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Abstract: Increased risk of obesity and diabetes in shift workers may be related to food intake at
adverse circadian times. Early morning shiftwork represents the largest proportion of shift workers
in the United States, yet little is known about the impact of food intake in the early morning on
metabolism. Eighteen participants (9 female) completed a counterbalanced 16 day design with two
conditions separated by ~1 week: 8 h sleep opportunity at habitual time and simulated early morning
shiftwork with 6.5 h sleep opportunity starting ~1 h earlier than habitual time. After wake time,
resting energy expenditure (REE) was measured and blood was sampled for melatonin and fasting
glucose and insulin. Following breakfast, post-prandial blood samples were collected every 40 min
for 2 h and the thermic effect of food (TEF) was assessed for 3.25 h. Total sleep time was decreased
by ~85 min (p < 0.0001), melatonin levels were higher (p < 0.0001) and post-prandial glucose levels
were higher (p < 0.05) after one day of simulated early morning shiftwork compared with habitual
wake time. REE was lower after simulated early morning shiftwork; however, TEF after breakfast
was similar to habitual wake time. Insufficient sleep and caloric intake during a circadian phase of
high melatonin levels may contribute to metabolic dysregulation in early morning shift workers.
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1. Introduction

Metabolic diseases, including obesity and type 2 diabetes, continue to increase in prevalence [1].
Insufficient sleep has been identified as a risk factor contributing to weight gain and type 2 diabetes [2],
potentially due, in part, to food intake occurring at night [3,4] when circadian-driven physiological
processes are not prepared for food intake [5].
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Shift workers are chronically exposed to altered behavioral schedules of sleep and wakefulness
that result in insufficient sleep and increased food intake during the biological night, as defined by high
endogenous melatonin levels. Circadian misalignment, defined as wake–sleep and feeding–fasting
behaviors occurring at inappropriate circadian times, has been shown to impair glucose tolerance [6,7]
and decrease total daily energy expenditure [8,9]. Additionally, recent studies suggest that the circadian
timing of food intake may have a larger impact on body composition than the local clock time of food
intake [4,10]. If sustained, the imbalance resulting from this behavioral pattern may lead to weight
gain over time.

The current research literature is comprised predominately of overnight shiftwork studies,
yet individuals who begin work in the early morning hours [i.e., between 04:00 and 07:00 [11]] make
up the largest population of shift workers in the United States [12]. As overweight body composition
is prevalent among shift workers [13], and early morning shiftwork has been associated with higher
levels of fasting insulin resistance [14], it is possible that food intake during the biological night may be
a mechanism that contributes to negative metabolic outcomes in this population.

The purpose of this study was to examine the impact of food intake during a simulated
early morning shiftwork protocol on sleep, endogenous melatonin levels, and metabolic outcomes.
Specifically, it was hypothesized that simulated early morning shiftwork, including food intake during
the biological night, would negatively impact metabolic outcomes as compared to waking and food
intake at habitual timing.

2. Materials and Methods

Twenty-two non-obese, healthy adults (12 females, aged 23.0 ± 3.5 year, BMI 23.5 ± 2.0 kg/m2)
were enrolled into the research protocol. Participants reported being free from any current medical or
psychiatric diagnosis, medications, drugs, and were non-smokers. Participants were healthy as assessed
by physical, psychological, and sleep disorder screenings and physical exam, blood chemistries,
12 lead clinical electrocardiogram, and urine toxicology. Volunteers had not participated in
shiftwork within six months or traveled across more than one time zone within three weeks prior
to study. The investigations were carried out following the rules of the Declaration of Helsinki
of 1975 (https://www.wma.net/what-we-do/medical-ethics/declaration-of-helsinki/), revised in 2013
and approved by the University of Colorado Boulder Institutional Review Board, (ID #14-0018,
initial approval February 06, 2014). Participants gave written informed consent and were compensated
for their participation.

2.1. Pre-In-Laboratory Procedures

For one week prior to each visit, participants maintained consistent, habitual, self-selected 8 h
sleep schedules. Adherence was verified via concordance of sleep–wake logs, call-ins to a time-stamped
voice recorder, and wrist actigraphy. Caffeine and alcohol use were proscribed one week prior to
and throughout the study. Urine toxicology and breath alcohol testing verified that participants
were drug and alcohol free upon laboratory admission. Females also completed a urine pregnancy
test at the medical screening and upon laboratory admission. For three days prior to the laboratory
protocol, participants were instructed to refrain from physical activity other than activities of daily
living, and consumed an energy-balanced diet, prepared by Clinical and Translational Research Center
Nutrition Core. The energy content of the diet was determined using resting energy expenditure (REE)
at the medical screening visit and an activity factor that reflected the habitual low level of physical
activity (1.5). Timing of sleep and study procedures, including food intake, were scheduled relative
to each participant’s habitual sleep timing to maintain relative consistency with individual circadian
timing of sleep.

https://www.wma.net/what-we-do/medical-ethics/declaration-of-helsinki/
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2.2. In-Laboratory Procedures

Participants were tested under two counterbalanced study conditions in a crossover design
(Figure 1): a habitual sleep condition and an early morning shiftwork condition, with half of
the participants completing the early morning shiftwork condition first. Polysomnographic (PSG)
recordings during sleep and wakefulness in both conditions were obtained using Siesta digital
recorders (Compumedics). In the habitual sleep condition, participants were scheduled to an 8 h
sleep opportunity at their habitual time. In the early morning shiftwork condition, participants were
scheduled to a 6.5 h sleep opportunity from ~1 h prior to habitual bedtime until ~2.5 h prior to habitual
wake time. These times were selected based on surveys and actigraphy-derived bed and wake times of
early morning shift workers conducted by our laboratory (unpublished).
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Figure 1. Example Study Protocol. A 16 day study protocol for a participant with a habitual sleep
schedule of 24:00−08:00. The 8 h self-selected sleep schedules maintained at home are represented
by black bars on days 1−7 and 9−15. During days 6−8 and 14−16, participants were provided an
energy-balanced diet. Participants arrived at the laboratory on the evening of the 8th and 15th days
of the study and were maintained in dim light for the study visit during scheduled wakefulness
(represented by the gray bars) and darkness during scheduled sleep (represented by black bars).
Participants were assigned first to either an 8 h sleep opportunity at their habitual time as a control
condition or a 6.5 h sleep opportunity that began 1 h prior to habitual bedtime and ended 2.5 h prior
to habitual wake time as a simulated early morning shiftwork condition. For each visit, participants
completed baseline metabolic testing and blood samples were taken for metabolic and circadian markers
after scheduled wake time. Participants were served an identical breakfast ~45 min after waking in
each condition (represented by “B”) and post-meal testing continued for ~3 h.

After scheduled wake time in both conditions, study procedures were identical with participants
remaining seated in a semi-reclined (~35 ◦) position in dim light ( < 8 lux maximum at 183 cm in the
direction of the ceiling fixtures and ~1.9 lux, ~0.6 Watts/m2 in the angle of gaze) for accurate assessment
of melatonin levels under controlled conditions. Blood was drawn from an indwelling venous catheter
placed after scheduled wake time for melatonin, fasted glucose, and insulin levels. Baseline REE was
measured using standard indirect calorimetry with the ventilated hood technique (TrueOne®2400,
ParvoMedics, Sandy, UT). Respiratory gas exchange was measured for up to 30 min, depending on
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testing opportunity and values from the first stable 10−20 min were used to determine REE. After the
baseline metabolic test, participants were served an identical (within-participant) breakfast 45 min
after scheduled wake time in each condition which consisted of 25% of individual daily caloric needs.
Participants were given 15 minutes to consume the meal. Blood was then sampled every 40 min for
the next 2 h and metabolic testing was conducted every 45 min, beginning 15 min after breakfast, for
3.25 h to measure the thermic effect of food (TEF).

2.3. Analysis

Sleep staging criteria were defined according to standard guidelines of the American Academy
of Sleep Medicine [15]. Sleep onset latency (SOL), was scored as time from lights out to the onset of
three continuous epochs (SOL 1.5 min) or twenty continuous epochs (SOL 10 min) of PSG-defined
sleep. Wakefulness after sleep onset (WASO) was defined as minutes of wakefulness after SOL 1.5 min.
Latency to rapid-eye movement (REM) and slow-wave (SWS, stage 3/4) sleep were defined as time
from SOL 1.5 min. Number and average duration of awakenings after SOL 1.5 min were calculated.

Blood samples were processed immediately, centrifuged and frozen at −70 ◦C until assayed.
Melatonin and insulin were measured using radioimmunoassay (RIA melatonin; Rocky Mountain
Diagnostics sensitivity 2.3 pg/mL; intra- and interassay coefficients of variation 11.0% and 10.7%,
respectively, RIA insulin; sensitivity 3 uU/mL; intra- and interassay coefficients of variation 5.2%
and 9.8%, respectively Colorado Springs, CO, Millpore, respectively) and glucose was assayed using
hexokinase, UV (sensitivity 10 mg/dL; intra- and interassay coefficients of variation 0.67% and 1.44%,
respectively, Beckman Coulter).

Data from one participant were not included due to blood sampling difficulties and three
participants completed only one visit. Thus, 18 participants (9 female) contributed to the final analysis.
Mixed model ANOVA (STATISTICA V10, StatSoft) was used to examine changes in melatonin, insulin,
glucose, and metabolic testing outcomes (REE, TEF) with condition and sample time as fixed factors
and participant as a random factor. Sex and order were initially included in models to test impact
on variables of interest and none were significant, thus were removed for final analyses. Insulin and
glucose were also analyzed as the homeostatic model assessment of insulin resistance (HOMA-IR)
and TEF data were as incremental area under the curve (iAUC) analysis. Planned comparisons using
dependent t-tests were used to examine differences between conditions at individual time points. Data
are presented as mean ± standard error of the mean (SEM). Effect sizes for condition and condition
x time, generalized eta squared (η2

G) were calculated using sum of squares from the mixed-effects
ANOVA model accounting for variance due to individual differences by including subject as a random
factor [16–18]. Standard benchmarks for small (0.02), medium (0.15) and large (0.35) effect sizes when
using eta squared (η2) were used, even though effects for η2

G will be smaller than for η2.

3. Results

3.1. Participant Characteristics

Of the 18 participants who contributed to the final analysis, 9 participants were female (50%),
the average age was 23.2 ± 0.9 years, BMI was 23.7 ± 0.6, and body fat percentage was 28.6 ± 0.2%.
Upon awakening during both conditions, participants had an average REE of 1.3 ± 0.1 kcal/min,
fasting glucose of 85.7 ± 1.2 mg/dL, and fasting insulin of 10.1 ± 0.5 IU/mL.

3.2. Sleep and Circadian Outcomes

Melatonin levels after waking were higher during early morning shiftwork compared to the
habitual sleep condition (condition, p < 0.0001, medium effect size η2

G = 0.33; condition x time
interaction, p < 0.0001, small effect size η2

G = 0.11; Figure 2). Planned comparisons showed that
melatonin levels were higher at each time point measured in the early morning shiftwork condition
(Figure 2).
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Additionally, participants slept ~85 min less in the simulated early morning shiftwork compared
to the habitual sleep condition (Table 1, large effect size η2

G = 0.79). This reduction in total sleep time
was a result of decreased time spent in Non-Rapid Eye Movement (NREM) Stage 2 and Rapid Eye
Movement (REM) sleep (Table 1, large effect sizes η2

G = 0.46 and η2
G =0.59, respectively).

Table 1. Sleep Architecture.

Parameter
Minutes of Recording Time Habitual Sleep Simulated Early

Morning Shiftwork p Value

Stage 1 16.3 ± 1.7 15.2 ± 1.6 0.63

Stage 2 235.4 ± 5.0 182.3 ± 8.9 p < 0.0001

Stage 3/4 (SWS) 76.9 ± 6.9 84.8 ± 7.9 0.11

REM 107.3 ± 4.6 68.4 ± 3.6 p < 0.0001

Total Sleep Time (TST) 435.8 ± 5.8 350.7 ± 6.0 p < 0.0001

Sleep Efficiency (SE) 90.8 ± 1.2 88.7 ± 1.0 0.14

SOL 1.5 min 16.3 ± 3.3 16.4 ± 2.6 0.97

SOL 10 min 17.9 ± 3.3 19.2 ± 2.8 0.77

WASO from SOL 1.5 min 27.9 ± 4.1 28.3 ± 4.3 0.94

REML from SOL 1.5 min 109.7 ± 9.6 95.5 ± 9.0 0.33

SWSL from SOL 1.5 min 15.2 ± 1.5 14.0 ± 1.7 0.39

Number of Awakenings 21.4 ± 2.0 19.1 ± 1.9 0.24

Avg Duration of Awakenings 1.3 ± 0.2 1.5 ± 0.2 0.54

Data are presented as the mean ± SEM. Abbreviations are designated as follows: slow wave sleep (SWS); rapid eye
movement (REM); sleep onset latency (SOL); wakefulness after sleep onset (WASO); latency to REM Sleep (REML);
latency to SWS (SWSL).
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3.3. Metabolic Outcomes

Fasting insulin and glucose levels were similar between conditions. Post-prandial glucose levels
were significantly elevated after food intake during the simulated early morning shiftwork compared
to the habitual sleep condition (main effect of condition, p <0.05, small effect size η2

G = 0.03; Figure 3).
Planned comparisons showed glucose levels were ~5% higher at 80 min after the meal in the early
morning shiftwork condition (Figure 3). Insulin levels were similar between conditions (p = 0.31;
Figure 3). There was no significant difference in HOMA-IR between conditions (p = 0.84).
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4. Discussion

Obesity and diabetes are associated with negative health outcomes and are increasingly prevalent
among the general population. Shift workers have an increased risk for developing these metabolic
diseases, yet the mechanisms underlying this increased risk are unclear. Findings from the current
study show that early morning caloric intake after one night of insufficient sleep, when melatonin
levels are high, leads to a small increase in glucose levels when compared to the same meal after
sleeping and awaking at habitual times. Additionally, EE was similar between conditions.

The simulated early morning shiftwork protocol used in the current study was based on
observational data from real-world early morning shift workers and, thus, allowed for examination
of potential metabolic consequences associated with sleep–wake behaviors that commonly occur in
this population. In the early morning shiftwork condition, participants slept ~85 min less and had
higher melatonin levels for 2 h after wake time compared to the habitual sleep condition. This is
consistent with other studies showing decreased sleep duration in early morning shiftwork [19], and
was anticipated as the early morning shiftwork protocol curtailed the sleep opportunity by 90 min
compared to habitual times. Moreover, by curtailing the majority of the sleep opportunity prior to
habitual wake time, we primarily reduced participant’s sleep at a circadian phase in which sleep
predominately alternates between Stage 2 and REM sleep [20]. This curtailment of early morning
sleep may account for the observed differences in Stage 2 and REM sleep between groups and their
association with melatonin concentrations. In regards to circadian timing, a melatonin threshold of
10 pg/ml in plasma is commonly used as a marker of the onset and offset of the biological night in
humans [21]. Although melatonin levels were higher in the early morning shiftwork than habitual
sleep condition, melatonin levels were, on average, still above the 10 pg/ml threshold in the habitual
sleep condition. This finding is consistent with prior research showing that melatonin levels remain
high for hours after habitual wake time in the modern environment [22,23]. As a result, the morning
meal in the control condition also occurred during the biological night in the current protocol.

Nightshift workers have been shown to have increased risk of cardiovascular and metabolic
diseases [24–27], with in-laboratory studies highlighting circadian misalignment and sleep disruption
as mechanisms for reduced glucose tolerance [6,9]. Notably, Morris and colleagues found a 6% increase
in two-hour post-prandial glucose in the presence of a 14% elevation in late-phase post-prandial insulin
when exposing participants to a simulated nightshift protocol that resulted in combined sleep restriction
and circadian misalignment, indicating a possible reduction in insulin sensitivity [6]. The current
study, which also induced combined circadian misalignment and sleep restriction, found that one
night of early morning shiftwork in healthy adults increased post-prandial glucose levels without a
subsequent increase in insulin. However, glucose levels in the healthy participants studied were still
in the healthy range after breakfast. The pattern of increased post-prandial glucose with concurrent
increased insulin has also been observed experimentally in chronic shift workers [28]. Findings of
elevated post-prandial glucose during circadian misalignment may be of particular importance to
the early morning shiftwork population due to their observed dietary choices. In a study of dietary
profiles of different working schedules, Heath and colleagues found that workers starting shifts in
the early morning consumed more carbohydrates daily compared to workers on other shifts [29].
Moreover, in qualitative interviews with nurses working nightshifts, shift workers have reported
coping with feeling tired during the nightshift by consuming additional sugar for energy [30]. It is
possible that chronic exposure to early morning schedules, as is common in hospital and other shiftwork
schedules, combined with an increased consumption of high glycemic foods, could result in larger
impairments in glucose metabolism over time than observed in this study. Additional research is
needed to assess metabolic outcomes following chronic early morning shiftwork (i.e., recurring and
chronic early morning shiftwork following multiple days of work and after recovery on free days) and
should include more sensitive tests of glucose metabolism (i.e., intravenous glucose tolerance tests or
hyperinsulinemic-euglycemic clamps).
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In addition to glucose tolerance, the current study sought to determine the impact of one day
of simulated early morning shiftwork on components of energy metabolism. Energy expenditure is
an important component in weight maintenance, including 24 h energy expenditure, REE, and the
TEF. In the current study, REE was lower after waking in the early morning shiftwork condition,
then increased after breakfast to become similar to that of the habitual sleep condition. The finding
of lower REE is similar to previous work performed by our laboratory. In that study, participants
were studied in a simulated overnight shift work schedule in a whole-room indirect calorimeter.
Findings demonstrated that total daily EE was decreased on the simulated nightshifts compared
to a dayshift, primarily due to lower EE during daytime sleep following simulated night shifts [8].
REE is known to vary depending on circadian phase, with the lowest levels of EE occurring during
the biological night [31–33]. Taken together, these findings suggest that EE is altered by the circadian
timing of wakefulness and sleep episodes. If a lower EE were to persist chronically and if energy
intake were to remain stable, it could contribute to a decrease in total daily EE, a state of positive
energy balance, and weight gain, which has been reported in nightshift workers [34,35]. How chronic
exposure to early morning shift schedules alters total daily EE and body composition is unknown.

Another component of total daily EE, the TEF, has previously been shown to vary based on time
of day [6,36]. Specifically, we and others have also reported that the TEF is lowest in response to a
meal consumed in the evening [8,36,37], which could contribute to the observation that those who eat
during the biological night tend to have higher levels of body fat composition [4,10]. Our finding of
no difference in TEF between conditions is inconsistent with our hypothesis that the TEF would be
lower during simulated early morning shiftwork, when endogenous melatonin levels were elevated,
as compared to habitual timing. Previous work by Romon and colleagues showed that the TEF is
highest in the early morning hours [36], although they did not have any measure of circadian timing
and studied all individuals at the same clock hour. One potential explanation for the similarities in
the TEF between habitual and simulated early morning shiftwork conditions in the current study is
that the two-hour advance in wake time may not have induced a sufficient circadian misalignment
to detect meaningful differences in the TEF or that the endogenous melatonin levels in the control
habitual sleep condition were still elevated, indicating the biological night. Future research is needed
to identify mechanisms for the observed time of day differences in REE and TEF.

We used mixed meal testing to examine the metabolic impacts of simulated early morning
shiftwork with induced sleep and circadian misalignment on metabolic and energy expenditure
outcomes. Findings from this initial study provide insight into the metabolic challenges that the
largest population of shift workers face in real-world settings. However, it is important to consider
the limitations and potential confounders of our protocol. First, young and healthy participants were
studied and, thus, the generalizability of the findings to shift-working populations who, as mentioned
previously, have additional disease burden is not represented in our population. Additionally,
we cannot exclude a potential influence of sex differences on these outcomes given that our study
was not designed with a sample size to test sex differences. Furthermore, we did not control for
menstrual cycle across visits in the females tested. This may be of importance, as Qian and colleagues
have recently demonstrated that there may be an impact of sex differences on metabolic outcomes in
circadian misalignment [38]. Further investigation is needed with a sufficiently powered sample size
to uncover potential sex differences during simulated early morning shiftwork. Finally, this protocol
focused on the acute impact of only one night of sleep and circadian disruption on metabolic and
energy metabolism outcomes, which does not allow this protocol to examine the impact of chronic
exposure to such schedules, as is common in shift-working populations.

5. Conclusions

In summary, findings from this simulated early morning shiftwork protocol demonstrate possible
implications for the metabolic health of early morning shift workers, particularly if these changes were
to persist and worsen over time. Moreover, these findings indicate the need for future analysis exploring
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whether delaying breakfast time after an early morning awakening may be a potential therapeutic
target for improving metabolic health in the largest population of shift workers, and perhaps in modern
society for people with high morning melatonin levels for hours after awakening [22,23].
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