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Abstract: Withania somnifera (WS), commonly known as ashwagandha, possesses diverse biological 
functions. WS root has mainly been used as an herbal medicine to treat anxiety and was recently 
reported to have an anti-obesity effect, however, the mechanisms underlying its action remain to be 
explored. We hypothesized that WS exerts its anti-obesity effect by enhancing energy expenditure 
through improving the mitochondrial function of brown/beige adipocytes and skeletal muscle. Male 
C57BL/6J mice were fed a high-fat diet (HFD) containing 0.25% or 0.5% WS 70% ethanol extract 
(WSE) for 10 weeks. WSE (0.5%) supplementation significantly suppressed the increases in body 
weight and serum lipids, and lipid accumulation in the liver and adipose tissue induced by HFD. 
WSE supplementation increased oxygen consumption and enhanced mitochondrial activity in 
brown fat and skeletal muscle in the HFD-fed mice. In addition, it promoted browning of 
subcutaneous fat by increasing mitochondrial uncoupling protein 1 (UCP1) expression. Withaferin 
A (WFA), a major compound of WS, enhanced the differentiation of pre-adipocytes into beige 
adipocytes and oxygen consumption in C2C12 murine myoblasts. These results suggest that WSE 
ameliorates diet-induced obesity by enhancing energy expenditure via promoting mitochondrial 
function in adipose tissue and skeletal muscle, and WFA is a key regulator in this function.  

Keywords: Withania somnifera; energy expenditure; mitochondrial activity; browning; withaferin A; 
anti-obesity 

 

1. Introduction 

Obesity is caused by an imbalance between energy intake and energy expenditure. When the 
energy expenditure exceeds the intake, this leads to weight loss [1]. Energy expenditure comprises 
the basal metabolic rate, physical activity (exercise-induced), and adaptive thermogenesis (shivering, 
non-shivering, and diet-induced) [2]. Recent studies have suggested that adaptive thermogenesis is 
a new therapeutic approach to treating obesity [3]. Adaptive thermogenesis occurs mainly in brown 
adipose tissue (BAT) and skeletal muscle [4]. The various phytochemicals in medicinal plants have 
been reported to ameliorate obesity through promoting mitochondrial biogenesis and thermogenesis 
in adipose tissue [5,6]. 

BAT is composed of multilocular adipocytes that release energy through non-shivering 
thermogenesis facilitated by the mitochondrial uncoupling protein 1 (UCP1) [7] and is considered a 
potential target for the treatment of obesity [8]. White adipose tissue (WAT), especially subcutaneous 
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WAT, can transform into brown-like adipocytes (beige adipocytes) in response to a thermogenic 
stimulant, such as cold exposure, or β3-adrenergic or peroxisome proliferator-activated receptor 
gamma (PPAR-γ) agonists [9,10]. Beige adipocytes contain multilocular lipid droplets and are 
abundant in mitochondria. These adipocytes also have increased expression of BAT-specific genes, 
such as UCP1, cell death activator CIDE-A (Cidea), and peroxisome proliferator-activated receptor 
gamma coactivator 1-alpha (PGC1α), in response to thermogenic activation [9]. Skeletal muscle is also 
involved in adaptive thermogenesis as it induces shivering thermogenesis via mitochondrial 
uncoupling in cold conditions [11,12].  

Mitochondria contain respiratory complexes (I–IV) in the inner membrane, which function as 
the sites of oxidative phosphorylation by pumping protons from the matrix to the intermembrane 
space [13]. Reactive oxygen species (ROS) are generated as a by-product of mitochondrial respiration 
[14], and oxidative damage to mitochondria induces lipid accumulation by reducing electron 
transport chain function and fatty acid oxidation [15]. When nutrients are consumed in excess, 
saturated free fatty acids accumulate, leading to mitochondrial dysfunction and insulin resistance 
[16]. Mitochondrial dysfunction is correlated with metabolic disorders such as obesity and type 2 
diabetes. Improvement of the mitochondrial function in metabolic tissues is a known therapeutic 
approach for the treatment of metabolic disorders [17].  

Withania somnifera (WS), also known as ashwagandha or Indian ginseng, has been traditionally 
used in indigenous medicine to improve chronic fatigue and promote youthful vigor [18]. WS 
possesses anticancer, anti-inflammatory, antioxidative, and antistress properties [19,20] and contains 
diverse phytochemicals such as alkaloids, steroidal lactones, and steroids [18]. Although previous 
studies have demonstrated that WS suppresses body weight gain induced by chronic stress [21], the 
underlying mechanism has yet to be explored. WS has been reported to enhance muscle activity by 
increasing muscle strength and mass [22,23]. Improving the activity of skeletal muscle implies the 
possibility of increasing energy expenditure. In addition, plant alkaloids contained in WS have been 
reported that promote browning of adipose tissue [5,24,25]. In this regard, WS appears to be a 
therapeutic candidate to improve energy expenditure by increasing adaptive thermogenesis.  

In the current study, we hypothesized that WS prevents obesity by increasing energy 
expenditure through enhancing activity of mitochondria in tissues with high energy metabolism. We 
here aimed to evaluate the energy expenditure-enhancing effect of WSE (WS 70% ethanol extract) in 
diet-induced obese mice and elucidate the underlying mechanism with determination of the 
mitochondrial activity in skeletal muscle and adipose tissue. 

2. Materials and Methods 

2.1. WS Extract (WSE) Preparation 

WS root powder (Herbs India, Coimbatore, India) was extracted with 70% ethanol at 80 °C for 2 
h. The extract was filtered through Whatman No. 2 filter paper, concentrated using a vacuum 
evaporator, and lyophilized using a freeze dryer. 

2.2. Materials 

Dulbecco’s modified Eagle’s medium, calf serum, fetal bovine serum (FBS), penicillin–
streptomycin, and phosphate-buffered saline were obtained from Gibco BRL (Grand Island, NY, 
USA). Antibodies against-β-actin (sc-47778), type 2 deiodinase (DIO2; sc-98716), and uncoupling 
protein 2 (UCP2; sc-6526), and secondary antibodies were purchased from Santa Cruz Biotechnology 
(Santa Cruz, CA, USA). Antibody against voltage-dependent anion channel (VDAC; 4661s) was 
purchased from Cell Signaling Technology (Danvers, MA, USA). Antibodies against UCP1 (ab23841) 
and total oxidative phosphorylation (OXPHOS) complex (ab110413) were purchased from Abcam 
(Cambridge, MA, USA). Antibody against total myosin heavy chain was purchased from 
Developmental Studies Hybridoma Bank (Iowa city, IA, USA). 3-Isobutyl-1-methylxanthine (IBMX, 
l7018), withaferin A (WFA; W4394), withanolide A (WNA; W2145), and dexamethasone (D4902) were 
purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA). Radioimmunoprecipitation assay 
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buffer (89900) and protease- and phosphatase-inhibitor cocktails (78440) were purchased from 
Thermo Scientific-Pierce (Rockford, IL, USA). 

2.3. Animals 

Four-week-old male C57BL/6J mice were purchased from Japan SLC Inc. (Hamamatsu, Japan). 
Animal studies were conducted in accordance with institutional and national guidelines, and all 
experimental procedures were approved by the Korea Food Research Institute Animal Care and Use 
Committee (KFRI-IACUC, KFRI-M-16054). Mice were divided into four groups: a normal group (n = 
10) fed American Institute of Nutrition Rodent Diet AIN-76, a group fed a high-fat diet (HFD group, 
n = 10), and two groups fed HFD with either 0.25% or 0.5% WSE (HFD + WSE 0.25% or 0.5% groups, 
each n = 10). The experimental diets were based on the AIN-76 diet and contained 45% fat and 0.5% 
cholesterol (w/w) (Supplementary Table S1). After consuming the respective diets for 10 weeks, all 
mice were anesthetized with 2% isoflurane, sacrificed, and the liver, muscle, and adipose tissues were 
harvested and weighed. Some tissues were fixed in 4% formaldehyde, and the rest were stored at −80 
°C for further analysis. Blood was collected from the abdominal aorta and centrifuged at 3000 rpm 
for 20 min at 4 °C to separate serum. 

2.4. Energy Expenditure Measurement 

Energy expenditure was measured at 10 weeks using an OxyletProTM system (Panlab Harvard 
Apparatus, Barcelona, Spain). Mice were placed and acclimated in an individual metabolic chamber 
for 24 h, and then we measured oxygen consumption (VO2) and carbon dioxide production (VCO2) 
over 24 h using Oxylet LE 405 gas analyzer (Panlab Harvard Apparatus, Barcelona, Spain). The 
animals were maintained at 22 °C in a 12 h light/dark cycle with free access to food and water. At 
each measurement, OxyletPro Metabolism V3.0 software (Panlab Harvard Apparatus, Barcelona, 
Spain) automatically calculated the respiratory quotient (RQ) as the VO2/VCO2 ratio and energy 
expenditure (EE) as VO2 × 1.44 × [3.815 + (1.232 × RQ)] (kcal/day/kg0.75) according to the Weir formula 
[26]. 

2.5. OGTT and IPITT 

Oral glucose tolerance test (OGTT) and intraperitoneal insulin tolerance test (IPITT) were 
performed in response to oral glucose (2 g/kg, G5146, Sigma-Aldrich) and insulin injection (0.75 
unit/kg, 11376497001, Roche, Australia) after fasting for 4 hours, respectively. Blood samples were 
collected from the tail vein at 0, 15, 30, 60, and 120 minutes. Blood glucose concentrations were 
determined using an Accu-Chek glucometer (Roche, Mannheim, Germany).  

2.6. Quantitative Reverse-Transcription Polymerase Chain Reaction (RT-qPCR) 

Total RNA was extracted from tissues and cells using RNeasy mini kit (Qiagen, Valencia, CA, 
USA). cDNA was synthesized using the ReverTra Ace® qPCR RT Kit (Toyobo, Osaka, Japan). qPCRs 
were run in an ViiATM 7 Real-time PCR system (Applied Biosystems, Foster, CA, USA) using SYBR 
Green Real-time PCR Master Mix (Toyobo, Osaka, Japan) and the following thermal cycles: 95 °C for 
1 min, 40 cycles of 95 °C for 15 s, 60 °C for 15 s, and 75 °C for 45 s. The gene-specific primers are listed 
in Supplementary Table S2. 

2.7. Immunoblotting 

Cells and tissues were lysed in RIPA buffer supplemented with protease- and phosphatase-
inhibitor cocktails. Proteins were then separated by sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis and transferred to polyvinylidene fluoride membranes. The membranes were 
blocked and then incubated with primary and secondary antibodies. The protein levels were 
visualized using a chemiluminescence reagent. 

2.8. Immunofluorescence Staining of UCP1 
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Beige adipocytes were fixed with 4% formaldehyde, permeabilized with 0.5% saponin, blocked 
with 1% bovine serum albumin, and incubated with UCP1 antibody. The antibody was visualized 
using a fluorescein isothiocyanate secondary antibody (Alexa Fluor 488), and the nuclei were stained 
with 4′,6-diamidino-2-phenylindole. The stained cells were visualized with a Nikon Eclipse Ti 
confocal laser scanning microscope (Nikon, Tokyo, Japan). 

2.9. Immunohistochemistry of UCP1 

Tissues were fixed in 10% formalin, and the endogenous peroxidase activity was inhibited by 
incubating with 0.3% H2O2 in PBS. The fixed tissues were blocked by 1% horse serum and incubated 
with UCP1 antibody. UCP1 expression was visualized using a diaminobenzidine solution, and the 
slides were mounted and examined under an Olympus TH4-200 microscope (Tokyo, Japan). 

2.10. Histologic Analysis  

Tissues were fixed in 10% formalin, embedded in paraffin, cut into 5 µm sections, and stained 
with H&E; their morphologies were evaluated using an Olympus TH4-200 microscope (Tokyo, 
Japan).  

2.11. TEM 

Skeletal muscle was immediately fixed in 2% glutaraldehyde and 2% paraformaldehyde in 0.1 
M PBS (pH 7.4). After washing with PBS, the tissues were post-fixed with 1% osmium tetroxide and 
washed again with PBS. The tissues were then embedded in pure Epon 812 mixture after dehydration 
in ethanol series and infiltration in a propylene oxide:epon mixture series. Ultrathin sections (~70 nm) 
were obtained with a model MT-X ultramicrotome (RMC, Tucson, AZ, USA) and then stained with 
2% uranyl acetate and lead citrate. The sections were visualized by Cryo-TEM (JEM-1400 Plus, 120 
kV) (Jeol Ltd., Tokyo, Japan). 

2.12. Measurement of Complex III and IV Activity  

Mitochondrial fraction was isolated from skeletal muscle using the mitochondria isolation kit 
(ab110168; Abcam), and the activity of complex III and complex IV from isolated mitochondria was 
measured using a microplate assay kit (ab109905 and ab109911 respectively; Abcam) according to 
manufacturer’s instruction. 

2.13. LC-MS/MS Analysis 

The analyses were performed using an Acquity UPLC system (Waters, Miliford, MA, USA) with 
Acquity UPLC BEH C18 column (2.1 mm × 100 mm, 1.7 µm). The mobile phase included 0.1% formic 
acid aqueous solution (Solvent A) and 0.1% formic acid in acetonitrile (Solvent B), and a gradient 
elution program was performed: 0–5.5 min, 50%–20% solvent A; 5.5–7 min, 20%–80% solvent A; 7–8 
min, 2%–98% solvent A; 8–10 min, 50% solvent A, and 10–11 min, isocratic 50% solvent A. The flow 
rate was set at 0.5 mL/min, and column temperature was kept at 40 °C. The autosampler was 
conditioned at 4 °C, and the injection volume was 5 µL. Mass spectrometric analyses were operated 
using a Waters Xevo TQ triple-quadrupole mass spectrometer equipped with electrospray ionization 
(ESI) mode. 

2.14. Cell Culture and Treatment 

3T3-L1 mouse fibroblasts (CL-173) and C2C12 cells (CRL-1772) were purchased from the 
American Type Culture Collection and were cultured in DMEM containing 10% calf serum or 10% 
FBS in a 5% CO2 incubator maintained at 37 °C. The cells were treated with a different concentration 
(0.125−0.5 µM) of WFA and WNA, respectively.  
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2.15. Beige Adipocyte Differentiation of 3T3-L1 Cells 

3T3-L1 cells were cultured to 100% confluence. Confluent 3T3-L1 cells (day 0) were incubated in 
DMEM containing 0.25 µM dexamethasone, 0.5 µM IBMX, 10 µg/mL insulin, and 50 nM 
triiodothyronine (T3), and 10% FBS for 2 days. The cells were then incubated in 10% FBS-DMEM 
containing 0.5 µM IBMX, 1 µg/mL insulin, 50 nM T3, and 1 µM rosiglitazone for 6 days. 

2.16. Determination of Oxygen Consumption Rate (OCR) in C2C12 Cells 

Oxygen consumption was analyzed using an XF24 extracellular flux analyzer (Seahorse 
Bioscience, North Billerica, MA, USA). Briefly, C2C12 cells were seeded at 2 × 105/mL in a Seahorse 
24-well plate and treated with WFA or WNA for 24 hours. The culture medium was changed and 
incubated with XF assay medium (102353-100, Agilent Technologies, Santa Clara, CA, USA) 
supplemented with 0.25 mM glucose, 1 mM pyruvate, and 4 mM L-glutamine at 37 °C for 1 hour in 
a non-CO2 incubator. The OCR was analyzed with a XF cell mito stress kit (103015-100, Agilent 
Technologies, Santa Clara, CA, USA) by sequential injection of 1 µM oligomycin A, 2 µM carbonyl 
cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP), and 1 µM rotenone. The basal respiration 
rate, ATP production, maximal respiration, and spare capacity was calculated by Seahorse XF 
software version 1.8.1. 

2.17. Statistical Analysis 

Data are expressed as the mean ± standard deviation (SD) or standard error of the mean (SEM). 
Means were compared by one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test, 
using Prism7 software (GraphPad Software, San Diego, CA, USA). A p-value < 0.05 was considered 
significant. 

3. Results 

3.1. WSE Prevents HFD-Induced Obesity in Mice by Enhancing Energy Expenditure 

We investigated whether WSE supplementation would exhibit an anti-obesity effect in HFD-fed 
mice. HFD effectively induced a body weight gain at 10 weeks, and the two HFD + WSE groups 
(0.25% or 0.5% WSE) had a significantly reduced body weight gain when compared with the HFD 
group (Figure 1A). Food intake per day was not different in all groups (Supplementary Figure S1A). 
WSE supplementation significantly suppressed the increase in serum triglyceride induced by HFD, 
and the serum high-density lipoprotein/total cholesterol ratio was significantly increased by this 
supplementation (Figure 1B). Both WSE + HFD groups showed decreased liver and white adipose 
tissue (WAT) weights, but increased muscle per body weight when compared with the HFD group 
(Supplementary Figure S1B). When we measured adipocyte size using H&E staining, we found that 
WSE supplementation significantly reduced adipocyte size in epididymal WAT when compared with 
the size observed in the HFD group (Supplementary Figure S1C,D). WSE supplementation also 
reduced hepatic lipid accumulation (Supplementary Figure S1E,F) and the expression of lipid 
metabolism-related genes, such as cluster of differentiation 36 (CD36), stearoyl-CoA desaturase 1 
(SCD1), and sterol regulatory element-binding protein 1c (SREBP1c) at 10 weeks (Supplementary 
Figure S1G). 

We evaluated the effect of WSE on insulin resistance in HFD-fed mice using an oral glucose 
tolerance test (OGTT) and intraperitoneal insulin tolerance test (IPITT). The 0.5% WSE 
supplementation, but not the 0.25% WSE, showed a significant reduction in the glucose level in OGTT 
when compared with the HFD group (Supplementary Figure S2A,B). In the IPITT, the 0.25% and 
0.5% WSE groups showed a significant reduction in the glucose level when compared with the HFD 
group (Supplementary Figure S2C,D). Taken together, these finding showed that WSE exhibited an 
anti-obesity effect and improved insulin resistance in the HFD-fed mice. 

WS reportedly enhances muscle activity by increasing muscle mass and strength [22,23]. 
Therefore, we hypothesized that WSE enhances energy expenditure by increasing muscle activity. 
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Thus, we measured oxygen consumption (VO2) and carbon dioxide production (VCO2) using the 
OxyletPro system to calculate the energy expenditure. Both HFD + WSE groups showed increased 
VO2 and VCO2 levels and energy expenditure when compared with the HFD group (Figure 1C–F). 
WSE supplementation significantly reversed the rectal temperature decrease caused by HFD at 24 °C 
(Figure 1G). These results indicate that WSE may reduce the body weight gain induced by HFD by 
increasing oxygen consumption and thermogenesis. 

 
Figure 1. WSE prevents obesity by enhancing the oxygen consumption rate (OCR) in mice fed an HFD 
(high-fat diet). (A) Effect of WSE on mouse body weight during the 10 weeks experimental period. 
(B) Serum lipid levels. (C) VO2 levels throughout the light/dark cycle were analyzed by indirect 
calorimetry. The levels were normalized to body weight. (D) Area under the curve (AUC) of VO2. 
AUC was calculated using Prism software (ΔX*(Y1 + Y2)/2, X: Value of X axis, Y: Value of Y axis). (E) 
AUC of VCO2. (F) Energy expenditure was calculated based on the VO2 and VCO2 levels. (G) Rectal 
temperature was measured at room temperature. Data represent the mean ± SEM (n = 5). Difference 
between groups was evaluated by Tukey’s multiple comparison test. * p < 0.05; ** p < 0.01; *** p < 0.001 
compared with the HFD group. N: Normal control diet. 

3.2. WSE Enhances BAT Activity and Browning of WAT in HFD-Fed Mice 

BAT is rich in mitochondria, which are essential for non-shivering thermogenesis [9]. H&E 
staining of BAT showed that WSE supplementation resulted in a reduction in lipid accumulation 
induced by HFD (Figure 2A). Immunohistochemical and immunoblot analyses revealed that UCP1 
expression was increased by WSE supplementation when compared with the level in mice fed the 
HFD (Figure 2A,B). The HFD decreased the expression of BAT-enriched genes, including UCP1, 
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PGC1α, Dio2, and cytochrome c oxidase subunit 8b (Cox8b) in BAT; however, this effect was reversed 
by WSE supplementation (Figure 2C). WSE supplementation also increased protein expression 
related to mitochondrial complexes III and IV in BAT, when compared with the levels of these 
proteins in the HFD group (Figure 2D,E), and mRNA expression of mitochondrial transcription factor 
A (Tfam) and nuclear respiratory factor 1 (Nrf1), which are related to mitochondrial biogenesis (Figure 
2F). Both HFD + WSE groups showed increased citrate synthase activity in BAT when compared with 
the HFD group (Figure 2G). These results suggested that WSE enhances mitochondrial activity in 
BAT. 

Subcutaneous WAT (scWAT) can be differentiated into beige adipocytes, which are brown fat-
like cells that are induced upon exposure to prolonged cold conditions or β-adrenergic receptor 
activation. Beige adipocytes are rich in mitochondria and express BAT-specific proteins, such as 
UCP1 [27]. We investigated whether scWAT could differentiate into beige adipocytes by WSE 
supplementation in HFD-fed mice. WSE supplementation decreased the adipocyte size and increased 
UCP1 expression when compared with the levels observed in the HFD group (Figure 2H,I). WSE 
supplementation also significantly increased the mRNA levels of BAT-specific genes, including 
UCP1, PGC1α, PR domain containing 16 (Prdm16), Dio2, and Cidea, when compared with those in the 
HFD group (Figure 2J). These results indicated that WSE enhances the differentiation of scWAT to 
BAT-like adipocytes.  
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Figure 2. WSE enhances the mitochondrial function of brown adipose tissue (BAT) and the 
browning of subcutaneous adipose tissue (scWAT) in HFD-fed mice. (A) H&E staining and 
immunohistochemistry for the quantification of UCP1 (uncoupling protein 1) in BAT. (B) Protein 
expression of UCP1 in BAT. (C) Relative mRNA expression of BAT-specific genes (n = 5). (D) 
Expression of proteins involved in mitochondrial complexes III and IV in BAT. The subunits of 
mitochondrial complexes were detected using the total OXPHOS (oxidative phosphorylation) 
complex antibody cocktail. (E) Densitometry-based quantification data in (D), normalized to the level 
of VDAC (voltage-dependent anion channel). (F) Relative mRNA levels of the mitochondrial 
biogenesis-related genes, Tfam and Nrf1 (n = 5). (G) Citrate synthase activity in BAT (n = 5). (H) H&E 
staining and immunohistochemistry for quantification of UCP1 expression in scWAT. (I) Protein 
levels of UCP1 in scWAT. (J) mRNA expression of BAT-specific genes in scWAT (n = 5). Data 
represent the mean ± SEM. Difference between groups was evaluated by Tukey’s multiple 
comparison test. * p < 0.05; ** p < 0.01; *** p < 0.001 compared with the HFD group. 

3.3. WSE Improves Mitochondrial Function in Skeletal Muscle 

We counted mitochondria in skeletal muscle using electron microscopy. Although both the 
0.25% and 0.5% WSE groups had an increased number of mitochondria when compared with the 
HFD group (Figure 3A,B), only the 0.5% HFD + WSE group showed a significant increase in the 
mRNA levels of mitochondria-related genes, including UCP2 and PGC1α (Figure 3C). We measured 
citrate synthase activity as a marker for aerobic capacity and mitochondrial density in skeletal muscle. 
Of the two groups of WSE, only the 0.5% WSE group showed a significant increase in mitochondrial 
citrate synthase activity when compared with the HFD group (Figure 3D). Mitochondria have 
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respiratory chain complexes consisting of complexes I–IV [13]. Complex III (cytochrome bc 1) and 
complex IV (cytochrome c oxidase) transport protons to the outside of the mitochondrial inner 
membrane, leading to the production of ATP through an electrochemical gradient [13]. WSE 
supplementation tended to increase the expression of proteins involved in mitochondrial complexes 
III and IV (Figure 3E) in the mitochondrial fraction of skeletal muscle. The activity of complex IV, but 
not complex III, was significantly increased in the two WSE-supplemented groups (Figure 3F). These 
results suggested that 0.5% WSE supplementation improves mitochondrial activity in the skeletal 
muscle of HFD-fed mice. 

 
Figure 3. WSE improves mitochondrial function in skeletal muscle. (A) Representative transmission 
electron microscopic images of the skeletal muscle. (B) Number of mitochondria per skeletal muscle 
area. (C) Relative mRNA levels of mitochondrial-related genes in skeletal muscle. (D) Citrate synthase 
activity in skeletal muscle. (E) Expression of protein involved in mitochondrial complexes III and IV 
in skeletal muscle, and densitometry-based quantification of the data, normalized to the level of 
VDAC (n = 3). (F) Activity of mitochondrial complexes III and IV in skeletal muscle. Data represent 
the mean ± SEM (n = 5). Difference between groups was evaluated by Tukey’s multiple comparison 
test. * p < 0.05; ** p < 0.01; *** p < 0.001 compared with the HFD group. 

3.4. WFA Enhances the Differentiation of 3T3-L1 Cells into Beige Adipocytes and Mitochondrial Function in 
C2C12 Cells 

We performed LC-MS/MS analysis to determine the compound(s) in WSE responsible for its 
energy expenditure-enhancing effect. LC-MS/MS analysis revealed that WFA and WNA are both 
present in WSE (Figure 4A). Per 100 mg of WSE, we detected approximately 366 µg of WFA and 203 
µg of WNA (Figure 4B). We investigated whether WFA and WNA promote differentiation into beige 
adipocytes, using the 3T3-L1 cells. Treatment with WFA, but not WNA (data not shown), increased 
the expression of UCP1, which co-localized with mitochondria during the differentiation into beige 
adipocytes (Figure 4C). WFA increased the mRNA and protein expression of browning-related genes, 



Nutrients 2020, 12, 431 10 of 15 

including UCP1 and Dio2, in the 3T3-L1 cells (Figure 4D,E). These results showed that WFA induces 
the differentiation of pre-adipocytes into beige adipocytes. 

Finally, we measured whether WFA enhances the OCR in C2C12 mouse myoblasts. WFA 
promoted the OCR in a dose-dependent manner (Figure 4F) and elevated, albeit insignificantly, the 
OCR level of basal respiration (Figure 4G). WFA also increased the ATP turnover capacity after 
oligomycin treatment, which inhibits ATP synthesis by blocking complex V. WFA increased the 
maximal respiration by FCCP treatment and spare capacity. WNA also increased OCR in C2C12 cells 
(Supplementary Figure S3A–E) and increased the protein expression of myosin heavy chain and 
UCP2 in the C2C12 cells (Supplementary Figure S3F). These results indicated that WNA as well as 
WFA may regulate energy expenditure in vivo.  
 

 
Figure 4. Withaferin A (WFA) in WS enhances the differentiation into beige adipocytes and increases 
OCR. (A) LC-MS/MS analysis of WSE. (B) Contents of WFA and withanolide A (WNA) in 100 g of 
WSE. (C) UCP1 expression in differentiated 3T3-L1 beige adipocytes. (D) Expression of brown 
adipocyte-specific mRNA in differentiated 3T3-L1 beige adipocytes. (E) WFA increases protein 
expressions of UCP1 and Dio2 in beige adipocytes (n = 3). (F) WFA increases the OCR in C2C12 cells. 
C2C12 cells were treated with the indicated concentrations of WFA for 24 hours. (G) Quantification 
of basal respiration, ATP production, maximal respiration, and spare capacity. Data represent mean 
± SD of three independent experiments. Difference between groups was evaluated by Tukey’s 
multiple comparison test. * p < 0.05; ** p < 0.01, *** p < 0.001 compared with the vehicle group. 
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4. Discussion 

Increasing the metabolic rate through inducing adaptive thermogenesis is a promising 
alternative strategy for the treatment of obesity [9]. Phytochemicals, including resveratrol, berberine, 
and caffeine, have been demonstrated to increase thermogenesis through stimulating mitochondrial 
biogenesis and expression of UCP1 in adipose tissue [28–31]. The development of dietary 
phytochemicals responsible for inducing adaptive thermogenesis has attracted considerable 
attention. WS reportedly increases the strength and endurance of muscle, where adaptive 
thermogenesis mainly occurs, and ameliorates the chronic stress-related obesity [21–23]; however, its 
potential anti-obesity effect had not been fully explored. Therefore, we investigated whether WSE 
would prevent HFD-induced obesity in mice. This study is the first to demonstrate the effect of 
enhancing energy expenditure of WSE. Here, we have identified that WSE enhances mitochondrial 
function in BAT and skeletal muscle, and promotes browning of scWAT. In addition, it was also 
found that WFA in WSE promotes differentiation into beige adipocytes of 3T3-L1 pre-adipocyte and 
increases OCR in myocytes.  

Our results first showed that WSE suppressed the body weight gain and lipid accumulation in 
the liver and epididymal WAT (eWAT) induced by HFD, suggesting that it prevents obesity. There 
was no difference in food intake between the groups and no adverse effects. Also, treatment of WSE 
in 3T3-L1 cells did not affect cell viability up to 120 µg/mL (data not shown), indicating that these 
effects have not resulted from the toxicity of the WSE. We hypothesized that WSE increases the 
energy expenditure by enhancing muscle activity, or via the activation of another tissue function that 
is related to energy metabolism. To identify potential energy expenditure-enhancing effects, we 
indirectly measured OCR using a calorimeter. It has been reported that HFD decreases energy 
expenditure by suppressing oxygen consumption [32]. We found that WSE increased energy 
expenditure by increasing oxygen consumption and thermogenesis in HFD-fed mice. The increased 
rectal temperature by WSE supplementation indicates an enhanced dissipation of energy through 
heat generation [33].  

The mitochondrion is a central organelle in energy metabolism, as it is the site of ATP production 
and is involved in the regulation of energy expenditure [34]. Reduced mitochondrial oxidative 
capacity leads to metabolic inflexibility [35]. WSE supplementation enhanced the activity of citrate 
synthase, mitochondrial enzyme commonly used as marker for mitochondrial content [36], which 
catalyzes citrate formation by adding oxaloacetate to acetyl-CoA in the tricarboxylic acid cycle in 
skeletal muscle and BAT. WSE increased mitochondrial respiratory complex subunit expression, and 
complex activity in the skeletal muscle of the HFD + WSE groups. In addition, WSE supplementation 
increased mitochondrial biogenesis-related gene expression in skeletal muscle and BAT. These 
results suggest that WSE may increase the metabolic rate by improving mitochondrial activity. Irisin, 
a hormone secreted mainly in skeletal muscle, has been described to promotes thermogenesis and 
browning of WAT via increasing the expression of UCP1 in adipose tissue [37]. Since skeletal muscle 
and adipose tissue have functionally interacted via secreted proteins, thus WSE may contribute to 
improving overall mitochondrial function [38].  

Enhancement of energy expenditure is an emerging potential therapeutic target for weight loss 
[5]. BAT, one of the high-energy-metabolism tissues, controls body temperature and energy 
expenditure via thermogenesis through dissipating energy as heat [39]. BAT selectively expresses 
UCP1, which mediates thermogenesis by catalyzing the uncoupling of oxidative phosphorylation 
from ATP synthesis, in the inner membrane of the mitochondria [40]. WSE supplementation 
increased the expression of thermogenesis-related genes, including UCP1 and PGC1α, in BAT, when 
compared with the levels noted in the HFD-fed group. We also found that WSE supplementation 
stimulated the browning of scWAT by promoting UCP1 expression. The scWAT from the WSE-
supplemented groups showed UCP1-positive multilocular adipocytes similar to the feature of BAT. 
When WAT browning is induced, white adipocytes transform to brown-like adipocytes that have 
high mitochondrial content. Browning of scWAT is considered a new therapeutic approach in 
treating obesity because it activates adaptive thermogenesis in response to cold exposure or dietary 
stimuli [9]. Our results indicate that WSE enhanced energy expenditure through increasing BAT 
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activity and by stimulating scWAT differentiation into beige adipocytes. Activation of AMP-
activated protein kinase (AMPK) and sirtuin 1 (Sirt1) result in activation of PGC1α, master regulator 
of mitochondrial biogenesis, and enhance mitochondrial oxidative function. This signaling pathway 
has been described as a regulating mechanism of inducing thermogenesis [41,42]. WSE could increase 
the expression of PGC1α and mitochondrial activity through activation of this signaling pathway, but 
the molecular mechanism of this effect needs further investigation.  

To investigate the mechanism whereby WSE enhances energy expenditure, we identified the 
major compounds present in WSE via LC-MS/MS analysis. The amounts of WFA and WNA found in 
100 g of WSE were 366.5 mg and 203 mg, respectively. WFA, a major compound of WS, is known to 
improve nonalcoholic steatohepatitis [43] and exhibits antidiabetic effect by acting as a leptin-
sensitizer [44]. We found that WFA increased UCP1 expression in the inner membrane of 
mitochondria and induced the differentiation of 3T3-L1 pre-adipocytes into beige adipocytes. WFA 
also significantly enhanced OCR in C2C12 cells, indicating that WFA improves mitochondrial 
respiration in myocytes. Whereas, WNA did not affect the differentiation of the 3T3-L1 pre-
adipocytes into beige adipocytes (data not shown). Instead, it increased OCR in C2C12 cells and 
promoted myoblast differentiation by increasing of UCP2 protein expression in C2C12 cells. Whereas 
UCP1 plays important role in adaptive thermogenesis, UCP2, a UCP1 homologue that is expressed 
in various tissue including skeletal muscle, has primary function in the regulation of energy 
metabolism through reduction of mitochondrial ROS production [45,46]. Although the uncoupling 
proteins have distinct functions, they contribute to protecting metabolic syndrome [47]. Therefore, 
the increase in mitochondrial activity in the skeletal muscle of the WSE-supplemented groups was 
affected by the WFA and WNA contained in WSE.  

In conclusion, WSE ameliorated diet-induced obesity by enhancing energy expenditure via 
improving mitochondrial activity in skeletal muscle and adipose tissue. WFA and WNA, major 
compounds in WSE, were likely responsible for this anti-obesity effect. These data suggest that WS 
has potential as a new therapeutic agent for treating obesity.  
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