Supplementary Materials

A special amino-acid formula tailored to boosting cell respiration prevents mitochondrial dysfunction and oxidative stress caused by doxorubicin in mouse cardiomyocytes

Laura Tedesco¹, Fabio Rossi¹, Maurizio Ragni¹, Chiara Ruocco¹, Dario Brunetti¹, Michele O. Carruba¹, Yvan Torrente², Alessandra Valerio^{3,*} and Enzo Nisoli^{1,*}

¹Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy

²Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, 20122, Milan, Italy

³Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy

* Correspondence: alessandra.valerio@unibs.it; Tel: +30 030 3717504; fax +39 030 3717529 (A.V.); enzo.nisoli@unimi.it; Tel: +39 02 50316956; fax: +39 02 50317118 (E.N.)

Figure S1. TCA intermediates do not prevent DOX-induced reduction of mitochondrial biogenesis genes in HL-1 cardiomyocytes. (A-C) Peroxisome proliferator-activated receptor- γ coactivator 1 \Box (PGC-1 α) (A), nuclear respiratory factor-1 (NRF1) (B), and transcription factor A (Tfam) (C) mRNA levels were analysed by quantitative RT-PCR. Relative expression values for the untreated (CTRL) cells were taken as 1.0 (n = 3 experiments). C, citric acid; S, succinic acid, M, malic acid. *p < 0.05 vs. untreated cells. All data are presented as the mean ± SD.

Figure S2. α 5 formula prevents DOX-induced death of HL-1 cells. Cytotoxicity of HL-1 cardiomyocytes was evaluated with the MTT assay. Cells were treated with 1 % α 5 for 48 h and 1 μ M DOX for 16 h. *p < 0.05 vs. untreated cells; †p < 0.05 vs. DOX-treated cells. All data are presented as the mean ± SD.

Figure S3. Specific *Klf15*, *eNOS*, and *Raptor* silencing in HL-1 cardiomyocytes. (**A-C**) *Klf15*, *eNOS*, and *Raptor* mRNA levels were analyzed by quantitative RT-PCR and KLF15, eNOS, and Raptor protein levels were detected by immunoblot analysis. Relative expression values for the untreated (CTRL) cells were taken as 1.0 (n = 5 experiments). *p < 0.05 vs. untreated cells. All data are presented as the mean \pm SD.

Figure S4. Specific *eNOS* and *Raptor* silencing in HL-1 cardiomyocytes. (A) *eNOS* and (B) *Raptor* mRNA levels were analyzed by quantitative RT-PCR, and eNOS and Raptor protein levels were detected by immunoblot analysis. Relative expression values for the untreated (CTRL) cells were taken as 1.0 (n = 3 experiments). *p < 0.05, **p < 0.01, and ***p < 0.001 vs. untreated cells; †p < 0.05 vs. DOX-treated cells. All data are presented as the mean ± SD.

Figure S5. MCF7 breast cancer cell proliferation. The anti-proliferative effect of DOX remained unchanged in the MCF7 cells in the presence of the amino acid mixture. (**A**) Acid phosphatase assay: cells (5,000-20,000/well in 96-well plates) were treated with 1 % α 5 for 48 h and 1 μ M DOX for 16 h. (**B**) Proliferation assay: cells (50,000/well in 12-well plates) were treated as in (A) and Trypan blue exclusion assay was used. *n* = 3 experiments. **p* < 0.05 and ***p* < 0.01 *vs*. untreated cells. All data are presented as the mean \pm SD