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Abstract: Cigarette smoking (CS) is believed to be an important inducement in the pathological
development of chronic obstructive pulmonary disease (COPD), a progressive lung disease. Loquat
is an Asian evergreen tree commonly cultivated for its fruit. Its leaf has long been used as an
important material for both functional and medicinal applications in the treatment of lung disease
in China and Japan. As the principal functional components of loquat leaf, triterpene acids (TAs)
have shown notable anti-inflammatory activity. However, their protective activity and underlying
action of mechanism on CS-induced COPD inflammation are not yet well understood. In the present
study, male C57BL/6 mice were challenged with CS for 12 weeks, and from the seventh week of CS
exposure, mice were fed with TAs (50 and 100 mg/kg) for 6 weeks to figure out the therapeutic effect
and molecular mechanism of TAs in CS-induced COPD inflammation. The results demonstrate that
TA suppressed the lung histological changes in CS-exposed mice, as evidenced by the diminished
generation of pro-inflammatory cytokines, including interleukin 1β (IL-1β), IL-2, IL-6, and tumor
necrosis factor α (TNF-α). Moreover, TA treatment significantly inhibited the malondialdehyde
(MDA) level and increased superoxide dismutase (SOD) activity. In addition, TAs increased the
phosphorylation of AMP-activated protein kinase (AMPK) and nuclear factor erythroid-2-related
factor-2 (Nrf2) expression level, while inhibiting phosphorylation of nuclear factor kappa B (NFκB)
and inducible nitric oxide synthase (iNOS) expression in CS-induced COPD. In summary, our
study reveals a protective effect and putative mechanism of TA action involving the inhibition of
inflammation by regulating AMPK/Nrf2 and NFκB pathways. Our findings suggest that TAs could
be considered as a promising functional material for treating CS-induced COPD.

Keywords: loquat leaf; triterpene acids; chronic obstructive pulmonary disease; cigarette smoke;
inflammation; AMPK; Nrf2; NFκB; iNOS

1. Introduction

Persistent inflammation symptoms and the irreversible limitation of airflow are considered
characteristics of chronic obstructive pulmonary disease (COPD). Exposure to noxious particles or
gases seems to be the major cause of the disease [1]. COPD has become a serious health problem and is
the third leading cause of death in the world [2].
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Inflammation is considered to be the essential factor in the pathogenesis of COPD [3]. Previous
studies demonstrated that the prevalence of COPD has a strong association with cigarette smoking
(CS) [4,5]. As the major source of reactive oxygen species (ROS) in COPD patients, CS could
directly induce a chronic and abnormal pulmonary inflammation response in the airways of the
lungs [3,6]. Growing evidence suggests that lung inflammatory responses and injury are modulated
by AMP-activated protein kinase (AMPK) activation [7,8]; the effect is probably regulated by a master
transcription factor at downstream nuclear factor erythroid-2-related factor-2 (Nrf2), as regulated
Nrf2 can inhibit oxidative stress [9]. CS-induced inflammatory mediator release could cause the
airway inflammatory response in COPD, including interleukin 6 (IL-6), IL-1β, IL-2, tumor necrosis
factor α (TNF-α), and inducible nitric oxide synthase (iNOS) [10–13]. It is well documented that, as a
member of the transcription factors, nuclear factor kappa B (NFκB) is involved in the regulation of the
inflammatory mediator and immune regulatory pathways mentioned above [13,14].

Nowadays, the recommended pharmacotherapy for COPD can only improve symptoms, but there
is no effective therapy to modulate airway inflammation in the progression of CS-induced COPD [15].
Consequently, there is an urgent need for the development of new types of anti-inflammatory medicines
for CS-induced COPD. Loquat (Eriobotrya japonica) is an Asian evergreen tree cultivated for its fruit.
Its leaves have been used for centuries to treat the symptoms and signs of COPD in clinical use [16].
Moreover, loquat leaf is also an important material for food application. In China and Japan, loquat
leaf has been used as the principal ingredient of some healthy and tasty herbal teas [17], and has been
processed into delicious jams and candies [18]. It is believed that eating these processed food products
of loquat leaf can have similar pharmacological effects [16]. Triterpene acids (TAs) from loquat leaf
were proven to be an effective component due to their remarkable anti-inflammatory effects [19–21].
It was shown that TAs significantly decreased the production of inflammatory cytokine in a chronic
bronchitis model induced by the endotracheal instillation of lipopolysaccharide [22] via inhibition of
NF-κB activation. However, there is no study available about the effect of TAs on inflammation in
CS-induced COPD.

The purpose of this study is to investigate the pharmacological activity of TAs in COPD
inflammation under CS exposure and explore the underlying action of the molecular mechanism. The
data in our experiment present credible evidence for TAs to treat inflammation in CS-induced COPD.

2. Materials and Methods

2.1. Plant Materials

The raw materials of loquat leaf were collected from Suzhou, Jiangsu Province, China, in October
2016. Loquat leaf was identified by the corresponding authors. The voucher specimen (No. 328636)
was stored at the herbarium of our institute.

2.2. Chemicals, Reagents, and Antibodies

High-performance liquid chromatography (HPLC)-grade methanol and ammonium acetate were
obtained from Fisher Scientific (Schwerte, Germany). A Milli-Q system (Millipore, Bedford, MA, USA)
was used to generate HPLC-grade water. Tormentic acid, corosolic acid, maslinic acid, and euscaphic
acid were prepared in our laboratory following a previously described method (purity > 95%) [23].
Oleanolic acid and ursolic acid were purchased from Beijing National Institutes for Food and Drug
Control of China (China).

Commercial kits for quantifying superoxide dismutase (SOD) and malondialdehyde (MDA)
were purchased from Nanjing Jiancheng Bioengineering Institute (Nanjing, China). Enzyme-linked
immunosorbent assay (ELISA) kits of mouse IL-1β, IL-2, IL-6, and TNF-α were purchased from
MultiSciences (LiankeBio, Hangzhou, China).

The following primary antibodies and dilutions for Western blotting (WB) were used: AMPKα

(1:1000), p-AMPKα (Thr172) (1:1000), Nrf2 (1:1000), NFκB (1:1000), p-NFκB (1:1000), iNOS (1:1000),
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β-actin (1:1000), and GAPDH (1:1000), obtained from Cell Signaling Technology (Danvers, MA, USA).
Horseradish peroxide (HRP)-conjugated secondary antibodies diluted to 1:3000 were purchased from
Cell Signaling Technology (Danvers, MA, USA).

2.3. Isolation of TA from Loquat Leaf

TA was extracted from loquat leaf by a previously described method with some minor alterations
according to the study of Wu et al. [24]. In short, dried powder (1000 g) of loquat leaf was extracted
with 95% ethanol (W:V (g:mL) = 1:5) twice (2 h each time) in a 90 ◦C water bath. The ethanol extract
was filtered and concentrated. Then, the extract was passed through an activated charcoal column
(4 × 50 cm) eluted with 95% ethanol. The eluted fraction was collected, enriched, and lyophilized to
obtain triterpene acid (TA; white powder). The final yield of TA isolated from loquat leaf was 5.8%.

2.4. Chromatographic Conditions of HPLC

TA was dissolved in methanol (1.0 mg/mL) and injected into a Dionex Ultimate 3000 HPLC
system, which was equipped with an Alltech 3300 evaporative light-scattering detector (ELSD) for
HPLC analysis. A Dionex Acclaim C18 column from Thermo Fisher (4.6 × 250 mm, 5 µm) was applied
for analysis. The mobile phase was composed of methanol and 0.5% ammonium acetate aqueous
solution (67:21) under isocratic elution conditions. The flow rate was 1.0 mL/min. The ELSD drift tube
temperature was maintained at 70 ◦C and 1.5 L/min was set as the flow rate of nitrogen.

2.5. Animals

The Animal Ethics Committee of China Pharmaceutical University (certificate number:
SYXK2016-0011) authorized the animal experiments in this study. Specific pathogen-free C57BL/6J mice
(male, 20–25 g) from 6 to 8 weeks old were obtained from Shanghai Sino-British SIPPR/BK Lab Animal
Co., Ltd. (China). Groups of 10 mice were kept in cages under controlled conditions: temperature
(21 ± 2 ◦C), relative humidity (60% ± 5%), light/dark cycle (12/12 h), and they had free access to food
and water.

2.6. Induction of COPD in Mice with CS and Drug Administration

Forty C57BL/6 mice were randomly assigned to four groups (10 animals each): control group
(CON), CS model group (CS), CS + 50 mg/kg TA group, and CS + 100 mg/kg TA group. During each
CS exposure, except the control group, all mice were placed into the exposure chamber (40 × 25 ×
20 cm). CS was generated from commercial filtered Hongta cigarettes from Hongta Tobacco Group
Company Limited (Yuxi, China), containing 10 mg carbon monoxide, 10 mg tar, and 0.9 mg nicotine per
cigarette. To mimic the smoking inhalation quantity and rate of combustion, cigarettes were coupled
to a plastic 50 mL syringe to draw and inject puffs into the exposure chamber. According to previous
studies [25,26], the procedure of passive smoking inducing COPD was conducted as follows: fresh
smoke generated from four cigarettes was delivered to the chamber four times a day, twice in the
morning (beginning at 09:00) and twice in the afternoon (beginning at 15:00). The smoke-free interval
between two exposures was 10 min. The mice in the CS group were treated with CS exposure for
12 weeks (5 days per week). The control group was exposed to fresh air instead. From the seventh
week of CS exposure, in the TA group, 50 mg/kg or 100 mg/kg TA was intragastrically administered to
mice 1 h before CS exposure for 6 weeks. Mice in the control and CS model groups were administered
with equal volumes of saline.

2.7. Lung Histological Analysis

Part of the lung was fixed in 4% paraformaldehyde, and then embedded in paraffin for histological
examination. The tissues were cut into sections 4 µm thick and then stained with hematoxylin and
eosin (H&E). The mean linear intercept (MLI) and destructive index (DI) were determined in lung
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tissues according to a reported method [27]. MLI was used to indicate the average size of alveoli. DI,
which represents the percentage of destroyed space as a fraction of the total alveolar and duct space,
was used to estimate the damage to alveolar walls.

2.8. Quantitation of Inflammatory Mediators

IL-1β, IL-2 IL-6, and TNF-α levels in the serum were detected by commercial ELISA kits. The
operating procedures strictly followed the manufacturer’s instructions.

2.9. Measurement of SOD and MDA

Malondialdehyde (MDA) and superoxide dismutase (SOD) kits were used to determine the MDA
and SOD levels according to the manufacturer’s instructions.

2.10. Western Blot Analysis

Lung tissues were collected on ice. Total protein was extracted, and the bicinchoninic acid (BCA)
method was used to detect the protein concentration. For the analysis, 20 µg of protein was separated
on 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to
polyvinylidene difluoride (PVDF) membranes (Millipore, Bedford, MA, USA). Then, 5% skim milk
was applied to block the membranes; after that, the PVDF membranes were incubated with respective
primary antibodies for 2 h. Secondary antibodies and membranes were co-incubated for 2 h, and
enhanced chemiluminescence (ECL; Santa Cruz Biotechnology, Santa Cruz, CA, USA) detection was
used to notice the protein bands.

2.11. Statistical Analysis

The results are presented as mean values ± standard error (SE) of three separate experiments from
each group. GraphPad Prism (version 7.02; GraphPad Software, San Diego, CA, USA) was used to
evaluate the data, and one-way ANOVA with Tukey’s multiple comparison test was used. A p-value
less than 0.05 was considered statistically significant.

3. Results

3.1. HPLC Profile and Content Analysis of TA

A HPLC-ELSD assay was performed to figure out the probable bioactive ingredients in TAs of
loquat leaf. As shown in Figure 1A, the chromatograms revealed that six triterpene acids were the
main components, and all of them were quantified through reference compounds. Figure 1B shows
their chemical structures, and the substance content of the six triterpene acids is shown in Table 1.

Table 1. Concentrations of six TAs analyzed by high-performance liquid chromatography–evaporative
light scattering detection (HPLC-ELSD) (n = 3).

Peak Number Compound Name Concentration (mg/g)

1 Euscaphic acid 105.69 ± 2.10
2 Tormentic acid 155.43 ± 0.07
3 Corosolic acid 129.84 ± 6.26
4 Maslinic acid 135.24 ± 7.33
5 Oleanolic acid 65.44 ± 1.87
6 Ursolic acid 80.70 ± 0.47



Nutrients 2020, 12, 657 5 of 12Nutrients 2020, 12, 657 5 of 14 
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significantly increased the lung index, indicating pulmonary swelling (Figure 2A,B; P < 0.05): Lung 
index (%) = lung weight (mg)/body weight (g) × 100. During the TA administration period, the 
decrease in body weight in COPD mice was inhibited, while the increase in lung index was reversed. 
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Figure 1. (A) Representative chromatograms of triterpene acids (TAs) and (B) chemical structures of
six dominant TAs.

3.2. TA prevents Weight Loss and Pulmonary Swelling in CS-Induced COPD

Mice were exposed to CS to induce COPD and then administered different doses of TA for 6 weeks
while regular CS exposure continued. CS exposure decreased the body weight of mice and significantly
increased the lung index, indicating pulmonary swelling (Figure 2A,B; p < 0.05): Lung index (%) =

lung weight (mg)/body weight (g) × 100. During the TA administration period, the decrease in body
weight in COPD mice was inhibited, while the increase in lung index was reversed. Besides, treatment
with TA at a higher dose did not affect the body weight and lung index in comparison with mice in the
control group, which were exposed to fresh air (Figure 2C,D; p > 0.05).Nutrients 2020, 12, 657 6 of 14 
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Figure 2. Effects of TA on (A) body weight and (B) lung index in normal mice (CON) and cigarette
smoking (CS)-exposed mice treated with 50 and 100 mg/kg TA. Effects of TA on (C) body weight and
(D) lung index in normal mice exposed to fresh air. * p < 0.05, ** p < 0.01, *** p < 0.001.

3.3. TA Attenuates CS-Induced Lung Injury

As presented in Figure 3A, showing H&E staining in the mice of the control group, the alveolar
structure of the lung was complete and uniform, with rare inflammatory symptoms observed.
In contrast, COPD mice displayed morphological damage and inflammatory alterations, including
narrowed alveolar space, thickened alveolar wall, pulmonary edema, lung congestion, and infiltration
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of inflammatory cells (Figure 3B). Treatment with TA improved lung histopathological damage in
CS-induced COPD in a dose-dependent manner (Figure 3C,D). The MLI is widely used to indicate the
average size of alveoli, and the DI value is used to estimate the damage of alveolar walls. In contrast to
the control group, the MLI and DI values were found to be clearly increased in the COPD model. As
shown in Figure 3E,F, TA supplementation for 6 weeks inhibited the CS-induced increase in both MLI
and DI values in a dose-dependent manner (p < 0.05).Nutrients 2020, 12, 657 7 of 14 
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Figure 3. Effects of TA therapy on CS-induced pathological lung change. (A–D) Representative
histopathological images (bar = 100 µm) from different groups. (E) Mean linear intercept (MLI) and
(F) destructive index (DI). ** p <0.01, *** p < 0.001.

3.4. TA Decreases COPD Inflammatory Cytokine Concentration in CS-exposed mice

As shown in Figure 4, ELISA was used to detect inflammatory cytokines to assess the degree
of inflammatory reaction, including IL-1β, IL-2, IL-6, and TNF-α. In the COPD group, CS exposure
dramatically increased the levels of IL-1β, IL-2, IL-6, and TNF-α in comparison to the control group
(Figure 4; p < 0.05). TA supplementation decreased these parameters in a dose-dependent manner
(Figure 4; p < 0.05).
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interleukin 1β (IL-1β), (B) IL-2, (C) IL-6, and (D) tumor necrosis factor alphs (TNF-α) in the serum
were measured. *** p < 0.001.

3.5. TA Improves the Oxidative Stress Imbalance of CS-induced COPD

Oxidative stress parameters were also detected. The level of MDA in serum increased, while the
activity of SOD decreased in CS-exposed COPD mice (Figure 5; p < 0.05). TA treatment could adjust
the trend in a dose-dependent manner, especially at a higher dose of 100 mg/kg/d.
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Figure 5. TA protects against oxidative stress in CS-exposed COPD mice. (A) Superoxide dismutase
(SOD) activity and (B) malondialdehyde (MDA) levels in the serum were measured. ** p < 0.01,
*** p < 0.001.

3.6. Expression of AMPK, Nrf2, iNOS, and NFκB in Lung Tissues of COPD Mice

As displayed in Figure 6, CS challenge inhibited the phosphorylation of AMPK and induced
a reduction of Nrf2 expression level in lung tissues, while TA administration restored AMPK
phosphorylation and Nrf2 expression (Figure 6A,B; p < 0.05). Furthermore, CS exposure induced
an increase in iNOS expression and promoted the phosphorylation of NFκB. It was shown that TA
supplementation could turn back these growing trends (Figure 6C,D; p < 0.05).
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Figure 6. Effects of TA supplementation on AMPK and NFκB signaling pathways in the lungs of
CS-exposed induced-COPD mice. Expression of (A) AMPK and p-AMPK, (B) Nrf2, (C) iNOS, and
(D) NFκB and p-NFκB in lung tissues from each group were measured by Western blot. * p < 0.05,
*** p < 0.001.

4. Discussion

The present study shows that dietary TA ameliorates CS-induced COPD inflammation by inhibiting
inflammatory cytokine release, pathological lung changes (lung injury), and oxidative stress in a
dose-dependent manner, and the underlying mechanism of TA treatment for COPD might be mediated
by modulation of the AMPK/Nrf2 and NFκB signaling pathways (Figure 7).

It is well documented that cigarette smoking (CS) is the leading cause of the pathogenesis of
COPD [28,29]. Presenting not only a progressive decline in respiratory function, COPD patients
also exhibit exaggerated inflammatory responses. To date, although the mechanism of COPD has
not been fully understood, chronic inflammation induced by CS is presumed to be the underlying
mechanism [30,31]. As shown in previous studies, AMP-activated protein kinase (AMPK) is an essential
integrator of signals that are responsible for regulating cell growth, autophagy, and metabolism [32].
Studies also show that AMPK participates in the modulation of lung inflammatory responses induced
by CS [7,33,34]. Pro-inflammatory mediators such as IL-6 and IL-8 could be released in the presence of
cigarette smoke extract (CSE), and treatment with a specific AMPK activator could significantly reduce
pro-inflammatory cytokine release, implying that AMPK activation is helpful to inhibit the development
of COPD inflammation [33]. This effect is probably modulated by nuclear factor erythroid-2-related
factor-2 (Nrf2) [9]. Nrf2 modulation can intervene in cellular damage, which is essential to various



Nutrients 2020, 12, 657 9 of 12

types of injury in the cell. In the LPS-challenged inflammatory response model, Nrf2 activation exhibits
anti-inflammatory activity, which is associated with regulation of the AMPK/Nrf2 axis [35,36]. In our
study, CS exposure induced lung inflammatory response and, as a result, pro-inflammatory cytokines
including IL-6, IL-1β, IL-2, and TNF-α (Figure 4) were significantly released, while phosphorylation of
AMPK was inhibited and the Nrf2 expression level in lung tissues was reduced. Our research found
that TA supplementation effectively restored AMPK phosphorylation and Nrf2 expression. It should
be noted that the parameters investigated in the present study were serum indicators, which only
represent systemic parameters. We had considered the protein expression in the lung and tried to
investigate the lung-specific changes. However, we did not investigate relevant cytokine levels in
bronchoalveolar lavage (BAL) fluid or in lung tissue, which could reflect the condition of lung tissue
more directly. Thus, further investigation is necessary. In the CS-induced COPD model, SOD and
MDA are two important parameters to estimate oxidative stress level, which has a strong association
with inflammation [37]. As shown in our study, CS exposure induced an increase in MDA level and a
reduction in SOD activity (Figure 5), while TA dose-dependently inhibited oxidative stress, such as
upregulation of SOD activity and downregulation of MDA level.Nutrients 2020, 12, 657 10 of 14 
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In the CS-induced COPD model, SOD and MDA are two important parameters to estimate 
oxidative stress level, which has a strong association with inflammation [37]. As shown in our study, 
CS exposure induced an increase in MDA level and a reduction in SOD activity (Figure 5), while 
TA dose-dependently inhibited oxidative stress, such as upregulation of SOD activity and 
downregulation of MDA level.  

Figure 7. Schematic illustration of major points of conclusion.

In addition, lung inflammatory response is also closely related to nuclear factor kappa B (NFκB).
As part of a family of transcription factors, NFκB increased significantly in CS-induced COPD mice.
Therefore, downregulating pro-inflammatory factors via modulation of the NFκB pathway exhibited
therapeutic effects on COPD inflammation [38–40]. As a pro-inflammatory cytokine, prolonged
inducible nitric oxide synthase (iNOS) expression is implicated in the pathophysiology of inflammatory
diseases, such as pulmonary inflammation and COPD [41,42]. In CS-induced COPD inflammation,
the expression of iNOS notably increased [43,44], which was involved in the activation of NFκB.
Anti-inflammatory activity in CS-induced COPD was closely associated with suppression of the NFκB
pathway, which resulted in a reduction in iNOS expression [13,45,46]. In the present study, TA treatment
could effectively suppress elevated NFκB/iNOS in mice with CS-induced COPD inflammation.



Nutrients 2020, 12, 657 10 of 12

5. Conclusions

The present study shows that triterpene acids (TAs) separated from loquat leaf suppress the
production of inflammatory mediators in CS-induced COPD mice in a dose-dependent manner.
We report the protective effect and putative mechanism of action of TAs for the first time. The
therapeutic effects of TAs on CS-induced COPD inflammation may be associated with the modulation
of CS-mediated AMPK/Nrf2 and NFκB/iNOS signaling pathways. This suggests that TAs could be
considered as promising functional materials for lung diseases such as CS-induced COPD.
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