniphila, genus of Bacteroides, and an
unknown genus of the family Enterobacteriaceae, which were clustered closely in NMDS analysis
(Figure 5); (ii) decrease of unknown genus of the family Helicobacteraceae.

The rapid increase in the level of A. muciniphila was the most interesting finding in this
study. Many reports indicate the positive effect of A. muciniphila in preventing obesity or metabolic
disorders [19,29,30]. Porras et al. reported a negative correlation between the genus Akkermansia and
NAFLD activity score using DIO mice [31]. Moreover, supplementation of A. muciniphila is reported to
improve insulin resistance, insulinemia, plasma cholesterol, and AST levels in a double-blind study of
overweight and obese patients [32]. Here, supplementation with BTS gave a clear improvement in
the plasma levels of total cholesterol, AST, and ALT as well as liver steatosis in ob/ob mice (Table 2,
Figure 3). Thus, the present results are in good agreement with previous studies using A. muciniphila.

NAFLD is characterized by an abnormal accumulation of fat in the liver related with insulin
resistance and can progress into NASH in which steatosis is combined with inflammation. For instance,
leak of endotoxin from the intestinal lumen can lead to inflammation in the liver. A. muciniphila
administration could reverse diet-induced obesity in mice by mediating adipocyte metabolism and
gut barrier function [33]. The causative role of A. muciniphila in liver disorder in obesity is reviewed
comprehensively [34]. A. muciniphila modulated the lipid metabolism in circulation, including adipose,
liver, and intestine, and the internal metabolite changes caused by A. muciniphila were also involved in
these actions. Interestingly, A. muciniphila is reported to improve expression of epithelial tight junction
proteins, occludin and Tjp-1 and suppress lipopolysaccharide (LPS) production by increasing the
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variety and volume of gut microbes [35]. Everard et al. reported that the mucus layer of diet-induced
obesity mice showed 46% thinner compared with that of normal mice, and A. muciniphila treatment
recovered the thickness, resulting in an anti-obese effect [20]. On the other hand, the thickening activity
to the intestinal mucus layer disappeared when they used the heat-killed A. muciniphila. These lines
indicate that A. muciniphila reduces fat accumulation and liver inflammation, which are two essential
factors for NASH formation, showing a potential that increase of A. muciniphila in gut flora can cause
the improvement of NAFLD and/or NASH.

We found a slight negative correlation between dominant microbes that showed >10-fold change
by BTS and body weight (Figure 6). The observed reduction of body weight gain by BTS administration
cannot be explained by a single microbe such as A. muciniphila. Further studies are required to better
understand the observed reduction in body weight. For example, a fecal microbiota transplant can
be performed to elucidate a direct correlation between the change in microbial population and body
weight reduction following BTS treatment. An alternative explanation for reduced body weight gain is
a decrease in food intake. Indeed, food intake decreased in the BTS group during the administration
period. Thus, BTS may suppress excessive appetite in the present model. Indeed, Azushima et al.
reported a suppressive effect of BTS on food intake and concluded this is brought about by modulating
the ghrelin system in KKAy mice [36].

This study detected significant increases of genus Bacteroides and an unknown genus of the family
Enterobacteriaceae and a significant decrease of unknown genus of the family Helicobacteraceae in the
BTS group. Members of the genus Bacteroides have been reported to contribute to reinforcement
of the intestinal barrier [37], as well as A. muciniphila. Multiple Roux-en-Y gastric bypass (RGBY)
studies reported a positive correlation with the family Enterobacteriaceae and anti-obese activity [38,39].
Helicobacter pylori, a member of the family Helicobacteraceae, has been reported to be associated
with NAFLD [40]. However, the genus Helicobacter was not detected in this study. Unfortunately,
the biological characteristics of these microbes are not known. Further research into the role of these
microbes is required.

The BTS may influence the shape of microbiota in several ways. The antibacterial activity of
BTS is one possible mechanism. Among BTS components, Menthae Herba, Zingiberis Rhizoma, Rhei
Rhizoma, Paeoniae Radix, Atractylodis Rhizoma, and Forsythia Fruit are reported to possess antibacterial
activity [41–48]. Here, the total number of bacteria was estimated by qPCR to assess the possible
influence of BTS on bacterial count. No significant difference in copy number of total bacteria between
the CONT and BTS group was observed (Figure S1). Prebiotic-like effects were also considered.
Fibers, polysaccharides, and polyphenols are contained in plant materials and some of them are
reported to influence the microbiota [49]. Furthermore, many active compounds, including flavonoids,
are consumed as glycosides that need to be deglycosylated by specific gut microbes to display biological
activity. Several reports suggest a relationship between flavonoids and the genus Akkermansia [50].

Component crude drugs of BTS, Atractylodis Rhizoma and Rhei Rhizoma, which are reported
to augment the genus Akkermansia in the gut [51,52], are known to include bioactive glycosides
atractylodis and sennoside, respectively. Chen et al. reported that the genus Akkermansia was increased
by administration of another Kampo drug, orengedokuto, in a high-fat diet and streptozotocin induced
type 2 diabetic model rat [53]. Gardeniae Fructus and Scutellariae Radix are common crude drugs
in both orengedokuto and BTS. Specifically, Gardeniae Fructus contains geniposide, a glycoside of
genipin. Scutellariae Radix contains various types of flavonoid glycoside such as baicalin, wogonoside,
oroxylin A-7-O-glucronide, liquiritin, and isoliquiritin. Therefore, it is possible that these glycosides
in BTS alter gut microbiota including the genus Akkermansia via a prebiotic mechanism during BTS
administration. For example, geniposide has been reported to be effective for liver protection and must
be metabolized by gut microbiota for its activation [54]. Baicalin has been reported to possess anti-obese
and liver steatosis suppression activities [55]. 1,2,3,4,6-penta-O-galloyl-β-D-glucose, a polyphenolic
compound highly enriched in Paeoniae Radix, has also been reported to have anti-diabetic activity and
is metabolized by gut microbiota. Furthermore, gallotannin is reported to show prebiotic effects on
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Bifidobacteria and lactic acid bacteria [56]. Thus, if specific microbes contribute to the metabolism of
these glycosides, BTS might act as a prebiotic-like agent.

It is also important to consider mechanisms by which BTS might exert its effects via action on the
liver and/or surrounding organs. Indeed, crude drugs in BTS are reported to have anti-obese activity
(Table S1). Moreover, ingredients in BTS have been shown to elicit microbe-independent activities
against obese or metabolic disorders. For example, baicalein, one of the main active compounds in
Scutellariae Radix, significantly improved hyperglycemia, glucose tolerance, and blood insulin levels
in obese diabetic mice by directly modulating pancreatic β-cell function [57]. BTS may suppress
obesity and/or metabolic disorder, including NAFLD, in ob/ob mice via microbiota-independent and/or
-dependent activities.

In order to advance our detailed research, study needs to be conducted using ingredients of BTS.
In general, it is difficult to find out bioactive compounds from natural products and to obtain natural
compounds sufficient for evaluating their activity. However, there are many trials to identify active
compounds by unique and advanced technology. Farzaneh et al. demonstrated the comprehensive
screening systems to research bioactive compound in medicinal plants [58]. Interestingly, they have
reported novel modeling in which extraction efficiency and biological activity of target compounds
could be increased by microwave irradiation or ultrasound treatment [59–62]. Recently, there has been a
universal propensity to application of natural phytochemicals because of existence of substituents with
bioactive potentials, well-being advantages, and functional ingredients [63]. It is a future consideration
to uncover active compounds in BTS to understand the pharmacological mechanism of BTS and to
develop effective drugs for obesity and obesity-related syndrome.

Our study, which reveals the beneficial effects of BTS on obesity and liver damage, is consistent
with earlier reports [24,64]. These findings confirm the effectiveness of BTS on obesity and NAFLD
regardless of differences in animals and diet.

The limitations of this study are as follows: (1) bioactive compound in BTS was not identified;
(2) the relationship between gut microbe alteration and body weight gain was not evaluated statistically;
(3) the study was not designed to clarify whether the effects of BTS on appetite, body weight gain,
and liver damage were due to BTS-associated alteration of gut microbiota; (4) it was unclear whether
the changes in the microbiota are primarily driven by BTS or whether BTS led to reduced appetite
and the microbiota changes were due to the decreased food intake. Thus, conclusions based on these
exploratory results should be made with caution. Further studies that address these limitations are
necessary in the future.

In conclusion, we have verified that BTS has a beneficial effect on obese and obese-induced liver
injury in ob/ob mice. The beneficial effects of BTS in the treatment of NAFLD are associated with
changes in gut microbiota, in particular A. muciniphila.
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microbiota (genus level) in ob/ob mice (three weeks on dietary administration of 5% BTS), Table S6: Relative
abundance of microbiota (genus level) in ob/ob mice (four weeks on dietary administration of 5% BTS), Figure S1:
Copy number of 16S rRNA gene in stool samples.
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