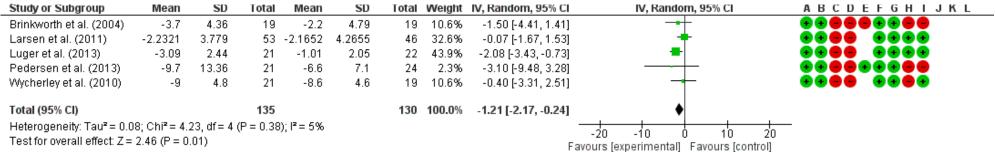
Supplementary Materials

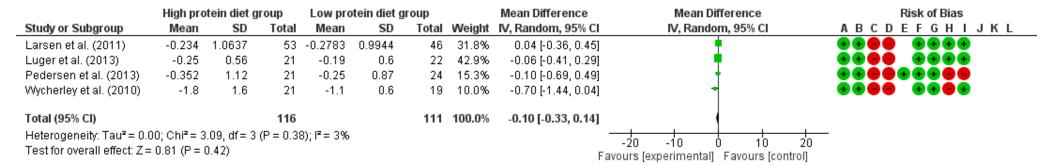

Table of contents

1	Met	a-analysis - High protein diets in diabetes patients	2
	1.1	Weight loss (kg)	2
	1.2	Fasting blood glucose (mmol/l)	3
	1.3	HbA1c (%)	4
	1.4	High density lipoprotein (mmol/l)	5
	1.5	Low density lipoprotein (mmol/l)	6
	1.6	Systolic blood pressure (mmHg)	7
	1.7	Diastolic blood pressure (mmHg)	8
2	Met	a-analysis - Low protein diets in diabetic nephropathy	9
	2.1	Glomerular filtration rate (ml/min/1,73m²)	9
	2.2	Proteinuria	10
3	Tab	les of evidence	11
	3.1	High protein diet in patients with type 2 diabetes mellitus (RCTs)	11
	3.2	Overview of nutrient intake in high protein diet	11
	3.3	Working document – Results of high protein diets in diabetes patients	13
	3.4	Excluded RCTs	14
	3.5	Different types of protein in patients with type 2 diabetes mellitus (RCT)	16
	3.6	Low protein intake in diabetic nephropathy (RCT)	19
	3.7	Low protein intake in diabetic nephropathy (existing meta-analysis)	21
	3.8	Working document – Results of low protein diet in diabetic nephropathy	23
4	GRA	NDE	24
	4.1	Summary of findings table - high protein diets in diabetes patients	24
	4.2	GRADE profile – high protein diets in diabetes patients	26
	4.3	Summary of findings table – low protein diets in diabetic nephropathy	28
	4.4	GRADE profile – low protein diets in diabetic nephropathy	30
5	Lite	rature	31

1 Meta-analysis - High protein diets in diabetes patients

1.1 Weight loss (kg)

Figure 1: Results of the meta-analysis - Effect of high protein diet on weight loss in diabetes patients


- (A) Clearly focused research question
- (B) Random sequence generation (selection bias)
- (C) Allocation concealment (selection bias)
- (D) Blinding of participants and personnel (performance bias)
- (E) Blinding of outcome assessment (detection bias)
- (F) Groups are similar at the start
- (G) Standardised, valid and reliable values
- (H) Drop out rate
- (I) Intention-to-treat analysis
- (J) Incomplete outcome data (attrition bias)
- (K) Selective reporting (reporting bias)
- (L) Other bias

1.2 Fasting blood glucose (mmol/l)

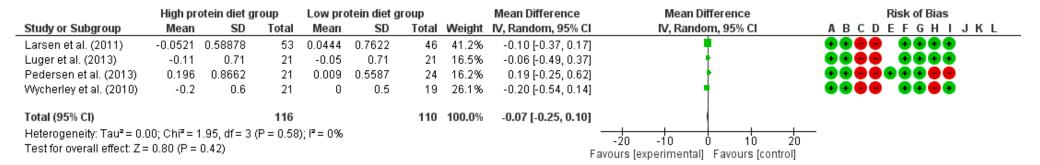
Figure 2: Results of the mo		ein diet gr - Effect of			ein diet gr n fasting blo		cose in dia	Mean Difference betes patients	Mean Difference	Risk of Bias K L
_ Lago, o. a., \20,0,	2.02	O. 71	٠.	0.12	4		20.0%	2.20[0.04, 0.40]	1	
Pedersen et al. (2013)	-1.49	2.1	21	-1.5	2.13	24	38.8%	0.01 [-1.23, 1.25]	•	
Wycherley et al. (2010)	-2.5	2.7	21	-2.2	2.2	19	32.7%	-0.30 [-1.82, 1.22]	+	
Total (95% CI)			63			65	100.0%	-0.72 [-1.98, 0.54]	•	
Heterogeneity: $Tau^2 = 0.6$ Test for overall effect: $Z =$	•		P = 0.11)	; I² = 54%				F	-20 -10 0 10 20	

- (A) Clearly focused research question
- (B) Random sequence generation (selection bias)
- (C) Allocation concealment (selection bias)
- (D) Blinding of participants and personnel (performance bias)
- (E) Blinding of outcome assessment (detection bias)
- (F) Groups are similar at the start
- (G) Standardised, valid and reliable values
- (H) Drop out rate
- (I) Intention-to-treat analysis
- (J) Incomplete outcome data (attrition bias)
- (K) Selective reporting (reporting bias)
- (L) Other bias

1.3 HbA1c (%)

- (A) Clearly focused research question
- (B) Random sequence generation (selection bias)
- (C) Allocation concealment (selection bias)
- (D) Blinding of participants and personnel (performance bias)
- (E) Blinding of outcome assessment (detection bias)
- (F) Groups are similar at the start
- (G) Standardised, valid and reliable values
- (H) Drop out rate
- (I) Intention-to-treat analysis
- (J) Incomplete outcome data (attrition bias)
- (K) Selective reporting (reporting bias)
- (L) Other bias

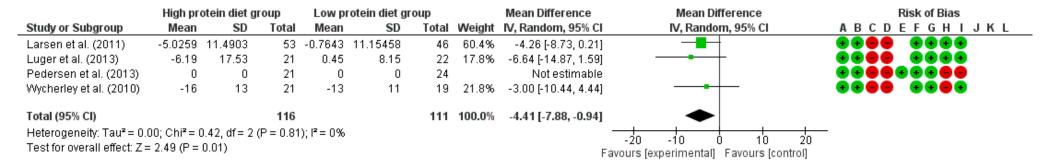
Figure 3: Results of the meta-analysis - Effect of high protein diet on hbA1c in diabetes patients


1.4 High density lipoprotein (mmol/l)

	High pro	otein diet g	roup	Low pro	otein diet g	гоир		Mean Difference	Mean Difference	Risk of Bias
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	A B C D E F G H I J K L
Larsen et al. (2011)	0.0813	0.2916	53	0.0757	0.2298	46	27.2%	0.01 [-0.10, 0.11]	•	
Luger et al. (2013)	0.02	0.18	21	0.04	0.15	21	28.7%	-0.02 [-0.12, 0.08]	•	
Pedersen et al. (2013)	0.114	0.127	21	0.083	0.229	24	25.4%	0.03 [-0.08, 0.14]	•	
Wycherley et al. (2010)	-0.1	0.2	21	0	0.2	19	18.7%	-0.10 [-0.22, 0.02]	†	
Total (95% CI)			116			110	100.0%	-0.02 [-0.07, 0.04]		
Heterogeneity: Tau² = 0.00; Chi² = 2.68, df = 3 (P = 0.44); l² = 0%									-20 -10 0 10 20	_
Test for overall effect: Z=	0.55 (P =	0.58)						F	-20 -10 0 10 20 Favours (experimental) Favours (control)	

- (A) Clearly focused research question
- (B) Random sequence generation (selection bias)
- (C) Allocation concealment (selection bias)
- (D) Blinding of participants and personnel (performance bias)
- (E) Blinding of outcome assessment (detection bias)
- (F) Groups are similar at the start
- (G) Standardised, valid and reliable values
- (H) Drop out rate
- (I) Intention-to-treat analysis
- (J) Incomplete outcome data (attrition bias)
- (K) Selective reporting (reporting bias)
- (L) Other bias

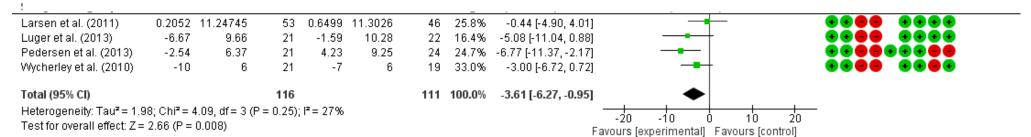
Figure 4: Results of the meta-analysis - Effect of high protein diet on high density lipoprotein in diabetes patients


1.5 Low density lipoprotein (mmol/l)

- (A) Clearly focused research question
- (B) Random sequence generation (selection bias)
- (C) Allocation concealment (selection bias)
- (D) Blinding of participants and personnel (performance bias)
- (E) Blinding of outcome assessment (detection bias)
- (F) Groups are similar at the start
- (G) Standardised, valid and reliable values
- (H) Drop out rate
- (I) Intention-to-treat analysis
- (J) Incomplete outcome data (attrition bias)
- (K) Selective reporting (reporting bias)
- (L) Other bias

Figure 5: Results of the meta-analysis - Effect of high protein diet on low density lipoprotein in diabetes patients

1.6 Systolic blood pressure (mmHg)

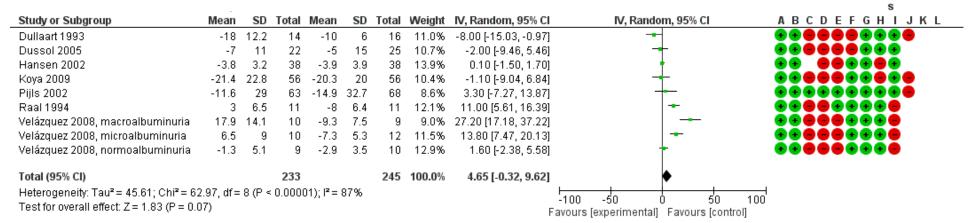


- (A) Clearly focused research question
- (B) Random sequence generation (selection bias)
- (C) Allocation concealment (selection bias)
- (D) Blinding of participants and personnel (performance bias)
- (E) Blinding of outcome assessment (detection bias)
- (F) Groups are similar at the start
- (G) Standardised, valid and reliable values
- (H) Drop out rate
- (I) Intention-to-treat analysis
- (J) Incomplete outcome data (attrition bias)
- (K) Selective reporting (reporting bias)
- (L) Other bias

Figure 6: Results of the meta-analysis - Effect of high protein diet on systolic blood pressure in diabetes patients

1.7 Diastolic blood pressure (mmHg)

Figure 7: Results of the meta-analysis - Effect of high protein diet on diastolic blood pressure in diabetes patients



- (A) Clearly focused research question
- (B) Random sequence generation (selection bias)
- (C) Allocation concealment (selection bias)
- (D) Blinding of participants and personnel (performance bias)
- (E) Blinding of outcome assessment (detection bias)
- (F) Groups are similar at the start
- (G) Standardised, valid and reliable values
- (H) Drop out rate
- (I) Intention-to-treat analysis
- (J) Incomplete outcome data (attrition bias)
- (K) Selective reporting (reporting bias)
- (L) Other bias

2 Meta-analysis - Low protein diets in diabetic nephropathy

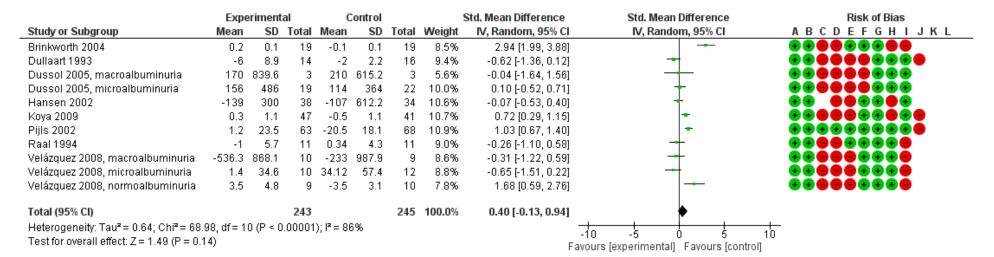

2.1 Glomerular filtration rate (ml/min/1,73m²)

Figure 8: Results of the meta-analysis (Data were adapted and taken from Nezu et al.[1]) - Effect of low protein diet on GFR in diabetic nephropathy

- (A) Clearly focused research question
- (B) Random sequence generation (selection bias)
- (C) Allocation concealment (selection bias)
- (D) Blinding of participants and personnel (performance bias)
- (E) Blinding of outcome assessment (detection bias)
- (F) Groups are similar at the start
- (G) Standardised, valid and reliable values
- (H) Dropout rate
- (I) Intention-to-treat analysis
- (J) Incomplete outcome data (attrition bias)
- (K) Selective reporting (reporting bias)
- (L) Other bias

2.2 Proteinuria

- (A) Clearly focused research question
- (B) Random sequence generation (selection bias)
- (C) Allocation concealment (selection bias)
- (D) Blinding of participants and personnel (performance bias)
- (E) Blinding of outcome assessment (detection bias)
- (F) Groups are similar at the start
- (G) Standardised, valid and reliable values
- (H) Dropout rate
- (I) Intention-to-treat analysis
- (J) Incomplete outcome data (attrition bias)
- (K) Selective reporting (reporting bias)
- (L) Other bias

Figure 9: Results of the meta-analysis (Data were adapted and taken from Nezu et al. [1]) - Effect of low protein diet on proteinuria in diabetic nephropathy

3 Tables of evidence

3.1 High protein diet in patients with type 2 diabetes mellitus (RCTs)

Author, year	Quality of	SIGN	Study-	Participants	Interventi	on			Results
	evidence		type		Duration	Ratio (carb:pro:fat)			
						prescribed (Interv./Control)	Achieved (Interv./Control)	Energy-R	
Brinkworth, 2004 [2]	1-	Acceptable (+)	RCT	38 T2DM	64 w	40:30:30 vs. 55:15:30	yes	yes	weight: -3,7±1 kg (HP) vs2,2±1,1 kg (LP); HDL: significant increase in both groups
Jesudason, 2013 [3] Pedersen, 2013 [4]	1 -	Acceptable (+)	RCT	76 T2DM	1 y	40:30:30 vs. 50:20:30	36:29:29 vs. 46:19:28	yes	weight : I: -9,7 \pm 13,29; C: -6,6 \pm 6,86 kg Fasting blood glucose : I: -1,0 \pm 1,375; C: -1,5 \pm 2,45
Larsen, 2011 [5]	1-	Acceptable (+)	RCT	99 T2DM	1 y (3 mo E-R + 9 mo E-B)	40:30:30 vs. 55:15:30	0: 44:21:32 vs. 45:20:33 3 m: 40:28:30 vs. 49:21:29 12 m: 42:26:31 vs. 48:19:32	yes	weight: I: -2.23 ± 3.78; C: -2.16 ± 4.26 kg n.s. HbA1c: I: -0.23 ± 1.06; C: -0.28 ± 0.99 % HDL: I: 0.08 ± 0.29; C: 0.07 ± 0.23 mmol/l LDL: I: -0.05 ± 0.59; C: 0.04 ± 0.76 mmol/l SBP: I: -5.03 ± 11.49; C: -0.76 ± 11.15 mmHg DBP: I: 0.205 ± 11.25; C: 0.65 ± 11.30 mmHg
Luger, 2013 [6]	1 -	Acceptable	RCT	44 T2DM	12 w	40:30:30 vs. 55:15:30	0: 43:23:32 vs. 43:20:32 4 w: 37:26:34 vs. 48:17:30 12 w: 37:25:35 vs. 50:17:30	yes	
Wycherley, 2010 [7]	1-	Acceptable (+)	RCT	83 T2DM	16 w	43:33:22 vs. 53:19:26	16 w : 47:32:18 vs. 54:19:23	yes	weight: I: -9.0 ± 4.8; C: -8.6 ± 4.6 kg HbA1c: I: -1.8 ± 1.6; C: -1.1 ± 0.6 % Fasting BG: I: -2.5 ± 2.7; C: -2.2 ± 2.2 mmol/I HDL: I: -0.1 ± 0.2; C: 0 ± 0.2 mmol/I LDL: I: -0.2 ± 0.6; C: -0.3 ± 0.5 mmol/I SBP: I: -16 ± 13; C: -13 ± 11 mmHg DBP: I: -10 ± 6; C: -7 ± 6 mmHg

3.2 Overview of nutrient intake in high protein diet

Study	Year	N	Ratio	Duration	Point of time	Protein intake

			Carb: Protein: Fat		E-R ¹		High prof	tein diet		Norma	protein di	et
							g	%	kcal	g	%	kcal
Brinkworth [2]	2004	38	40: 30 :30 vs. 55: 15 :30	8 W ER; 4 W EB 12 mo Follow- up	Yes	8 weeks	120g*	30 %	1595	60g*	15 %	1595
Jesudason [3] Pedersen [4]	2013	76	40: 30 :30 vs. 50: 20 :30	1 year	Yes	-	110g	28.4%	1377	97 g	25.1 %	1408
Krebs [8]	2012	419	40: 30 :30 vs. 55: 15 :30	2 year	Yes	6 months 12 months 24 months	95 g 91 g 87 g	22 % 21 % 21 %	1762 1728 1707	81 g 83 g 85 g	20 % 21% 20%	1623 1615 1689
Larsen [5]	2011	99	40: 30 :30 vs. 55: 15 :30	1 year	Yes	3 months 12 months	108 g* 105 g*	28,2 % 26.5 %	1536 1587	75 g* 74 g*	20,8 % 18,9 %	1436 1578
Luger [6]	2013	44	40: 30 :30 vs. 55: 15 :30	12 weeks	Yes	0 4 weeks 12 weeks	75 g* 81 g* 81 g	22,9 % 26,5 % 25,6 %	1318 1219 1272	66 g* 57g* 51g*	19,8 % 17,0% 16,6 %	1326 1332 1235
Luscombe [9]	2002	26	42: 28 :30 vs. 55: 16 :29	8 + 4 weeks	Yes	8 weeks +4 weeks	112 g* 128 g*	28,2 % 27,7 %	1585 1844	64 g* 70 g*	16,1 % 15,8 %	1583 1777
Parker [10]	2002	66	42: 28 :28 vs. 55: 16 :27	8 + 4 weeks	Yes	8 weeks +4 weeks	112 g* 140 g*	28,1 % 27,7 %	1587 2029	63 g* 71 g*	16,4 % 16,0 %	1543 1785
Wycherley [7]	2010	28	47: 32 :18 vs. 53: 18 :22	16 weeks	Yes	-	119g	32,3%	1505	68g	18,6%	1494

^{* =} estimated values

¹ E-R = Energy restriction

3.3 Working document - Results of high protein diets in diabetes patients

Author, Year	Study Design	Population	Intervention and Control (carb:pro:fat)	Outcome A Weight loss	Outcome B HbA1c	Outcome C Fasting blood glucose	Outcome D HDL	Outcome E	Outcome F SBP	Outcome G DBP
	_	_		(Mean ± SD)	(Mean ± SD)	(Mean ± SD)	(Mean ± SD)	(Mean ± SD)	(Mean ± SD)	(Mean ± SD)
Brinkworth, 2004 [2]	RCT	Type 2 DM I: 19 C: 19	I: 40: 30 :30 C: 55: 15 :30	I: -3.7 ± 4.36 C: -2.2 ± 4.79	-	-	-	-	-	-
Larsen, 2011 [5]	RCT	Type 2 DM I: 53 C:46	I: 40: 30 :30 C: 55: 15 :30	I: -2.23 ± 3.78* C: -2.16 ± 4.26*	I: -0.23 ± 1.06* C: -0.28 ± 0.99*	-	I: 0.08 ± 0.29* C: 0.07 ± 0.23*	I: -0.05 ± 0.59* C: 0.04 ± 0.76*	I: -5.03 ± 11.49* C: -0.76 ± 11.15*	I: 0.205 ± 11.25* C: 0.65 ± 11.30*
Luger, 2013[6]	RCT	Type 2 DM I: 21 C: 22	I: 40: 30 :30 C: 55: 15 :30	I: -3.09 ± 2.44* C: -1.01 ± 0.05*	I: -0.25 ± 0.56* C: -0.19 ± 0.60*	I: -2.32 ± 3.47* C: -0.12 ± 2.17*	I: 0.02 ± 0.18* C: 0.04 ± 0.15*	I: -0.11 ± 0.71* C: -0.05 ± 0.71*	I: -6.19 ± 17.53* C: 0.45 ± 8.15*	I: -6.67 ± 9.66* C: -1.59 ± 10.28*
Pedersen,	RCT	Type 2 DM								
2013 [4]		I: 21 C:24	I: 40: 30 :30 C: 50: 20 :30	I: -9.7 ± 13.36* C: -6.6 ± 7.10*	I: -0.352 ± 1.12* C: -0.25 ± 0.8*	I: -1.0 ± 1.375* C: -1.5 ± 2.45*	I: 0.49 ± 2.10* C: 0.08 ± 0.23*	I: 0.19 ± 0.86* C: 0.009 ± 0.55*	I: -4.79 ± 13.08* C: 1.79 ± 11.19*	I: 2.54 ± 6.37* C: 4.23 ± 9.25*
Wycherley,	RCT	Type 2 DM	G. 30.2 0 :30	C0.0 ± 7.10	C0.23 I 0.0	61.3 ± 2.43	C. 0.00 ± 0.23	C. 0.009 ± 0.33	6. 1./9 ± 11.19	6. 4.23 ± 9.23
2010 [7]	1.01	I: 21 C:19	I: 47: 32 :18 C: 53: 18 :22	I: -9.0 ± 4.8 C: -8.6 ± 4.6	I: -1.8 ± 1.6 C: -1.1 ± 0.6	I: -2.5 ± 2.7 C: -2.2 ± 2.2	I: -0.1 ± 0.2 C: 0 ± 0.2	I: -0.2 ± 0.6 C: -0.3 ±0.5	I: -16 ± 13 C: -13 ± 11	I: -10 ± 6 C: -7 ± 6

^{* =} significant values

Cursive values = requested from the authors*

3.4 Excluded RCTs

Author, year	Study-	Participants	Intervention	on	
	type		Duration	Ratio	Exclusion
				(Carb:Protein:Fat)	
Bibra, 2013 [11]	Crossover	16 T2DM	2+3 w	25:30:45 vs. 55:20:25	difference between fat intake too high
Boden, 2005 [12]	СТ	10 T2DM	2 w	Data in g per day:	no randomization, high risk of bias,
				day 1 – 7: CHO: 309 g;	difference between protein intake too little
				F: 154 g; P: 137 g	
				day 8 – 21: CHO: 21 g; F: 4 g;	
Daly, 2006 [13]	RCT	102 T2DM	12 w	P: 151 g 34:26:40 vs. 46:20:33	difference between fat intake too high
Davis, 2011 [14]	RCT	27 T2DM	6 mo	Low Carb vs. Low Fat	no difference in protein intake
Davis, 2011 [14]	RCT	105 T2DM	1 y	24:27:49 vs. 53:22:25	difference between fat intake too high
De Mello, 2011 [16]	RCT	104 P with impaired glucose tolerance	12 w	24.27.49 V3. 33.22.23	non-diabetics, no information about protein intake
Dyson, 2008 [17]	Review	521 T2DM	12 W	_	non-diabetics, no information about protein intake
Dyson, 2007 [18]	RCT	26 (13 diabetic, 13 non-diabetics)	3 mo	17:31:46 vs. 39:20:34	too little diabetics, difference of fat intake too high
Elhayany, 2010 [19]	RCT	259 diabetics	12 mo	LC mediter. diet: 35:20:45	comparison mediterranean diet, difference fat intake, no difference
	1101	235 diabeties	120	traditional mediter, diet:	between protein intake
				50:20:30	
				ADA nutrition: 50:20:30	
Gannon, 2004 [20]	Crossover	8 T2DM	5 w	20:30:50 vs. 55:15:30	fat intake too high
Gutierrez, 1998 [21]	СТ	28 T2DM	8 + 12 w	25:45:30 vs. 55:20:25	low quality, difference between fat intake too high
Hussain, 2012 [22]	RCT	363 obese (102 T2DM)	24 w	-	no data about nutrition
Keogh, 2007 [23]	RCT	73 obese hyperinsulinemic	12 mo	30:20:50 vs. 30:40:30	non-diabetics
Kirk, 2008 [24]	Metaanalyse	T2DM	-	-	difference of protein intake?
Khoo, 2011 [25]	RCT	31 T2DM	8w + 44w	0,8 g Protein/kg [LP] vs. 300	high risk of bias, very high dropout-rate (ca. 50%)
				g lean meat [HP]	
McAuley, 2006 [26]	RCT	93 insulinresistent women	12 mo	HP: 37:22:37; HF: 33:21:41	non-diabetics
	_		_	HC: 45:22:29	
McAuley, 2005 [27]	RCT	93 insulinresistent women	24 w	HP: 35:26:35; HF: 26:24:47	non-diabetics
McCarthy, 2012 [28]	Review			HC: 45:21:28	non-diabetics
Navas-Carretero, 2011	Longitudinal Studie	17 T2DM	- 4w+4w	_	no RCT, difference of fat intake
[29]	Longituaniai Studie	17 120191	+vv+4vv	-	no ner, difference of lat liftake
Papakonstantinou,	Crossover	17 T2DM	4 w	50:30:20 vs. 50:15:35	difference of fat intake too high
2010 [30]					
Samaha, 2003 [31]	RCT	132 obese (39% diabetic)	6 mo	LF: 51:16:33	too little diabetics, difference of fat intake too high

				LC: 37:22:41	
Seshadri, 2004 [32]	RCT	78 obese (31 T2DM, 36 MetS)	6 mo	LC: CHO =32 ± 20%; P=25±9%; F=43±17% Conventional Diet: CHO=50±16%; P=16±5%; F=33±14%	difference of fat intake too high, difference of protein intake?
Stern, 2004 [33]	RCT	132 obese (82 T2DM)	1 y	CHO<30g vs. caloric reduction of 500 kcal	fat intake different, not only diabetics
Tay, 2014 [34]	RCT	115	24 w	14:28:58 vs. 53:17:30	difference of fat intake too high
Westman, 2008 [35]	RCT	50 T2DM	24 w	13:28:59 vs. 44:20:36	difference of fat intake too high
Wheeler, 2012 [36]	Systematic Review	T2DM	-	-	
Wolever, 2008 [37]	RCT	162 T2DM	1 y	High GI: 47:22:31 Low GI: 52:21:27 LC: 39:21:40	difference of fat intake too high no difference between protein intake
Yancy, 2010 [38]		146 participants 31% diabetics	1 y	34:32:34 vs. 62:25:13	difference of fat intake too high

3.5 Different types of protein in patients with type 2 diabetes mellitus (RCT)

Author,	Quality	SIGN	Study-	Participants	Interventio	n	Results			
year	of evidence		type		Duration	Intervention vs. control	Glycaemic control/HbA1c	Proteinuria/GFR	Serumlipid	Bloodpressure
Azadbakht, 2008 [39]	1-	Acceptable (+)	RCT	41 T2DM with nephropathy	4 y	soy protein (0,8 g/kg/d; 35% animal,35% TVP, 30% vegetable) vs. Control (0,8 g/kg/d; 70% animal, 30% vegetable)	FPG SP: 141+-55 >121+-42 CG: 137+-54>147+-57 T*G P=0.02	SP: 84+-19 > 88+-33 CG: 78+-23 > 81 +-35 T*G n.s.	TC: SP: 225+-48 > 201+-35 CG: 218+-38 > 228 +- 48 T*G p=0.01 TG, LDL, HDL n.s.	n.s.
Pecis, 1994 [40]	1-	Acceptable (+)	RCT, crossover	15 T1DM	13 w (3x3 w interv. and 2 w washout)	Usual diet (meat: 79,4% beef, 20,6% chicken) vs. Low protein diet (0,5g/kg/d vegetable and milk protein, 7% P/60% CHO/33% F) vs. Test diet (same like usual, red meat replaced by 85% chicken and 15% fish)	No change	GFR: significant ↓ after LPD and test diet UAE: no change	Chol: significant 个 in usual diet HDL: no change TG: no change	No change
Wheeler, 2002 [41]	1-	Acceptable (+)	RCT, crossover	23 T2DM	16 w (2x6 w interv. and 4 w washout)	Animal protein (60% animal, 40% plant) vs. Plant protein (tofu, TVP, soy, legumes)	AP: 7,9%→7,4% (P<0,01) PP: 8,1%→7,5% (P<0,01) No diet effect	GFR and AER: no change	Chol: 4,75→4,34 mmol/l (P<0,01) in both groups TG: no change HDL: no change	Diastolic pressure: AP:82→78 mmHg (P<0,02) PP:83→80 mmHg (P<0,02) Systolic pressure: no change

Gross,	1-	Acceptable	RCT,	33 T2DM			No change	GFR in	Normoalbuminuric:	No change
2002 [42]		(+)	crossover					normoalbuminuric:	No change in chol, HDL, LDL,	5-
								Lower after chicken	apolipo B, TG	
								(101,3±22,9 ml/min/1,73m ²)		
						Usual diet		and low protein	Microalbuminuric:	
						(achieved		(93,8±20,5ml/min/1,73m²) than after usual	Apolipo B significantly lower after	
						1,43±0,3		(113,4±31,4ml/min/1,73m ²),	chicken(113,5±36mg/dl) and	
						g/kg/d)		P<0,05	low protein	
						vs.		1 10,03	(103,5±40,1mg/dl) than after	
						Low protein		GFR in	usual (134,3±30,7mg/dl),	
						(0,5-0,8 g/kg/d,		microalbuminuric:	P<0,05	
						only milk and		Lower after low protein		
						vegetable		(93,5±8,5ml/min/1,73m²)		
						protein,		than after chicken		
					20 w (3x4 w	achieved		(102,8±22,5ml/min/1,73m ²)		
					interv. and 4	0,66±0,2		and usual		
					w washout)	g/kg/d)		(107,1±20,1ml/min/1,73m ²), P<0,05		
						νς.		P<0,03		
						Chicken diet		UAER in		
						(1,2-1,5 g/kg/d,		normoalbuminuric:		
						red meat		No change		
						replaced by				
						chicken,				
						achieved		UAER in		
						1,35±0,3		microalbuminuric:		
						g/kg/d)		After chicken (median		
						3, 3, 1		34,3μg/min) significantly		
								lower than after usual		
								(median 63,8µg/min) and		
								low protein (median 52,3µg/min), P<0,05		
Pipe, 2009	1-	Acceptable	RCT,	34 T2DM			Not measured	Not measured	LDL:	Not measured
[43]	_	(+)	crossover,	025		Soy protein			MPI:	
[]			doubleblind,			isolate (40 g			2,98±0,14→2,9±0,12mmol/l	
			placebo-			protein and 88			SPI:	
			controlled		2x57 d with	mg isoflavones)			2,95±0,12→2,78±0,13mmol/l	
					28 d	VS.			P=0,04	
					washout	Milk protein			IDL:UDL:	
	Ī					isolate (40 g			LDL:HDL:	
	Ì					protein, no			MPI: 2,66±0,12→2,66±0,11 SPI:	
						isoflavones)			2,53±0,1→2,5±0,1	
		Ļ	L	Į.			Į	Į.	2,33±0,172,3±0,1	ļ

Error! Use the Home tab to apply Überschrift 1 to the text that you want to appear here Error! Use the Home tab to apply Überschrift 2 to t	he text that
you want to a	ppear here.

		P=0,02	
		Apolipo B:apolipo A-I: MPI: 0,67±0,03→0,67±0,03 SPI: 0,67±0,03→0,64±0,03 P=0,05	

3.6 Low protein intake in diabetic nephropathy (RCT)

Author,	Quality of	SIGN	Study-	Participants	Intervention					Results		
year	evidence		type		Duration	Protein intake "Low protein"		–				
						prescribed	achieved	prescribed	achieved	Nephro pathy	GFR	HbA1c
Dullaart, 1993 [44]	1-	Accep table (+)	RCT	31 IDDM	2 y	0,6	0,79	free	1,09	Microalb.	GFR-changes: LP: $131 \pm 34 \rightarrow 120 \pm 20$ $\rightarrow 113 \pm 24$ NP: $122 \pm 26 \rightarrow 119 \pm 19$ $\rightarrow 112 \pm 21$	<u>changes</u> : LP: 7,84 ± 0,93 → 8,02 ± 0,85 NP: 7,82 ± 1,01 → 8,01 ± 1,20
Dussol, 2005 [45]	1-	Accep table (+)	RCT	63 T1DM + T2DM	24 mo	0,8	0,87	1,2	1,03	Microalb + Macroalb.	GFR- changes: LP: $82 \pm 21 \rightarrow 80 \pm 23 \rightarrow 74 \pm 25$ decline: -7 ± 11 NP: $89 \pm 27 \rightarrow 84 \pm 33$ $\rightarrow 82 \pm 24$ decline: -5 ± 15	changes: LP:8,4 ± 1,8 \rightarrow 8,2 ± 1,3 \rightarrow 7,9 ± 2,1 NP:8,0 ± 1,1 \rightarrow 8,2 ± 1,4 \rightarrow 8,1 ± 2,2
Hansen, 2002 [46]	1-	Accep table (+)	RCT	82 T1DM	4 y	0,6	0,89	free	1,02	Macroalb.	GFR-decline: LP: 7,6 (4,9 − 10,2) → - 3,8 (2,8 − 4,8) NP:6,6 (5,2 − 8,1) → - 3,9 (2,7 − 5,2)	<u>changes</u> : LP: 9,8 % (9,4 – 10,1) → 9,5 (9,1 – 9,9) NP: 9,6% (9,2 – 9,9) → 9,6 (9,3 – 10,0)
Koya, 2009 [47]	1 -	Accep table (+)	RCT	112 T2DM	60 mo	0,8	1,0	1,2	1,0	Macroalb.	eGFR (annual changes): LP: - 6,1 ± 6,5 NP: -5,8 ± 5,7	Baseline: LP: 7,8 ± 1,5 NP: 7,5 ± 1,7
Meloni, 2002 [48]	1-	Accep table (+)	RCT	69 (32 T1 and 37 T2DM)	1 у	0,6	0,68 ± 0,21	free	1,39 ± 0,28	Diabet. Nephrop.	GFR- changes : LP: 43 ± 4,7 → 38 ± 9,6 NP: 45 ± 5,1 → 39 ± 7,2	<u>changes</u> : LP: 7,2 ± 0,5 →6,0 ± 1,1 NP: 6,7 ± 0,5 →6,2 ± 0,8
Pedersen, 2013 [4]			RCT	45 T2DM	1 у	-	-	-	-	Microalb. + Macroalb.		
Pijls, 2002 [49]	1-	Accep table (+)	RCT	131 T2DM	28 ± 7 mo	0,8	1,1	free	1,14	Normoalb. + Microalb.	GFR decline 6 Mo- LP: -2,9 ± 17 ; NP: -1,3 ± 15	Baseline: LP: 7,7 ± 1,4 NP: 7,7 ± 1,5

Raal, 1994 [50]	1-	Accep table (+)	RCT	22 IDDM	6 mo	0,8	0,87	1,6	2,0	Macroalb.	12 Mo-LP: -4,8 ± 12; NP: -6,4 ± 14 GFR- changes: LPD: 50 ± 19 → 53 ±23 UPD: 66 ± 28 → 58 ± 26	$\frac{\text{changes:}}{\text{LPD: } 12,0 \pm 3,4 \rightarrow 11,7} \\ \pm 4,6 \\ \text{UPD: } 13,9 \pm 2,4 \rightarrow \\ 12,4 \pm 5,5$
Velazquez, 2008 [51]	1-	Accep table (+)	RCT	T2DM	4 mo	0,6 - 0,8	0,82	1,0 - 1,2	1,2	Normoalb. + Microalb + Macroalb.	GFR- changes: LPD normo: $87,5 \pm 15,2$ $\rightarrow 86,2 \pm 18,2$ LPD microalb: $69,7 \pm 36,9 \rightarrow 76,2 \pm 35,6$ LPD macroalb: $56,3 \pm 29,0 \rightarrow 74,2 \pm 40,4$ NPD normo: $81,5 \pm 21,7$ $\rightarrow 78,6 \pm 19,7$ NPD microalb: $89,2 \pm 32,1 \rightarrow 81,9 \pm 34,6$ NPD macroalb: $74,4 \pm 31,4 \rightarrow 65,1 \pm 25,5$	changes: LPD normo: 7.5 ± 1.5 $\rightarrow 6.8 \pm 0.8$ LPD microalb: $8.2 \pm 1.6 \rightarrow 7.2 \pm 1.8$ LPD macroalb: $8.4 \pm 2.1 \rightarrow 7.6 \pm 1.0$ NPD normo: 8.8 ± 2.2 $\rightarrow 7.9 \pm 1.3$ NPD microalb: $8.8 \pm 1.9 \rightarrow 7.1 \pm 0.8$ NPD macroalb: $8.1 \pm 1.8 \rightarrow 6.9 \pm 1.6$
Walker, 1989 [52]	-	Reject (-)	СТ	19 IDDM	NP: 29 mo LP: 33 mo	-	0,67	-	1,13	Macroalb. Alb- excretion: > 300μg	GFR-decline: LP: 0,14 ml/min per month NP: 0,61 ml/min per month (signif.)	?
Zeller, 1991 [53]	-	Reject (-)	RCT	35 T1DM with Nephropathy	Ø 3 y	0,6	0,72	> 1,0	1,08	Macroalb.		7,9 %

3.7 Low protein intake in diabetic nephropathy (existing meta-analysis)

Author, Year	Evidence	SIGN	Study- type	Aim	Search strategy	Inclusion criteria	Participants	Results
Kasiske, 1998 [54]	0	Unaccept able - Reject	MA	Effect of low-protein diet on kidney function in diabetic nephropathy	Not described		23 studies (6 studies with diabetes patients and 17 persons without diabetes	Dietary protein restriction retards the rate of renal function decline.
Maeda, 2007 [55]	0	No SR	R	Diet therapy in diabetic nephropathy		No Systematic Rev	iew	Protein restriction should be prescribed for patients with diabetic nephropathy, as far as calorie intake is sufficient and the prescribed protein intake does not cause malnutrition.
Nezu, 2013 [1]	1++	High quality (++)	SR + MA	Effect of low-protein diet on kidney function in diabetic nephropathy	PubMed, EMBASE, Cochrane library, ClinicalTrials.gov, International Standard RCT, UMIN-CTR	Fulltext available - RCT - measured: GFR, CCr, proteinurie, albuminuria, HbA1c, serum albumin	779 Persons with Diabetes mellitus Type 1 and type 2	A diet intervention by a low protein diet hast modest but significant effects on the course of kidney prognosis in patients with diabetic nephropathy, especially when the intervention is sustainable regarding patients compliance. The quality of the evidence for GFR was low.
Otoda, 2014 [56]	0	No SR	R	Protein restriction in diabetic nephropathy	MEDLINE, PubMed, EMBASE, ClinicalTrials.gov, Cochrane Controlled Clinical Trials	No Syste	matic Review	The significant benefits of LPD on progressive renal diseases in rodent and human studies did not reveal that there is much impact of the renoprotective strategies against kidney disease including diabetes.

Pan, 2008 [57]	1+	Acceptab le (+)	MA	Protein restriction in diabetic nephropathy	MEDLINE, EMBASE, ClinicalTrials.gov, Cochrane Controlled Clinical Trials	- - -	> 6 month RCT measured: GFR, CCr)	8 included studies (Type 1 und Type 2 Diabetes with diabetic nephropathy)	A low protein diet was not associated with a significant improvement of renal function in patients with either type 1 and 2 diabetic nephropathy
Pedrini, 1996 [58]	0	Unaccept able - Reject	MA	The effect of dietary protein restriction on the progression of renal disease	MEDLINE, references in review articles	-	Fulltext available RCT	5 studies with persons without diabetes (1413 participants) 5 studies with insulin dependent diabetes (108 participants)	Dietary protein restriction effectively slows the progression of both diabetic and nondiabetic renal disease
Robertson, 2009 [59]	1++	High quality (++)	SR	Protein restriction for diabetic renal disease	The Cochrane library MEDLINE EMBASE ISI Proceedings Science citation index expanded	- -	> 4 month Type 1 und type 2 diabetes Comparison Low- Protein vs. Normal (Usual-) Protein	160 persons with Diabetes mellitus Type 1 und type 2	Overall, a restricted protein intake does appear to slow the progression of diabetic nephropathy albeit in a nonsignificant way. Studies did not give sufficient details to quantify this.

3.8 Working document - Results of low protein diet in diabetic nephropathy

Author, Year	Study Type	Population	Actual Protein intake (g/kg/BW)	Outcome A GFR changes ml/min/1,73 m ² (Mean ± SD)	Outcome B HbA1c % (Mean ± SD)
Dullaart, 1993 [44]	RCT	31 IDDM	I: 0,79 C: 1,09	Changes in GFR: LP: $131 \pm 34 \rightarrow 120 \pm 20 \rightarrow 113 \pm 24$ NP: $122 \pm 26 \rightarrow 119 \pm 19 \rightarrow 112 \pm 21$	LP: $7,84 \pm 0,93 \rightarrow 8,02 \pm 0,85$ NP: $7,82 \pm 1,01 \rightarrow 8,01 \pm 1,20$
Dussol, 2005 [45]	RCT	63 T1+T2DM	I: 0,87 C: 1,03	Changes in GFR: LP: $82 \pm 21 \rightarrow 80 \pm 23 \rightarrow 74 \pm 25$ decline: -7 ± 11 NP: $89 \pm 27 \rightarrow 84 \pm 33 \rightarrow 82 \pm 24$ decline: -5 ± 15	LP:8,4 ± 1,8 \rightarrow 8,2 ± 1,3 \rightarrow 7,9 ± 2,1 NP:8,0 ± 1,1 \rightarrow 8,2 ± 1,4 \rightarrow 8,1 ± 2,2
Hansen, 2002 [46]	RCT	82 T1DM	I: 0,89 C: 1,02	Decline of GFR: LP: 7,6 $(4,9-10,2) \rightarrow -3,8 (2,8-4,8)$ NP:6,6 $(5,2-8,1) \rightarrow -3,9 (2,7-5,2)$	LP: 9,8 % (9,4 – 10,1) → 9,5 (9,1 – 9,9) NP: 9,6% (9,2 – 9,9) → 9,6 (9,3 – 10,0)
Koya, 2009 [47]	RCT	112 T2DM	I: 1,0 C: 1,0	eGFR (annual changes): LP: - 6,1 ± 6,5 NP: -5,8 ± 5,7	-
Meloni, 2002 [48]	RCT	69 T1+T2DM	I: 0,68 C: 1,39	Changes in GFR: LP: $43 \pm 4,7 \rightarrow 38 \pm 9,6$ NP: $45 \pm 5,1 \rightarrow 39 \pm 7,2$	LP: $7.2 \pm 0.5 \rightarrow 6.0 \pm 1.1$ NP: $6.7 \pm 0.5 \rightarrow 6.2 \pm 0.8$
Pedersen, 2013 [4]	RCT	45 T2DM	-	Changes in iGFR: HP: $108 \pm 7.3 \rightarrow 101 \pm 6.1$ NP: $91.9 \pm 5.5 \rightarrow 93.9 \pm 5.4$	LP: $7.2 \pm 0.5 \rightarrow 6.0 \pm 1.1$ NP: $6.7 \pm 0.5 \rightarrow 6.2 \pm 0.8$
Pijls, 2002 [49]	RCT	131 T2DM	I: 1,1 C: 1,14	Decline of GFR 6 mo- LP: -2,9 ± 17; NP: -1,3 ± 15 12 mo-LP: -4,8 ± 12; NP: -6,4 ± 14	-
Raal, 1994 [50]	RCT	22 IDDM	I: 0,87 C: 2,0	Changes in GFR: LPD: $50 \pm 19 \rightarrow 53 \pm 23$ UPD: $66 \pm 28 \rightarrow 58 \pm 26$	LPD: $12.0 \pm 3.4 \rightarrow 11.7 \pm 4.6$ UPD: $13.9 \pm 2.4 \rightarrow 12.4 \pm 5.5$
Velazquez, 2008 [51]	RCT	60 T2DM	I: 0,82 C: 1,2	Changes in GFR: LPD normo: $87,5 \pm 15,2 \rightarrow 86,2 \pm 18,2$ LPD microalb: $69,7 \pm 36,9 \rightarrow 76,2 \pm 35,6$ LPD macroalb: $56,3 \pm 29,0 \rightarrow 74,2 \pm 40,4$ NPD normo: $81,5 \pm 21,7 \rightarrow 78,6 \pm 19,7$ NPD microalb: $89,2 \pm 32,1 \rightarrow 81,9 \pm 34,6$ NPD macroalb: $74,4 \pm 31,4 \rightarrow 65,1 \pm 25,5$	LPD normo: $7,5 \pm 1,5 \rightarrow 6,8 \pm 0,8$ LPD microalb: $8,2 \pm 1,6 \rightarrow 7,2 \pm 1,8$ LPD macroalb: $8,4 \pm 2,1 \rightarrow 7,6 \pm 1,0$ NPD normo: $8,8 \pm 2,2 \rightarrow 7,9 \pm 1,3$ NPD microalb: $8,8 \pm 1,9 \rightarrow 7,1 \pm 0,8$ NPD macroalb: $8,1 \pm 1,8 \rightarrow 6,9 \pm 1,6$

4 GRADE

4.1 Summary of findings table - high protein diets in diabetes patients

high protein diet compared to normal protein diet for diabetes mellitus

Patient or population: patients with diabetes mellitus

Settings: outpatient

Intervention: high protein diet Comparison: normal protein diet

Outcomes	Illustrative comparative risks* (95% CI)		Relative	No of	Quality of the	Comments
	Assumed risk	Corresponding risk	effect (95% CI)	Participants (studies)	evidence (GRADE)	
	Normal protein diet	High protein diet				
Weight loss (kg)	The mean weight loss (kg) ranged across control	The mean weight loss (kg) in the intervention		265	$\oplus \oplus \ominus \ominus$	
Scale	groups from	groups was		(5 studies)	low ^{1,2,3,4,5,6}	
Follow-up: 4 to 15 months	-1.01 to 8.6 kg	1.21 lower				
		(2.17 to 0.24 lower)				
Fasting blood glucose (mmol/l)	The mean fasting blood glucose (mmol/l) ranged	The mean fasting blood glucose (mmol/l) in the		128	⊕⊖⊝⊝	
Standard methods	across control groups from	intervention groups was		(3 studies)	very low ^{1,2,5,7,8,9,10}	
Follow-up: 3 to 12 months	-0.12 to -1.5 mmol/l	0.72 lower				
		(1.98 lower to 0.54 higher)				
HbA1c (%)	The mean hba1c (%) ranged across control groups	The mean hba1c (%) in the intervention groups		227	$\oplus \oplus \ominus \ominus$	
High performance liquid	from	was		(4 studies)	low ^{1,2,5,6,7,8}	
chromatography (HPLC)	-0.19 to -1.1 %	0.1 lower				
Follow-up: 3 to 12 months		(0.33 lower to 0.14 higher)				
High density lipoprotein (HDL)	The mean high density lipoprotein (hdl) (mmol/l)	The mean high density lipoprotein (hdl) (mmol/l) in		226	$\oplus \oplus \ominus \ominus$	
(mmol/l)	ranged across control groups from	the intervention groups was		(4 studies)	low ^{1,2,5,6,7,8}	
Standard methods	0 to 0.083 mmol/l	0.02 lower				
Follow-up: 3 to 12 months		(0.07 lower to 0.04 higher)				
Low density lipoprotein (LDL)	The mean low density lipoprotein (ldl) (mmol/l)	The mean low density lipoprotein (ldl) (mmol/l) in		226	$\oplus \oplus \ominus \ominus$	
(mmol/l)	ranged across control groups from	the intervention groups was		(4 studies)	low ^{1,2,5,6,7,8}	
Standard methods	-0.05 to 0.0444 mmol/l	0.07 lower				
Follow-up: 3 to 12 months		(0.25 lower to 0.1 higher)				
Systolic blood pressure (mmHg)	The mean systolic blood pressure (mmhg) ranged	The mean systolic blood pressure (mmhg) in the		227	$\oplus \oplus \ominus \ominus$	
Automated sphygmanometer	across control groups from	intervention groups was		(4 studies)	low ^{1,2,5,6,7,8}	
Follow-up: 3 to 12 months	-13 to 0.45 mmHg	4.41 lower				
		(7.88 to 0.94 lower)				

Diastolic blood pressure	The mean diastolic blood pressure ranged across	The mean diastolic blood pressure in the	227	$\oplus \oplus \ominus \ominus$
Automated sphygmanometer	control groups from	intervention groups was	(4 studies)	low ^{1,2,5,6,7,8}
Follow-up: 3 to 12 months	-7 to 4.23 mmHg	3.61 lower		
		(6.27 to 0.95 lower)		

^{*}The basis for the **assumed risk** (e.g. the median control group risk across studies) is provided in footnotes. The **corresponding risk** (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI).

CI: Confidence interval;

GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

¹ The subjects were not blinded to treatment allocation

² With one exception there were no blinding of outcome assessment

³ Two studies did not analyse all subjects in the groups which they were randomly allocated (intention-to-treat)

⁴ Three studies had a high dropout rate. (> 20%)

⁵ Publication bias was not assessed as there were inadequate numbers of included trials to properly assess a funnel plot or more advanced regression-based assessments

⁶ Two studies were partly funded by the meat industry

⁷ Two studies had a high dropout rate (> 20%)

⁸ One study did not analyses all subjects in the groups which they were randomly allocated (intention-to-treat)

⁹ I² = 54% (Cochrane Handbook 5.0: substantial heterogeneity)

¹⁰ One study were partly funded by the meat industry

4.2 GRADE profile - high protein diets in diabetes patients

		Questi	on: Should	•		ormal protein protein diets for Typ			or diabe	tes mellitus?		
		(Quality assess	ment			Summary of Findings					
Participants (studies) Follow up	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall quality of evidence	Study event rates (%)		Relative effect (95% CI)	Anticipated absolute effects		
							With Normal protein diet	With High protein diet		Risk with Normal protein diet	Risk difference with High protein diet (95% CI)	
Weight lo	ess (kg) (IM	IPORTANT OUTC	COME; measured	with: Scale; Be	ter indicated by	lower values)						
265 (5 studies) 4 to 15 months	very serious ^{1,2,3,4}	no serious inconsistency	no serious indirectness	no serious imprecision	undetected ^{5,6}	⊕⊕⊝ LOW¹.2,3,4,5,6 due to risk of bias	130	135	-	The mean weight loss (kg) ranged across control groups from -1.01 to 8.6 kg	The mean weight loss (kg) in the intervention groups was 1.21 lower (2.17 to 0.24 lower)	
Fasting b	lood gluc	ose (mmol/l)	(IMPORTANT (OUTCOME; mea	sured with: Star	ndard methods; Bett	er indicat	ed by lower	values)	,	,	
128 (3 studies) 3 to 12 months	very serious ^{1,2,7,8}	serious ⁹	no serious indirectness	no serious imprecision	undetected ^{5,10}	⊕⊖⊖ VERY LOW¹.2.5.7.8.9.10 due to risk of bias, inconsistency	65	63	-	The mean fasting blood glucose (mmol/l) ranged across control groups from -0.12 to -1.5 mmol/l	The mean fasting blood glucose (mmol/l) in the intervention groups was 0.72 lower (1.98 lower to 0.54 higher)	
HbA1c (%	(IMPORTA	NT OUTCOME; m	easured with: Hi	gh performance	liquid chromatog	graphy (HPLC); Bett	er indicat	ed by lower	values)	1		
227 (4 studies)	very serious ^{1,2,7,8}	no serious inconsistency	no serious indirectness	no serious imprecision	undetected ^{5,6}	⊕⊕⊝⊝ LOW¹,2,5,6,7,8 due to risk of bias	111	116	-	The mean hba1c (%) ranged across control	The mean hba1c (%) in the intervention groups was	

3 to 12 months										groups from -0.19 to -1.1 %	0.1 lower (0.33 lower to 0.14 higher)
High den	sity lipopı	rotein (HDL)	(mmol/l) (IMF	PORTANT OUT	COME; measure	d with: Standard me	ethods; B	etter indicate	ed by lower	values)	
226 (4 studies) 3 to 12 months	very serious ^{1,2,7,8}	no serious inconsistency	no serious indirectness	no serious imprecision	undetected ^{5,6}	⊕⊕⊖ LOW¹,2,5,6,7,8 due to risk of bias	110	116	-	The mean high density lipoprotein (hdl) (mmol/l) ranged across control groups from 0 to 0.083 mmol/l	The mean high density lipoprotein (hdl) (mmol/l) in the intervention groups was 0.02 lower (0.07 lower to 0.04 higher)
Low dens	sity lipopr	otein (LDL) (mmol/l) (IMP	ORTANT OUTC	OME; measured	with: Standard me	thods; Be	etter indicate	d by lower \	values)	
226 (4 studies) 3 to 12 months	very serious ^{1,2,7,8}	no serious inconsistency	no serious indirectness	no serious imprecision	undetected ^{5,6}	⊕⊕⊖⊝ LOW¹,2,5,6,7,8 due to risk of bias	110	116	-	The mean low density lipoprotein (IdI) (mmol/I) ranged across control groups from -0.05 to 0.0444 mmol/I	The mean low density lipoprotein (ldl) (mmol/l) in the intervention groups was 0.07 lower (0.25 lower to 0.1 higher)
Systolic I	blood pres	ssure (mmHç) (IMPORTANT	OUTCOME; me	easured with: Au	tomated sphygman	ometer; E	Better indicat	ted by lower	values)	1
227 (4 studies) 3 to 12 months	very serious ^{1,2,7,8}	no serious inconsistency	no serious indirectness	no serious imprecision	undetected ^{5,6}	⊕⊕⊖ LOW¹,2,5,6,7,8 due to risk of bias	111	116	-	The mean systolic blood pressure (mmhg) ranged across control groups from -13 to 0.45 mmHg	The mean systolic blood pressure (mmhg) in the intervention groups was 4.41 lower (7.88 to 0.94 lower)
Diastolic	blood pre	essure (IMPORT	FANT OUTCOME	; measured with	n: Automated sp	hygmanometer; Bet	ter indica	ted by lower	values)		
227 (4 studies) 3 to 12 months	very serious ^{1,2,7,8}	no serious inconsistency	no serious indirectness	no serious imprecision	undetected ^{5,6}	⊕⊕⊖ LOW¹.2.5.6,7,8 due to risk of bias	111	116	-	The mean diastolic blood pressure ranged across control groups from -7 to 4.23 mmHg	The mean diastolic blood pressure in the intervention groups was 3.61 lower (6.27 to 0.95 lower)

4.3 Summary of findings table - low protein diets in diabetic nephropathy

Low Protein Diet compared to Normal Protein Diet for Albuminuria in patients with type 2 diabetes

Patient or population: patients with Albuminuria in patients with type 2 diabetes

Settings:

Intervention: Low Protein Diet **Comparison:** Normal Protein Diet

Outcomes	Illustrative comparative risks* (95% CI)		Relative	No of Participants	Quality of the	Comments
	Assumed risk	Corresponding risk	effect	(studies)	evidence	
			(95% CI)		(GRADE)	
	Normal Protein Diet	Low Protein Diet				
GFR	The mean gfr ranged across control groups fro	m The mean gfr in the intervention groups was		478	$\oplus \oplus \ominus \ominus$	
Follow-up: 4 to 60	-2.9 to -20.3 ml/min/1.73m ²	4.65 higher		(9 studies)	low ^{1,2,3,4,5}	
months		(0.32 lower to 9.62 higher)				
proteinuria	The mean proteinuria ranged across control	The mean proteinuria in the intervention		488	$\oplus \oplus \ominus \ominus$	SMD 0.4 (-0.13 to
Follow-up: 4 to 60	groups from	groups was		(11 studies)	low ^{1,5,6,7,8}	0.94)
months	210 to -233	0.4 standard deviations higher				
		(0.13 lower to 0.94 higher)				

^{*}The basis for the **assumed risk** (e.g. the median control group risk across studies) is provided in footnotes. The **corresponding risk** (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI).

CI: Confidence interval;

GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

¹ Most of the patients were not blinded to treatment allocation

² Four studies did not analyse all subjects in the groups which they were randomly allocated (intention-to-treat)

³ Two studies had a high dropout rate (> 20 %)

⁴ I² = 87% (Cochrane Handbook 5.0: considerable heterogeneity)

⁵ Publication bias was not assessed as there were inadequate numbers of included trials to properly assess a funnel plot or more advanced regression-based assessments

⁶ Five studies did not analyses all subjects in the group which they were randomly allocated (intention-to-treat)

⁷ Three studies had a high dropout rate (> 20 %)

⁸ l² =86% (Cochrane Handbook 5.0: considerable heterogeneity)

4.4 GRADE profile - low protein diets in diabetic nephropathy

Question: Low Protein Diet vs Normal Protein Diet for Albuminuria in patients with type 2 diabetes Bibliography: Low Protein Diet for Albuminuria in patients with type 2 diabetes. **Summary of Findings** Quality assessment Participants Risk of Inconsistency Indirectness Imprecision Publication Overall quality of Study event rates Relative Anticipated absolute effects bias bias evidence effect (studies) (95% CI) Follow up With With Low Risk with Normal Protein Diet Risk difference with Low Normal Protein Protein Diet (95% CI) Protein Diet Diet **GFR** (Better indicated by lower values) 478 serious^{1,2,3} serious⁴ no serious undetected5 245 233 The mean gfr ranged The mean gfr in the no serious $\Theta\Theta\Theta\Theta$ (9 studies) indirectness imprecision I OW1,2,3,4,5 across control groups from intervention groups 4 to 60 -2.9 to -20.3 due to risk of bias, months inconsistency ml/min/1.73m² 4.65 higher (0.32 lower to 9.62 higher) proteinuria (Better indicated by lower values) 245 The mean proteinuria 488 serious1,6,7 serious8 undetected5 243 The mean proteinuria no serious no serious $\oplus \oplus \ominus \ominus$ LOW^{1,5,6,7,8} (11 studies) ranged across control indirectness imprecision in the intervention 4 to 60 due to risk of bias. groups from groups was months inconsistency 210 to -233 0.4 standard deviations higher (0.13 lower to 0.94 higher)

5 Literature

- 1. Nezu U, K.H., Kondo Y, Sakuma M, Morimoto T, Ueda S, *Effect of low protein diet on kidney function in diabetic nephropathy metaanalyse of randomised controlled trials.* BMJ open, 2013.
- 2. Brinkworth, G.D., et al., Long-term effects of advice to consume a high-protein, low-fat diet, rather than a conventional weight-loss diet, in obese adults with type 2 diabetes: one-year follow-up of a randomised trial. Diabetologia, 2004. **47**(10): p. 1677-86.
- 3. Jesudason, D.R., E. Pedersen, and P.M. Clifton, *Weight-loss diets in people with type 2 diabetes and renal disease: a randomized controlled trial of the effect of different dietary protein amounts.* Am J Clin Nutr, 2013. **98**(2): p. 494-501.
- 4. Pedersen, E., D.R. Jesudason, and P.M. Clifton, *High protein weight loss diets in obese subjects with type 2 diabetes mellitus.* Nutr Metab Cardiovasc Dis, 2014. **24**(5): p. 554-62.
- 5. Larsen, R.N., et al., *The effect of high-protein, low-carbohydrate diets in the treatment of type 2 diabetes: a 12 month randomised controlled trial.* Diabetologia, 2011. **54**(4): p. 731-40.
- 6. Luger, M., et al., Feasibility and efficacy of an isocaloric high-protein vs. standard diet on insulin requirement, body weight and metabolic parameters in patients with type 2 diabetes on insulin therapy. Exp Clin Endocrinol Diabetes, 2013. **121**(5): p. 286-94.
- 7. Wycherley, T.P., et al., *A high-protein diet with resistance exercise training improves weight loss and body composition in overweight and obese patients with type 2 diabetes.* Diabetes Care, 2010. **33**(5): p. 969-76.
- 8. Krebs, J.D., et al., *The Diabetes Excess Weight Loss (DEWL) Trial: a randomised controlled trial of high-protein versus high-carbohydrate diets over 2 years in type 2 diabetes.* Diabetologia, 2012. **55**(4): p. 905-14.
- 9. Luscombe ND, C.P., Noakes M, Parker B, Wittert G, *Effects of energy-restricted diets containing increased protein on weight loss, resting energy expenditure, and the thermic effect of feeding in type 2 diabetes.* Diabetes Care, 2002. **25**(4): p. 652 657.
- 10. Parker B, L.N., Noakes M, Clifton P, *Effect of a high-protein, high-monounsaturated fat weight loss diet on glycemic control and lipid levels in type 2 diabetes.* Diabetes Care, 2002. **25**(3): p. 425 430.
- 11. von Bibra, H., et al., Low-carbohydrate/high-protein diet improves diastolic cardiac function and the metabolic syndrome in overweight-obese patients with type 2 diabetes. IJC Metabolic & Endocrine, 2014. **2**: p. 11-18.
- 12. Boden G, S.K., Homko C, Mozzoli M, Stein P, *Effect of a Low-Carbohydrate Diet on Appetite, Blood Glucose Levels, and Insulin Resistance in Obese Patients with Type 2 Diabetes.* American College of Physicians, 2005. **142**: p. 403 411.

- 13. Daly, M.E., et al., *Short-term effects of severe dietary carbohydrate-restriction advice in Type 2 diabetes--a randomized controlled trial.* Diabet Med, 2006. **23**(1): p. 15-20.
- 14. Davis, N.J., et al., *Differential effects of low-carbohydrate and low-fat diets on inflammation and endothelial function in diabetes.* J Diabetes Complications, 2011. **25**(6): p. 371-6.
- 15. Davis, N.J., et al., *Comparative study of the effects of a 1-year dietary intervention of a low-carbohydrate diet versus a low-fat diet on weight and glycemic control in type 2 diabetes.* Diabetes Care, 2009. **32**(7): p. 1147-52.
- de Mello, V.D., et al., A diet high in fatty fish, bilberries and wholegrain products improves markers of endothelial function and inflammation in individuals with impaired glucose metabolism in a randomised controlled trial: the Sysdimet study.

 Diabetologia, 2011. **54**(11): p. 2755-67.
- 17. Dyson, P.A., *A review of low and reduced carbohydrate diets and weight loss in type 2 diabetes.* J Hum Nutr Diet, 2008. **21**(6): p. 530-8.
- 18. Dyson, P.A., S. Beatty, and D.R. Matthews, *A low-carbohydrate diet is more effective in reducing body weight than healthy eating in both diabetic and non-diabetic subjects.* Diabet Med, 2007. **24**(12): p. 1430-5.
- 19. Elhayany, A., et al., *A low carbohydrate Mediterranean diet improves cardiovascular risk factors and diabetes control among overweight patients with type 2 diabetes mellitus: a 1-year prospective randomized intervention study.* Diabetes Obes Metab, 2010. **12**(3): p. 204-9.
- 20. Nuttall, F.Q. and M.C. Gannon, *Metabolic response of people with type 2 diabetes to a high protein diet.* Nutr Metab (Lond), 2004. **1**(1): p. 6.
- 21. Gutierrez, M., et al., *Utility of a short-term 25% carbohydrate diet on improving glycemic control in type 2 diabetes mellitus.* J Am Coll Nutr, 1998. **17**(6): p. 595-600.
- 22. Hussain, T.A., et al., *Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes.* Nutrition, 2012. **28**(10): p. 1016-21.
- 23. Keogh, J.B., et al., Long-term weight maintenance and cardiovascular risk factors are not different following weight loss on carbohydrate-restricted diets high in either monounsaturated fat or protein in obese hyperinsulinaemic men and women. Br J Nutr, 2007. **97**(2): p. 405-10.
- 24. Kirk, J.K., et al., *Restricted-carbohydrate diets in patients with type 2 diabetes: a meta-analysis.* J Am Diet Assoc, 2008. **108**(1): p. 91-100.
- 25. Khoo, J., et al., *Comparing effects of a low-energy diet and a high-protein low-fat diet on sexual and endothelial function, urinary tract symptoms, and inflammation in obese diabetic men.* J Sex Med, 2011. **8**(10): p. 2868-75.

- 26. McAuley, K.A., et al., *Long-term effects of popular dietary approaches on weight loss and features of insulin resistance.* Int J Obes (Lond), 2006. **30**(2): p. 342-9.
- 27. McAuley, K.A., et al., *Comparison of high-fat and high-protein diets with a high-carbohydrate diet in insulin-resistant obese women.* Diabetologia, 2005. **48**(1): p. 8-16.
- 28. McCarthy, E.M. and M.E. Rinella, *The role of diet and nutrient composition in nonalcoholic Fatty liver disease.* J Acad Nutr Diet, 2012. **112**(3): p. 401-9.
- 29. Navas-Carretero, S., et al., *Chronologically scheduled snacking with high-protein products within the habitual diet in type-2 diabetes patients leads to a fat mass loss: a longitudinal study.* Nutr J, 2011. **10**: p. 74.
- 30. Papakonstantinou, E., et al., *A high-protein low-fat diet is more effective in improving blood pressure and triglycerides in calorie-restricted obese individuals with newly diagnosed type 2 diabetes.* Eur J Clin Nutr, 2010. **64**(6): p. 595-602.
- 31. Samaha, F.F., et al., *A low-carbohydrate as compared with a low-fat diet in severe obesity.* N Engl J Med, 2003. **348**(21): p. 2074-81.
- 32. Seshadri, P., et al., *A randomized study comparing the effects of a low-carbohydrate diet and a conventional diet on lipoprotein subfractions and C-reactive protein levels in patients with severe obesity.* Am J Med, 2004. **117**(6): p. 398-405.
- 33. Stern, L., et al., *The effects of low-carbohydrate versus conventional weight loss diets in severely obese adults: one-year follow-up of a randomized trial.* Ann Intern Med, 2004. **140**(10): p. 778-85.
- 34. Tay, J., et al., *A Very Low-Carbohydrate, Low-Saturated Fat Diet for Type 2 Diabetes Management: A Randomized Trial.* Diabetes Care, 2014. **37**(11): p. 2909-2918.
- 35. Westman, E.C., et al., *The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus.* Nutr Metab (Lond), 2008. **5**: p. 36.
- 36. Wheeler, M.L., et al., *Macronutrients, food groups, and eating patterns in the management of diabetes: a systematic review of the literature, 2010.* Diabetes Care, 2012. **35**(2): p. 434-45.
- 37. Wolever, T.M., et al., *The Canadian Trial of Carbohydrates in Diabetes (CCD), a 1-y controlled trial of low-glycemic-index dietary carbohydrate in type 2 diabetes: no effect on glycated hemoglobin but reduction in C-reactive protein.* Am J Clin Nutr, 2008. **87**(1): p. 114-25.
- 38. Yancy, W.S., Jr., et al., *A randomized trial of a low-carbohydrate diet vs orlistat plus a low-fat diet for weight loss.* Arch Intern Med, 2010. **170**(2): p. 136-45.
- 39. Azadbakht, L., S. Atabak, and A. Esmaillzadeh, *Soy protein intake, cardiorenal indices, and C-reactive protein in type 2 diabetes with nephropathy: a longitudinal randomized clinical trial.* Diabetes Care, 2008. **31**(4): p. 648-54.

- 40. Pecis, M., M.J. de Azevedo, and J.L. Gross, *Chicken and fish diet reduces glomerular hyperfiltration in IDDM patients.* Diabetes Care, 1994. **17**(7): p. 665-72.
- 41. Wheeler, M.L., et al., *Animal versus plant protein meals in individuals with type 2 diabetes and microalbuminuria: effects on renal, glycemic, and lipid parameters.* Diabetes Care, 2002. **25**(8): p. 1277-82.
- 42. Gross, J.L., et al., *Effect of a chicken-based diet on renal function and lipid profile in patients with type 2 diabetes: a randomized crossover trial.* Diabetes Care, 2002. **25**(4): p. 645-51.
- 43. Pipe, E.A., et al., *Soy protein reduces serum LDL cholesterol and the LDL cholesterol:HDL cholesterol and apolipoprotein B:apolipoprotein A-I ratios in adults with type 2 diabetes.* J Nutr, 2009. **139**(9): p. 1700-6.
- 44. Dullaart RPF, B.B., Meijer S, Van Doormaal JJ, Sluiter WJ, *Long-term effects of protein-restricted diet on albuminuria*. Diabetes Care, 1993. **16**(2): p. 483 492.
- 45. Dussol, B., et al., *A randomized trial of low-protein diet in type 1 and in type 2 diabetes mellitus patients with incipient and overt nephropathy.* J Ren Nutr, 2005. **15**(4): p. 398-406.
- 46. Hansen HP, T.-L.E., Jensen BR, Parving HH, *Effect of Dietary Protein Restriction on Prognosis in patients with diabetic nephropathy.* Kidney Int, 2002. **62**: p. 220 228.
- 47. Koya, D., et al., *Long-term effect of modification of dietary protein intake on the progression of diabetic nephropathy: a randomised controlled trial.* Diabetologia, 2009. **52**(10): p. 2037-45.
- 48. Meloni, C., et al., Severe dietary protein restriction in overt diabetic nephropathy: benefits or risks? J Ren Nutr, 2002. **12**(2): p. 96-101.
- 49. Pijls LTJ, D.V.H., Van Eijk JThM, Donker AJM, *Protein restriction, glomerular filtration rate and albuminuria in patients with type 2 diabetes mellitus: a randomised trial.* European Journal of Clinical Nutrition, 2002. **56**: p. 1200 1207.
- 50. Raal FJ, K.W., Lawson M, Esser JD, Buys R, Fourie L, Panz VR, *Effect of moderate dietary protein restriction on the progression of overt diabetic nephropathy: a 6 mo prospective study.* Am J Clin Nutr, 1994. **60**: p. 579 85.
- Velazquez Lopez L, A.J., Goycochea Robles MV, Tamayo MT, Limones RC, *Effect of protein restriction diet on renal function and metabolic control in patients with type 2 diabetes: a randomised controlled trial.* Nutricion Hospitalaria, 2008. **23**: p. 141 147.
- 52. Walker JD, D.R., Murrells TJ, Bending JJ, Mattock MB, Keen H, Viberti GC, *Restriction of Dietary Protein and Progression of Renal Failure in Diabetic Nephropathy.* The Lancet, 1989: p. 1411 1414.
- 53. Zeller K, W.E., Sullivan L, Raskin P, Jacobson HR, *Effect of Restricting Dietary Protein on the progression of renal failure in patients with insulin-dependent diabetes mellitus.* The new England Journal of Medicine, 1991. **324**: p. 78 84.

- 54. Kasiske, B.L., et al., *A meta-analysis of the effects of dietary protein restriction on the rate of decline in renal function.* Am J Kidney Dis, 1998. **31**(6): p. 954-61.
- 55. Maeda Y, S.T., *Diet therapy in diabetic nephropathy.* Nutrition and Kidney Disease: A new Era, 2007. **155**: p. 50 58.
- 56. Otoda, T., K. Kanasaki, and D. Koya, *Low-protein diet for diabetic nephropathy*. Curr Diab Rep, 2014. **14**(9): p. 523.
- 57. Pan Y, G.L., Jin HM, Low protein diet for diabetic nephropathy Meta-analysis. Am J Clin Nutr, 2008. 88: p. 660 666.
- 58. Pedrini MT, L.A., Lau J, Chalmers TC, Wang PH, *The effect of dietary protein restriction on the progression of renal disease.* Ann Intern Med, 1996. **126**: p. 627 632.
- 59. Robertson LM, W.N., Robertson A, *Protein restriction for diabetic renal disease* in *The cochrane library*. 2007.