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Abstract: Pomace olive oil, an olive oil sub-product, is a promising source of bioactive triterpenoids 

such as oleanolic acid and maslinic acid. Considering the vascular actions of pomace olive oil and 

the potential effects of the isolated oleanolic acid on metabolic complications of obesity, this study 

investigates for the first time the dietary intervention with a pomace olive oil with high 

concentrations of the triterpenic acids (POCTA), oleanolic and maslinic acid, during diet-induced 

obesity in mice. The results demonstrate that obese mice, when switched to a POCTA-diet for 10 

weeks, show a substantial reduction of body weight, insulin resistance, adipose tissue inflammation, 

and particularly, improvement of vascular function despite high caloric intake. This study reveals 

the potential of a functional food based on pomace olive oil and its triterpenic fraction against 

obesity progression. Our data also contribute to understanding the health-promoting effects 

attributable to the Mediterranean diet. 
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1. Introduction 

Obesity and its metabolic and cardiovascular complications represent a serious threat to the 

health population of almost every country in the world [1]. Not only is obesity remarkably common 

(13% of the adult population worldwide is obese and 39% overweight [2]) and very challenging to 

treat, but it is also tightly linked to insulin resistance and vascular dysfunction [3,4]. Consequently, 

much attention has been directed to the prevention and treatment of obesity worldwide. 

Up to now, given the limited success of pharmacological interventions to effectively fight against 

obesity, dietary-based strategies have shown promising effects as part of the treatment of obesity and 

cardiovascular complications in pre-clinical and clinical studies [5–8]. In this sense, the 

Mediterranean diet as part of a lifestyle is considered as one of the best models of healthy eating. This 

traditional dietary pattern has been shown to reduce biomarkers of cardiovascular diseases and 

metabolic syndrome [6,9,10]. Within the Mediterranean diet, olive oil is a key component, which is 

partly responsible for the health-promoting effects of this diet, since it provides an excellent lipid 

matrix with high content in bioactive molecules of different chemical varieties [11]. In fact, 
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identification of these molecules, the mechanisms underlying their actions and their exact 

contribution to the beneficial effects of olive oil and the Mediterranean diet, are of particular interest 

nowadays. 

The cardioprotective and metabolic actions of olive oil intake have been partly attributed to their 

minor components [12]. Among them, the pentacyclic triterpenic acids, oleanolic and maslinic acids, 

have gained importance in the last years in terms of vasoprotection [13], metabolism [14,15], and 

cancer [16]. The procedure applied for the extraction of olive oil is crucial for the content in triterpenes 

and other minor constituents [17,18]. Pomace olive oil is obtained from the residue that remains after 

mechanical extraction of virgin olive oil. As a consequence of the extraction procedures, pomace olive 

oil, in spite of the lack of polyphenols, contains higher concentrations of the triterpenic fraction than 

virgin olive oil [18,19]. 

The vascular and metabolic effects of the isolated triterpenic acids have been explored both in 

vitro and in vivo. The endothelium-dependent vasodilatation induced by either oleanolic or maslinic 

acid was demonstrated in isolated arteries of normotensive and hypertensive rats [19,20]. The 

mechanisms mediating vasoprotection of oleanolic acid were related to activation of endothelial 

nitric oxide (NO) release via PI3K/AMPK/eNOS-Ser1177 [21] and prostacyclin release via 

cyclooxygenase-2 [22]. The anti-obesity potential of oleanolic acid has been found in murine 

adipocytes, reducing markers of differentiation and resistin production [23,24]. Besides, recent in 

vivo studies in mouse models of obesity revealed the beneficial effects of oral administration of 

oleanolic acid in glucose tolerance and visceral adiposity [25] and in body weight and fat preference 

in obese animals [26]. Despite these findings with the isolated oleanolic acid, the effects of the 

triterpenic acids on an olive oil-based diet in obesity and vascular-associated complications in vivo 

have not been explored. 

The use of pomace olive oil with high concentrations of triterpenic acids in vivo, has been limited 

to our investigations on animal models of genetic hypertension [27–29], and the results were 

promising in terms of vascular endothelial function improvement [27,28], blood pressure levels 

attenuation, and improvement of cardiac hemodynamics [29]. Considering these vascular actions of 

pomace olive oil, and the potential effects of the isolated oleanolic acid on metabolic complications 

of obesity, our present study investigates for the first time the dietary intervention with a pomace 

olive oil with high concentrations of the triterpenic acids (POCTA), oleanolic and maslinic acid, 

during diet-induced obesity in mice. The results demonstrate that obese mice, when switched to a 

POCTA-diet for 10 weeks, show a substantial reduction on body weight, insulin resistance, adipose 

tissue inflammation, and particularly, improvement of vascular function. This study demonstrates 

the potential of a functional food based on pomace olive oil and its triterpenic fraction against obesity 

progression. Our data also contribute to understanding the health-promoting effects attributable to 

the Mediterranean diet. 

2. Materials and Methods 

2.1. Animals and Diets 

Male C57BL/6 mice were obtained from the University of Seville Animal facility at 7 weeks of 

age. The protocol for animal handling and experimentation agreed with the European Union 

European Community guidelines for the ethical treatment of animals (UE Directive of 2010; 

2010/63/UE) and was approved by the Ethical Committee for Animal Research of the University of 

Seville (RD 53/2013). Animals were fed a high-fat diet (HFD) (40% kcal from fat, Harlan, Barcelona, 

Spain) and water ad libitum for 11 weeks. Then, animals were randomly assigned to the following 

experimental groups for 10 weeks (n = 6–7): (1) HFD and (2) standard diet with 17% w/w of POCTA. 

The percentage of POCTA in the diet was calculated to reach similar caloric content from fat to that 

on the HFD control diet. In parallel, eleven animals were fed a standard diet (SD) for 21 weeks (n = 

11). 

The production of POCTA was according to the process of physical refining reflected in the US 

Patent No. US8361518 (B2), whose characteristics and composition were previously reported by 
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Valero-Muñoz et al. [29]. The pomace olive oil used in this study has higher concentrations of 

triterpenic compounds than other pomace olive oils. Particularly, POCTA was concentrated in the 

triterpenic acids, oleanolic and maslinic acids with 4.3 and 2.87 respectively, as a percentage of total 

fatty acids, total sterols, and triterpenic fraction (2500 ppm) [29]. 

Body weight, food, and water intake were weekly evaluated. At the end of treatment, the 

animals were fasted for 12 h and then anesthetized and sacrificed. Blood samples were collected by 

an intracardiac puncture for biochemical assays in serum. A sample of visceral and epididymal white 

adipose tissue (vWAT and eWAT, respectively) and liver were removed and weighted, immediately 

frozen in liquid nitrogen, and stored at −80 °C until further analysis. 

2.2. Blood Biochemical Assays 

Serum samples were obtained from blood by centrifugation for 20 min at 4000 rpm at room 

temperature. Fasting glucose, total-cholesterol, and triglycerides were analyzed by UV/visible 

spectrophotometry kits (Spin React, CIMA Diagnostics, Girona, Spain). 

2.3. Liver Triglycerides Quantification 

Liver samples were homogenized and lipids were extracted as previously described [30]. 

Triglycerides were measured in the lipid extract using a commercial kit (Sigma, Madrid, Spain), 

following the manufacturer’s instructions. 

2.4. Glucose Tolerance and Insulin Resistance Test 

Both the oral glucose tolerance test (OGT) and the insulin tolerance test (ITT) were based on 

previous protocols of the group in Reference [31]. The OGT was performed by oral administration of 

glucose (2 g/kg body weight) to the experimental animals previously fasted for 14 h. Blood samples 

were obtained from the tail vein at the assay, starting in order to determine basal levels of glucose in 

plasma, and after 30, 90, and 120 min of glucose administration. Plasma glucose concentration was 

determined using a blood glucose commercial monitoring meter (Accutrend® Plus_GCTL; Roche 

Diagnostics, Barcelona, Spain). For the ITT, food was withdrawn 3 h before the test and the mice were 

injected intraperitoneally with insulin (100 IU/mL; Humulin Regular, Lilly S.A., Madrid, Spain). 

Blood samples were collected at the same time intervals. For both OGT and ITT data, each value is 

the total area under the glucose curve for each group of treatment. 

2.5. RNA Extraction and Quantitative Real time-Polymerase Chain Reaction (RT-PCR) on Anti-

Inflammatory Markers 

Total RNA was extracted from tissues using Trizol Reagent (Fisher Scientific, Madrid, Spain). 

Retrotranscription and quantitative RT-PCR (qPCR) were performed as previously described [32]. 

The following SYBR®  Green assay primers were used (IDT DNA Technologies, Leuven, Belgium): 

Mcp1 (for: 5′-GCTGGAGAGCTACAAGAGGATCA, rev: 5′-CTCTCTCTTGAGCTTGGTGACAAA), 

Tnfα (for: 5′-CCAGTGTGGGAAGCTGTCTT, rev: 5′-AAGCAAAAGAGGAGGCAACA), and β-actin 

(for: 5′-CGCCACCAGTTCGCCATGGA, rev: 5′-TACAGCCCGGGGAGCATCGT). Relative mRNA 

levels were measured using the CFX96 Real-Time System, C1000 Thermal Cycler (BioRad, Madrid, 

Spain). Relative gene expression was estimated using the comparative Ct (2-ΔΔct) method in relation 

to β-actin levels. 

2.6. Arterial Preparation and Vascular Reactivity Experiments 

The descending thoracic aorta was dissected and segments next to the aortic arch were selected 

and placed in modified Krebs–Henseleit bicarbonate solution (KHS), as previously described [33]. 

Briefly, aortic rings (1.5–2 mm in length) were mounted on a wire myograph (Danish 

MyoTechnology, Aarhus, Denmark) filled with KHS. Arterial segments were stretched to a resting 

tension of 5 mN and allowed to equilibrate for 30 min. Vasodilatation in response to the endothelium-

dependent agonist, acetylcholine (ACh, 1 nmol/L–10 µmol/L), was studied in aortas with 
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endothelium pre-contracted with the thromboxane A2 agonist (9,11-dideoxy-11α, 9α-

epoxymethanoprostaglandin F2α), U46619, at 80% of their maximal response. To evaluate the 

involvement of NO, curves were also performed in the presence of the NO synthase (NOS) inhibitor 

N-nitro-L-arginine (L-NAME, 300 µmol/L). The concentration-response curves to ACh were also 

analyzed in the presence of the combination of L-NAME with the cyclooxygenase inhibitor, 

indomethacin (INDO, 10 µmol/L). 

The contractile response to the adrenergic agonist, phenylephrine (Phe, 1 nmol/L to 0.1 mmol/L), 

was also tested in control conditions and after inhibition of the inducible NOS isoform with 1400W 

(5 µmol/L). 

2.7. Data Analysis and Statistics 

Results were shown as mean ± standard error of the mean (SEM). ACh-induced relaxation was 

expressed as a percentage of the initial contraction with U46619. Data processing and statistics were 

conducted using GraphPad Prism 5 Software (La Jolla, CA, USA). Statistical analysis was determined 

by analysis of variance (ANOVA) followed by post hoc Bonferroni test. p < 0.05 was considered 

significant. The number of animals used in each experiment is specified in each figure legend. 

3. Results 

3.1. POCTA Attenuated Body Weight Gain and Organ Weight in Obese Mice 

In order to generate the obese animal, mice were fed a HFD for 11 weeks and the results were 

compared to lean mice fed a SD (Figure 1). 

 



Nutrients 2020, 12, 323 5 of 13 

 

Figure 1. The effect of a pomace olive oil concentrated in triterpenic acids (POCTA) diet on body 

weight, food, and energy intake and organ weights. Body weight progression before and after the 

nutritional intervention in diet-induced obese (A), total body weight gain during 21 weeks of diet 

administration (B), food intake (C), caloric intake (D), and organ weights (E), of mice fed a standard 

diet (SD), high-fat diet (HFD), or POCTA diet. Values are mean ± SEM (n = 6–11) and are normalized 

relative to the control group. ** p < 0.01, *** p < 0.001 vs. SD; ## p < 0.01, ### p < 0.001 vs. HFD. 

The average initial body weight of the diet-induced obese mice on treatment week 11 was 35.92 

± 0.77 g (n = 13), whereas lean animals showed 26.05 ± 0.45 g (n = 11) body weight. At this time point, 

a group of obese mice were switched to a POCTA diet for 10 weeks, as illustrated in Figure 1A. This 

diet provided similar caloric content from fat to that provided by the HFD. The administration of the 

diet supplemented in POCTA during 10 weeks significantly attenuated body weight gain, reaching 

an average final body weight of 34.35 ± 1.47 g (n = 7), in contrast to the substantial increase in final 

body weight observed in obese mice that remained in HFD feeding (49.64 ± 2.18 g, n = 6) (Figure 1A, 

B). Body weight gain in POCTA mice was similar to that obtained in lean mice fed a SD (Figure 1A, 

B). Interestingly, despite the substantial attenuation of body weight gain on POCTA mice, no 

significant changes were appreciated on food intake compared to the rest of experimental groups 

(Figure 1C) and the increase in caloric intake was comparable to that observed in the HFD group 

(Figure 1D). 

Consistent with this observation, POCTA-fed mice showed substantially lower visceral fat and 

liver weight than HFD-fed mice (Figure 1E). However, no statistically significant differences in 

epididymal fat were detected between HFD and POCTA groups (Figure 1E) 

3.2. POCTA Improved Serum Cholesterol, Triglycerides, Glucose, and Insulin Resistance 

The influence of the POCTA diet on total cholesterol (TC) and triglycerides (TG) levels in serum 

are shown in Figure 2A, B. Levels of TC and TG in the control obese mice were significantly higher 

compared with those of the lean mice fed a SD. The POCTA diet decreased TC and TG levels 

compared to HFD-fed animals. Besides, TG levels in the liver of control obese mice were significantly 

higher compared with the levels of SD mice, and these levels were significantly restored by switching 

to a POCTA diet with the same caloric amount as the HFD (Supplementary Figure S1). 

After 10 weeks of treatment, obese control mice had a high fasting blood glucose level compared 

to lean mice and the POCTA group (Figure 2C). Since obesity is characterized by impaired glucose 

tolerance and insulin resistance, the glucose and insulin tolerance tests were performed at the end of 

the treatment by oral administration glucose and injecting insulin intraperitoneally respectively, to 

evaluate the beneficial metabolic effects of the diet supplemented in the oil rich in triterpenic acids. 

As shown in Figure 2D, HFD-fed mice displayed hyperglycemia at 30 min, which was slightly 

decreased at 90 and 120 min, indicating impaired glucose tolerance, as it was confirmed by analyzing 

the area under the plasma glucose curve in comparison to SD-fed animals (Figure 2E). Administration 

of a POCTA diet to obese mice resulted in a significant improvement in glucose tolerance within 30 

min of a glucose load and a reduced area under the curve (AUC) of glucose compared to the HFD 

group (Figure 2D). 

Then, the effect of the POCTA diet on insulin sensitivity was evaluated by performing ITT. This 

test revealed an impaired insulin sensitivity in HFD-fed mice compared to the SD group (Figure 2F, 

G). Obese mice that were switched to a POCTA diet evidenced significant improvement in insulin 

sensitivity, as indicated by a decline in glucose levels at 30 min (Figure 2F) and a lower AUC 

compared to HFD mice (Figure 2G). 
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Figure 2. The effect of a POCTA diet on serum cholesterol, triglycerides, glucose, and insulin 

resistance. Levels of total cholesterol (A), triglycerides (B), and glucose (C) in serum of mice fed the 

SD, HFD, or POCTA diet. Profile of serum glucose changes obtained from oral glucose tolerance test 

(GTT) (D), and insulin tolerance test (ITT) (F), at 20 weeks of treatment. Area under the curve (AUC) 

results of serum glucose concentrations in the OTT (E), and the ITT (G). Values are mean ± SEM (n = 

5–7) and are normalized relative to the control group. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. SD; ## p < 

0.01, ### p < 0.001 vs. HFD. 

3.3. POCTA Reduced the Expression of Inflammatory Markers in White Adipose Tissues 

In agreement with the literature, mice fed a HFD showed a significant upregulation of genes 

associated with inflammation in WAT and liver (Figure 3). Particularly, Tnfα and Mcp1 genes were 

significantly upregulated in eWAT, vWAT, and liver of HFD control mice (Figure 3). Interestingly, 

obese mice switched to a POCTA diet did not evidence the upregulation of these genes in either WAT 

depots or liver (Figure 3), and even a significant attenuation was observed on eWAT and vWAT 

(Figure 3A, B, respectively). 
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Figure 3. The effect of a POCTA diet on mRNA levels of pro-inflammatory cytokines (Tnf-α) and 

chemokines (Mcp1) in epididymal white adipose tissue (eWAT) (A), epididymal white adipose tissue 

(vWAT) (B), and liver (C), of mice fed the SD, HFD, or POCTA diet. Values are mean ± SEM (n = 5–7) 

and are normalized relative to the control group. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. SD; # p < 0.05, 

## p < 0.01, ### p < 0.001 vs. HFD. 

3.4. POCTA Restored Vascular Reactivity in Obese Mice 

3.4.1. Vasodilatation 

To evaluate the endothelial function, endothelium-dependent vasodilatation to ACh was 

assessed in aortic rings (Figure 4). Aortas of obese mice fed a HFD showed an impaired relaxation to 

ACh compared to SD mice, whereas switching to a POCTA diet significantly restored vasodilatation 

(Figure 4A). 

To further investigate the endothelium-derived components that could be affected by either 

obesity or POCTA treatment in the ACh-induced vasodilatation, we examined the effect of different 

pharmacological inhibitors. To analyze the involvement of NO, relaxation responses to ACh were 

tested in the presence of the NOS inhibitor, L-NAME. Under these conditions, the ACh-evoked 

relaxation was abolished in both SD and HFD groups, whereas aortas of the POCTA group still 

showed a remaining vasodilator effect in the presence of L-NAME, suggesting a potential 

involvement of a NO-independent mechanism in this treatment group (Figure 4B). The contribution 

of the EDH-component in aortic rings was evaluated by simultaneous inhibition of cyclooxygenase 

(COX)-derived factors and NO synthesis by the presence of indomethacin (INDO) plus L-NAME. 

With both inhibitors, aortic rings of the obese mice group exhibited impairment in EDH-contribution 

compared to SD-fed mice, but this impairment was not that evident in the POCTA group (Figure 4C). 

Figure 4D illustrates the AUC of ACh dilatation curves with or without the presence of the inhibitors 

within the three experimental groups. Inhibition of NOS and COX pathways especially affected the 

vasodilatation of aortas from SD-fed mice, whereas this effect was significantly reduced in the 

POCTA group (Figure 4D). 
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Figure 4. The effect of a POCTA diet on vasodilatation in aorta. Concentration-response curves to 

acetylcholine (ACh) in the absence of inhibitors (A), or in the presence of the NO synthase inhibitor 

N-nitro-L-arginine (L-NAME) alone (B), or in combination with the COX inhibitor indomethacin 

(INDO) (C), in aortic rings of mice fed the SD, HFD, or POCTA diet. Area under the curves (AUC) 

obtained from cumulative curves to ACh in the absence or presence of the inhibitors (D). Values are 

mean ± SEM (n = 5–11) and are normalized relative to the control group. * p < 0.05, ** p < 0.01, *** p < 

0.001 vs. SD; ## p < 0.01, ### p < 0.001 vs. HFD; +++ p < 0.001 vs. ACh control within the same 

experimental group. 

3.4.2. Vasoconstriction 

Intact aortic rings of obese control mice showed a slight increased contractile response to Phe 

compared to the SD group, only significantly augmented at the highest dosages of the curve (Figure 

5A, B). Administration of the POCTA diet tended to attenuate this response, evidencing a similar 

pattern of contraction to Phe than that observed with the SD (Figure 5A, B). The differences in Phe-

induced vasoconstriction between the experimental groups were maintained in the presence of the 

inducible NOS inhibitor, 1400W (Figure 5C, D). 
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Figure 5. The effect of a POCTA diet on vasoconstriction in the aorta. Concentration-response curves 

to phenylephrine (Phe) in the absence of inhibitors (A, B), or in the presence of the inducible NO 

synthase inhibitor 1400W (C, D), in aortic rings of mice fed the SD, HFD, or POCTA diet. Area under 

the curves (AUC) obtained from cumulative curves to Phe in the absence (B), or presence of the 

inhibitor (D). Values are mean ± SEM (n = 5) and are normalized relative to the control group. * p < 

0.05, ** p < 0.01 vs. SD; # p < 0.05 vs. HFD. 

4. Discussion 

Functional foods have been proposed as a possible alternative approach of weight management 

and obesity prevention and of improving the cardiometabolic consequences of obesity [34]. The 

present investigation demonstrates the beneficial effect of a dietary-based strategy in which high fat 

content comes from a pomace olive oil with high concentrations of the triterpenic acids (POCTA), 

oleanolic and maslinic acid, in obesity- and vascular-associated complications. Previous studies from 

our group have shown that the consumption of POCTA restores blood pressure, endothelial function, 

and other risk factors related to cardiovascular diseases [27–29]. However, the information about the 

effect of pomace olive oil in alterations related to lipid and glucose metabolism and obesity remain 

unknown. The effects of the triterpenic acids of pomace olive oil in metabolic syndrome are limited 

to investigations with the administration of the isolated compounds instead of a dietary-based 

approach. 

One of the most remarkable results in the present study is the substantial restoration of body 

weight gain in obese mice when switched to a POCTA diet. Interestingly, mice fed a POCTA diet 

showed a similar level of energy intake than that reported in the HFD-fed obese control group, 

indicating the relevance of the source of fat to the management of body weight. This result was 

endorsed by a significant attenuation of organ weights (i.e., liver and visceral WAT), serum lipids 

and glucose, and liver TG in mice after 10 weeks of POCTA diet administration. According to the 

strong association between obesity and inflammation [35], an upregulation in the expression of pro-

inflammatory genes (i.e., Tnfα and Mcp1) was found in WAT and liver of obese control mice, whereas 
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this increase was significantly attenuated in mice fed a POCTA diet. These data suggest a potential 

effect of POCTA on WAT and liver-specific prevention of obesity. In line with these evidences, the 

isolated triterpene oleanolic acid has shown anti-obesity effects either in vitro or in vivo, since it 

regulates adipogenesis, lipolysis, and fatty acid oxidation in preadipocytes [36], downregulates the 

expression of adipogenic factors, and ameliorates visceral adiposity in diet-induced obese mice 

[25,37]. Maslinic acid has also been recently shown to modulate glucose uptake and lipid metabolism 

in adipocytes [38] and hepatic cell lines [15]. In vivo, intraperitoneal administration of maslinic acid 

for 12 weeks significantly reduced body weight and non-alcoholic fatty liver disease in diet-induced 

obese mice [15]. 

The effect of the high caloric POCTA diet on body weight management and adiposity in mice 

could be explained by the positive results of this diet administration on the lipid and glucose profile, 

and particularly on insulin resistance. Obese mice fed a POCTA diet showed a significant 

improvement in oral glucose tolerance and intraperitoneal insulin sensitivity compared to obese 

control mice. It is important to mention that recent evidences reported that triterpenic acids such as 

oleanolic acid act as hypoglycemic agents mainly by (i) reducing the absorption of glucose, (ii) 

decreasing endogenous glucose production and increasing glycogen synthesis, (iii) increasing insulin 

sensitivity, and (iv) improving lipid homeostasis [39]. In addition, oleanolic acid and its 

biotransformed metabolites are potential α-glucosidase inhibitors [40]. Recent studies with animal 

models of obesity reported that chronic administration of oleanolic acid modulates fat preference and 

inflammation [26], ameliorates visceral adiposity, and improves blood glucose tolerance in mice fed 

a HFD [25]. The fact that the administration of a POCTA diet to obese mice attenuated pro-

inflammatory genes in adipose tissue and liver, which are strong markers of insulin resistance and 

systemic inflammation, also supports the role of POCTA in obesity-associated glucose tolerance and 

insulin resistance. 

Obesity implies the development of vascular abnormalities, in particular impaired 

vasodilatation in various vascular beds, that affects vascular homeostasis and the delivery of 

substrates to metabolically active tissues [41]. Vascular dysfunction related to obesity seems to be 

derived from several changes in adipose tissue, leading to a chronic inflammatory state and 

dysregulation of adipocyte-derived factors and consequently, an imbalance between the 

vasoprotective (e.g., NO) and the vascular hazardous factors (e.g., endothelin-1) [41,42]. In addition, 

hyperinsulinemia and insulin resistance contribute to vascular abnormalities since the balanced 

endothelium-dependent vasodilator and vasoconstrictor effects of insulin are shifted towards 

predominant vasoconstriction in obesity [43,44]. In the present investigation, a significant 

impairment in endothelium-dependent vasodilatation was observed in HFD-fed obese mice. This 

endothelial dysfunction associated with obesity was clearly restored by administration of a POCTA 

diet, with potential involvement of either NO- or EDH-dependent mechanisms. In line with this 

finding, our group previously reported that long-term administration of a diet supplemented in 

POCTA improved ACh-mediated vasodilatation in either aorta or resistance arteries of hypertensive 

rats [27,28]. The mechanisms underlying these actions involved NO- and EDH-dependent pathways 

[21,27,28]. 

In addition to impaired vasodilatation, obesity is associated to an increased vascular tone in 

response to different stimuli [45,46]. This increased vascular contraction in obesity has been related 

to an elevated endothelin-dependent signaling and an augmented adrenergic stimulation in blood 

vessels [45,46]. Administration of a POCTA diet slightly attenuated Phe-induced vasoconstriction, 

reaching a similar level of constriction to that found in SD-fed mice. The use of a selective inhibitor 

of the inducible NO synthase indicated a contribution of this isoform on aortic contraction in obese 

mice, whereas the POCTA diet appeared to attenuate inducible NO synthase involvement. The 

vasoprotective effects found after administration of a POCTA diet in obese mice are in line with the 

significant improvement in serum lipid and glucose profile, fat inflammation, and insulin resistance. 

In summary, this study demonstrates that obese mice, when switched to a diet in which the main 

source of fat is POCTA for 10 weeks of administration, showed a significant attenuation in obesity 

progression and associated complications. These effects of POCTA could be mainly attributable to 
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the high content on triterpenic acids, which have separately demonstrated anti-obesity effects and 

vasoprotection in animal models of obesity and cardiovascular diseases. Remarkably, POCTA is 

particularly interesting since pomace olive oil is a major sub-product of olive oil production that 

results from an eco-friendly system and its composition is a lack of polyphenolic fraction but high in 

bioactive triterpenoids. Although the mechanisms underlying the beneficial effects of a POCTA diet 

on metabolic syndrome are probably multiple, in our study, we demonstrated for the first time that 

POCTA can restore body weight gain, adipose tissue and liver inflammation, insulin resistance, and 

vascular dysfunction associated with obesity. In addition, it is important to mention that body weight 

management in mice fed a POCTA diet was observed even though the animals showed the same 

level of food and caloric intake compared to the HFD control diet. The results of the present 

investigation provide insight into the therapeutic potential of the traditional use of pomace olive oil 

as a source of bioactive triterpenic acids. Since pomace olive oil has been considered as a waste 

product to the olive oil industry, and this study contributes to increasing the biological and 

nutritional value of POCTA as a functional food against metabolic syndrome. Taking into account 

the lack of clinical studies with pomace olive oil in obesity and metabolic syndrome, it would be of 

great interest to carry out clinical studies to extend the understanding on the health benefits derived 

from sustained pomace olive oil intake [47]. 

Supplementary Materials: The following are available online at www.mdpi.com/2072-6643/12/2/323/s1, Figure 

S1: The effect of a POCTA diet on liver triglycerides in mice fed a standard diet (SD), high-fat diet (HFD), or a 

diet supplemented in olive pomace oil with high concentration in triterpenic acids (POCTA). 
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