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Abstract: Spinal muscular atrophy (SMA), the main genetic cause of infant death, is a neurodegenerative
disease characterized by the selective loss of motor neurons in the anterior horn of the spinal cord,
accompanied by muscle wasting. Pathomechanically, SMA is caused by low levels of the survival motor
neuron protein (SMN) resulting from the loss of the SMN1 gene. However, emerging research extends
the pathogenic effect of SMN deficiency beyond motor neurons. A variety of metabolic abnormalities,
especially altered fatty acid metabolism and impaired glucose tolerance, has been described in isolated
cases of SMA; therefore, the impact of SMN deficiency in metabolic abnormalities has been speculated.
Although the life expectancy of these patients has increased due to novel disease-modifying therapies
and standardization of care, understanding of the involvement of metabolism and nutrition in SMA
is still limited. Optimal nutrition support and metabolic monitoring are essential for patients with
SMA, and a comprehensive nutritional assessment can guide personalized nutritional therapy for
this vulnerable population. It has recently been suggested that metabolomics studies before and after
the onset of SMA in patients can provide valuable information about the direct or indirect effects of
SMN deficiency on metabolic abnormalities. Furthermore, identifying and quantifying the specific
metabolites in SMA patients may serve as an authentic biomarker or therapeutic target for SMA.
Here, we review the main epidemiological and mechanistic findings that link metabolic changes to
SMA and further discuss the principles of metabolomics as a novel approach to seek biomarkers and
therapeutic insights in SMA.
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1. Introduction

Spinal muscular atrophy (SMA) is a congenital neuromuscular disease characterized by progressive
muscle weakness resulting from the degeneration of motor neurons (MN) in the spinal cord [1].
Although SMA is considered a rare disease and the global incidence of live births is estimated to be
about 1/10,000, SMA is still the second most common autosomal recessive genetic disease and the most
common monogenic disorder that causes early infant death [2]. The carrier frequency varies from 1 in
38 to 1 in 72 among different ethnic groups, with a pan-ethnic average of 1 in 54 [3,4].

In a pathological view, SMA is resulted from an insufficient level of a 38 kDa protein, called the
survival motor neuron (SMN), as a result of homologous deletion or mutation of the Survival of Motor
Neuron 1 (SMN1) gene [5]. Subsequent studies showed that two genes encode SMN protein in humans:
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SMN1 and a 99% identical copy in sequence, known as SMN2. Indeed, SMN2 mainly differs from
SMN1 by a single nucleotide (C-to-T) substitution in the exon 7 [6]. Such a critical variant results in
exon 7 exclusion in most transcripts (90%) of SMN2, SMN∆7. Unlike the SMN1 gene, SMN2 can only
produce 10 % full-length (FL) SMN [7]. Given that the residual FL-SMN2 transcripts can compensate
for defect SMN1 to a limited extent, the SMA severity is partially rescued by SMN2 copy numbers [8].
However, the correlation between this phenotype and genotype is not absolute, and recent studies
have pointed out that other potential cellular mechanisms may also be involved in modifying the
clinical severity of SMA [9].

It is still unclear whether the pathogenesis of SMA is caused by a specific pattern or a combination
of dysregulated effects. The cell-autonomous effects due to SMN deficiency are the main causes of
MN degeneration; however, it cannot be explained for the full SMA phenotype, implicating not only
dysregulated neural networks but other non-neuronal cell types involved in the SMA pathology [10,11].
Emerging research extends the pathogenic effect of SMN deficiency beyond the MN, including other
cells inside and outside the central nervous system, so that many peripheral organs and non-neural
tissues show pathological changes in preclinical SMA models and diseased patients (Figure 1) [12–14].
Furthermore, increasing evidence suggests metabolic abnormalities in patients with SMA, such as
altered fatty acid metabolism, impaired glucose tolerance, and muscle mitochondria defects [15–17].
Recent studies also indicate that many SMA patients are either undernourished, underfed, or overfed [18].
Notably, in some SMA patients, metabolic dysregulations may even present before their first
neuromuscular signs [19]. These findings suggest that SMN is essential for the survival of motor
neurons and affects certain enzyme production in the metabolism.Nutrients 2020, 12, x FOR PEER REVIEW 3 of 19 
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Abnormalities of lipid metabolism have been described in different motor neuron diseases, 
including SMA [36]. As shown in Table 1, dysregulated lipid metabolism is the first and most studied 
nutritional problem in SMA [37,38]. Compared with healthy controls and non-SMA motor neuron 
diseases with equally debilitating statuses, the abnormal lipid metabolism found in patients and 
animal models appears unique to SMA [39,40]. Abnormal levels of fatty acid oxidation metabolites, 
especially dicarboxylic aciduria and esterified carnitine, were first reported in several studies of 
patients with severe SMA type [38,41,42]. Subsequently, an increasing number of studies suggest that 
patients with SMA are likely to have metabolic defects involving fatty acid metabolism. Of note, 
increased fat mass, even though relatively low caloric consumption has been repeatedly reported in 
patients with SMA [40,43]. Several serum fatty acids and lipids have been found correlated to the 
motor function of patients with SMA, suggesting potential biomarker candidates for SMA [44]. It has 
recently been implicated that defects in fatty acid transport and mitochondrial β-oxidation may also 
contribute to muscle wasting in patients with a severe SMA phenotype [32]. Nevertheless, the exact 
mechanism of this lipid metabolism abnormality in SMA is still unclear, but it is suspected to be 
related to the absence of the SMN gene product, defects in neighboring genes, or the loss of a neural 
“trophic factor” [31,42,45]. 

Figure 1. Overview of non-neuromuscular systemic pathology in spinal muscular atrophy (SMA).
A summary of multi-organ involvement has been reported in SMA animal models and/or patients [17,20–35].
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Over the last few years, the increased life expectancy of SMA patients has been achieved through
the invention of novel therapies and the standardization of clinical care. However, knowledge of the
altered metabolism and nutrition in SMA remains limited. The impact of SMN deficiency on metabolic
abnormalities has been recently proposed. Before and after the onset of the disease, metabolomics
studies in SMA patients can provide valuable information about the direct or indirect effects of SMN
deficiency on metabolic abnormalities [13]. The present review will discuss the current knowledge
regarding the metabolic involvement in SMA and the role of metabolomics in pursuing potential
biomarkers and therapeutic insights for SMA.

2. Lipid Metabolic Abnormalities in SMA

Abnormalities of lipid metabolism have been described in different motor neuron diseases,
including SMA [36]. As shown in Table 1, dysregulated lipid metabolism is the first and most studied
nutritional problem in SMA [37,38]. Compared with healthy controls and non-SMA motor neuron
diseases with equally debilitating statuses, the abnormal lipid metabolism found in patients and animal
models appears unique to SMA [39,40]. Abnormal levels of fatty acid oxidation metabolites, especially
dicarboxylic aciduria and esterified carnitine, were first reported in several studies of patients with
severe SMA type [38,41,42]. Subsequently, an increasing number of studies suggest that patients with
SMA are likely to have metabolic defects involving fatty acid metabolism. Of note, increased fat
mass, even though relatively low caloric consumption has been repeatedly reported in patients with
SMA [40,43]. Several serum fatty acids and lipids have been found correlated to the motor function
of patients with SMA, suggesting potential biomarker candidates for SMA [44]. It has recently been
implicated that defects in fatty acid transport and mitochondrial β-oxidation may also contribute to
muscle wasting in patients with a severe SMA phenotype [32]. Nevertheless, the exact mechanism
of this lipid metabolism abnormality in SMA is still unclear, but it is suspected to be related to the
absence of the SMN gene product, defects in neighboring genes, or the loss of a neural “trophic
factor” [31,42,45].

Although abnormal levels of fatty acid metabolites have been reported, no direct evidence
has substantiated a specific defect of mitochondrial β-oxidation in SMA patients. There are several
differences in metabolomics between patients with SMA and patients with a genetic defect of fatty acid
β-oxidation. SMA patients usually had a normal acylcarnitine profile [42], contrary to an increased
acylcarnitine level always found in mitochondrial β-oxidation defects. Moreover, fasting patients with
impaired fatty acidβ-oxidation always have markedly decreased ketone bodies. However, patients with
SMA usually present with a normal or even a high ketone body level (increased ketosis), especially
under stress [45,46]. The ability to mount fasting ketosis means that the liver can utilize fatty acids
normally, but it does not rule out that it may be caused by muscle-specific mitochondrial defects in
β-oxidation [32]. Therefore, it is postulated that dysregulated fatty acid metabolism in SMA patients
might be directly related to SMN deficiency but is not attributed to the consequence of major enzyme
block of mitochondrial β-oxidation, disuse muscle atrophy, or denervation [13,42,47].
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Table 1. Altered Lipid Metabolism in Patients with Spinal Muscular Atrophy.

Altered Metabolic
Aspect Reference Study Design Study Aim Enrollment Patient Features Main Findings

Lipid (fatty acid),
carnitine

Kelley et al.
(1986) [38] Case report

To describe an SMA infant
with elevated certain urinary
organic acids, suggesting a

defect of fatty acid
metabolism.

SMA: 1 SMA type 1; age 9
months old

• Increased urine dicarboxylic acids in both fed and
fasting states, especially in the longer-chain (C10
and C22) 3-hydroxydicarboxylic acids.

• Serum carnitine concentration slightly decreased
(24 µM/L, free; 37, total).

• Mild to moderate macrovesicular fatty
vacuolization was found in the postmortem liver.

• Findings could be events not specific to SMA.

Lipid (fatty acid),
carnitine,

acylcarnitine

Harpey et al.
(1990) [37] Cross-sectional

assess the metabolic defects
of fatty acids and

carnitine/acylcarnitine
among patients with SMA

SMA: 14
SMA type 2:

100%; age range
1–11.5 years old

• Urine organic acids showed an abnormal
excretion of ethylmalonic acid in all 14 children.

• Reduced carnitine level in serum of 10 patients
and muscles of 6 patients.

• Increased excretion of urinary acylcarnitines in all
examined patients (n = 8).

• Possible multiple Flavin adenine dinucleotide
(FAD)-linked acyl-CoA
dehydrogenase deficiencies.

• Carnitine deficiency may be due to
intramitochondrial accumulation of acylcarnitines,
followed by renal excretion.

• Findings could be events not specific to SMA.
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Table 1. Cont.

Altered Metabolic
Aspect Reference Study Design Study Aim Enrollment Patient Features Main Findings

Lipid (fatty acid),
carnitine,

acylcarnitine

Tein et al.
(1995) [41] Cross-sectional

To identify and quantify the
FA oxidation abnormalities in
SMA and to correlate these
with disease severity and to
identify specific underlying

defects.

SMA: 15

SMA type 1: 20%,
type 2: 53%, type
3: 27%; age range

2 months old–
20 years old

• Serum carnitine total/free ratios tend toward an
increased esterified fraction ranging 35–58% of
total carnitine in children with SMA type 1 and 2.

• SMA Patients > 23 months old showed normal
esterified carnitine levels.

• Urinary organic acid analysis: abnormalities in
SMA type 1 and 2. Mostly normal in SMA type 3.

• Impaired β-oxidation noted in 5 children (two
type 1, two type 2, and one type 3) with a
significant reduction in the activities of
short-chain L-3-hydroxyacyl-CoA dehydrogenase,
long-chain L-3-hydroxyacyl-CoA dehydrogenase,
acetoacetyl-CoA thiolase, and
3-ketoacyl-CoA thiolase.

• All cases had normal crotonase activity.
• Marked increase in crotonase activity ratios to

L-3-hydroxyacyl-CoA dehydrogenase and thiolase
activities with short- and long-chain substrates.

• Findings could be events specific to SMA.

Lipid (fatty acid),
carnitine

Crawford et al.
(1999) [42]

• Plasma
studies:
cross- sectional

• Urine
studies: two
or more
single-arm study

To evaluate fasting and
non-fasting lipid profiles in
urine and plasma in infants

and children with SMA.

SMA: 50
healthy controls:

22
disease controls: 6

SMA: 13
healthy control:

23

SMA type 1: 66%,
type 2/3: 34%

Disease controls:
non-SMA

denervation
disorders (n = 6)
Healthy controls:
age 8–11 months
old (n = 4), age
1–6 years old

(n = 19)

• Plasma concentration of dodecanoic acid
increased in severe SMA.

• Normal plasma acylcarnitine profiles in 10 infants
with severe SMA.

• The ratio of molar quantities of dodecanoic to
tetradecanoic acid differed significantly between
severe SMA, age-matched controls, disease
controls, and milder SMA type.

• All severe SMA patients evaluated in the fasting
state developed marked dicarboxylic aciduria,
including saturated, unsaturated, and 3-hydroxy
forms, comparable in magnitude with that of
children with primary fatty acid defects
β-oxidation.

• Findings could be events specific to SMA.
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Table 1. Cont.

Altered Metabolic
Aspect Reference Study Design Study Aim Enrollment Patient Features Main Findings

Lipid (fatty acid),
carnitine,

acylcarnitine, ketone,
glucose

Zolkipli et al.
(2012) [48] Case report

Describing a type 2 SMA
children with catabolic crisis
related to possibly impaired

intramitochondrial
β-oxidation.

SMA: 1 SMA type 2; age
15 years old

• Catabolic crisis onset 4 days after surgery,
associated with hypoketotic hypoglycemia, lactic
acidemia, hyperammonemia and liver failure.

• No ketonuria.
• Urine organic acids revealed moderate lactic acid.
• Low plasma free and total carnitine with a raised

esterified fraction.
• Increase in C6 and C140H serum acylcarnitines

after liver transplantation.
• Liver pathology showed diffuse macro- and

micro-vesicular steatosis.
• The crisis responded in part to mitochondrial

therapy and anabolic rescue.
• Findings could be events specific to SMA.

Lipid (fatty acid),
ketone, glucose

Mulroy et al.
(2016) [45] Case report

Describing a type 2 SMA
adult presented with severe

ketoacidosis with mild
hypoglycemia

SMA: 1
SMA type 2; age:
50 years old; BMI:

16.4 kg/m2

• Reductions in muscle mass, physical stress, and
defects in fatty acid metabolism may cause
hypoglycemia and non-diabetic ketoacidosis.

• Findings could be events not specific to SMA.

Lipid (fatty acid),
ketone

Lakkis et al.
(2018) [46] Case report

Describing a type 3 SMA
adult presented with severe

ketoacidosis with normal
serum glucose

SMA: 1
SMA type 3; age:
36 years old; BMI:

23 kg/m2

• Presented with ketoacidosis related to
moderate fasting.

• Denervation or SMN deficiency may affect
metabolism and response to hormones, resulting
in decreased uptake and fatty acid utilization
by muscles.

• The influence of denervation on muscle
β-oxidation may elevate acetyl-CoA, a ketone
precursor, in the liver.

• Findings could be events not specific to SMA.
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Table 1. Cont.

Altered Metabolic
Aspect Reference Study Design Study Aim Enrollment Patient Features Main Findings

Lipid (fatty acid),
glucose

Deguise et al.
(2019) [27] Cross-sectional

• To investigate the lipid
profile, including total
cholesterol (TC),
low-density lipoprotein
(LDL), high-density
lipoprotein (HDL),
non-HDL, and
triglycerides to assess
abnormalities in fatty
acid metabolism

• To check glucose
dysregulation
by HbA1C

SMA: 72

SMA type 1 20%,
type 2 72%, type 3

8%; median age
3.8 years old

• 37.5% of SMA patients, most commonly type 1
and 2, had dyslipidemia

• HbA1C trended lower in most SMA patients, with
57% having an abnormally low readout (HbA1C <
5%)

• Dyslipidemia and low glucose levels align well
with clinical findings in enrolled SMA patients.

• Findings could be events specific to SMA.

SMA: spinal muscular atrophy.
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Fatty vacuolization with macro- or micro-vesicular steatosis of the liver has been found in early
studies of SMA patients [38,41,42]. Of note, liver failure and Reye-like syndrome with diffuse vesicular
steatosis have been recently reported in patients with type 1 or 2 SMA [48,49]. An updated study further
reports an increased susceptibility to develop dyslipidemia in 37% of SMA patients, with evidence of
liver steatosis in their pathological specimens [27]. Similarly, these human findings are reproduced in
different SMA mouse models, of which a specific Smn 2B/−mice model developed the non-alcoholic fatty
liver disease (NAFLD) before denervation. Hyperglucagonemia might also contribute to dyslipidemia
and hepatic steatosis, possibly through the pancreas–liver axis, leading to peripheral lipolysis of
white adipose tissue and an increase in circulating lipids. These findings imply that the liver-intrinsic
SMN deficiency might also cause dysregulated metabolism of the hepatocytes [26,50], which could
predispose the cells to fat accumulation. Noteworthily, subacute liver failure was recently reported in
two patients with type 1 SMA following gene replacement therapy [49]. It is postulated that increased
susceptibility to dyslipidemia and associated fatty liver disease could predispose the SMA patient to
liver injury, which might be induced or exacerbated after the gene therapy. A thorough investigation
of the lipid content in the liver of SMA patients and mouse models, before and after the onset of the
disease [47], may provide further evidence for whether the direct or indirect effects of SMN deficiency
affect metabolic abnormalities.

Since carnitine and its acyl esters (acylcarnitines) are cofactors for β-oxidation, abnormal lipid
metabolism may also be reflected in their production, fractions, and transportation. Because carnitine is
essential for intramitochondrial β-oxidation, reduced carnitine would limit β-oxidation. Acylcarnitines
are known to play a crucial role in stabilizing neuronal membranes and neurotransmission [51].
Supplementation of acylcarnitine has shown beneficial effects in treating chronic degenerative
diseases [52,53]. However, there are still controversies regarding the dysregulation of production,
synthesis, and carnitine/acylcarnitine extraction in SMA patients. Early studies suggested that the
integrity of nerve and motor neurons might influence carnitine transportation and lipid β-oxidation
in muscles. Reduced muscle carnitine and decreased activity of β-oxidation have been observed
in animal models after denervation [54,55]. Similarly, reduced carnitine and acylcarnitine levels
in plasma and muscles and increased urine excretion of acylcarnitine have been reported in SMA
patients [37,56]. However, normal or mild-to-moderate elevated serum acylcarnitines, particularly
C5-OH acylcarnitine and C3 propionylcarnitine, were found in the following studies of SMA patients
with a severe phenotype [41,42]. In contrast, an updated article reported an adolescent with type 2
SMA who showed a dramatically low serum carnitine/acylcarnitine level at a catabolic state [48].
This finding suggests impaired intramitochondrial β-oxidation associated with dysregulated carnitine
metabolism in SMA would become more prominent, especially under stress.

In the fat metabolism of healthy individuals, longer-chain fatty acids are transported into the
mitochondria for β-oxidation. Carnitine palmitoyltransferase 1 (CPT1) is an enzyme that converts
long-chain acyl-CoA into long-chain acylcarnitine, thereby transporting long-chain fatty acids to the
mitochondria. Decreased CPT activity has been reported in muscles of severe type 1 SMA patients,
compared with aged-matched infants [56]. Recently, reduced CPT1 activity was also found in an SMA
(Smn 2B/−) mice model [25]. Of note, an isoform of CPT1, called CPT1c, which mainly expresses in neurons,
including motor neurons, shows biosynthetic activity in neuron-specific acyl-CoA. Reduced activity
of CPT1c leads to motor function impairment and muscle weakness [57]. Interestingly, an updated
study indicates that MN-specific CPT1C can interact with atlastin-1 encoded by the ATL1 gene, which is
mutated in hereditary spastic paraplegia, a kind of motor neuron degenerative disorder [58].

Acylcarnitines can also interact with different proteins to influence signaling pathways of neuronal
cells [52]. Growth-associated protein 43 (GAP43), a protein involved in neuronal development,
neurotransmission, and neuroplasticity, is modified post-translationally by a long-chain acylcarnitine,
possibly through the acylation pathway [59]. Interestingly, a recent study found that motor neurons
from SMA mouse models showed reduced GAP43 protein levels in axons and growth cones [60,61].
SMN seems to be responsible for regulating the localization and translation of GAP43 mRNA in these
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axons, and the restoration of GAP43 mRNA and protein levels rescued the defect of axon growth in
SMA mice. Therefore, dysregulated acylcarnitine might also affect SMA phenotypes, possibly through
the post-translational regulation of motor neuron-specific protein GAP43. Acylcarnitine plays a role in
GAP43-related axon growth/repair pathways and may represent a promising SMA treatment target.

Nevertheless, the inconsistent findings of carnitine/acylcarnitine metabolites in SMA patients argue
the pathomechanism of the impairedβ-oxidation in SMA. Applying modern techniques for quantitative
analysis of carnitine and acylcarnitine of various lengths in different samples (e.g., plasma, urine,
and muscle) may help decipher this ambiguity [62,63]. However, similar studies in SMA patients are
scarce, and the findings of changed carnitine/acylcarnitine levels in SMA patients with different SMN2
copies have not been updated. The discovery of plasma and urinary metabolite patterns, specifically
reflective of fatty acid catabolism, can help clarify biochemical pathways that link lipid metabolism
and provide potential biomarkers monitoring disease progression.

3. Glucose Metabolic Abnormalities in SMA

The concern about glucose metabolism abnormalities was initially raised through clinical
observations in mild-to-intermediate phenotypes of SMA patients (Table 2). Two studies of type 2 SMA
patients suggested they might be more likely to experience hypoglycemia following fasting [64,65].
A recent study in type 1 SMA patients also showed a similar finding of hypoglycemia even after
a short-term fasting (>4 h but <6 h) [66]. The presence of hypoglycemia after fasting has been postulated
to have an association with reduced gluconeogenesis. Because skeletal muscle is an important source
of gluconeogenic substrates during fasting, hypoglycemia must be considered for SMA patients with
severe muscle wasting, especially during surgery and fever [65]. Therefore, it is recommended that
patients with recurrent hypoglycemia episodes should be provided with regular meals based on
carbohydrates and protein, including late-night meals.

In contrast, other studies have reported hyperglycemia during fasting in patients with type 2
and type 3 SMA, some of whom were diagnosed with diabetes and ketoacidosis (Table 2) [17,67].
The metabolic syndrome features of increased fat mass and decreased lean mass have been reported
in patients with type 2 and type 3 SMA [40]. A recent study also indicated that, in a good state,
obese children with SMA type 2 were at increased risk of insulin resistance and impaired glucose
tolerance, with 50% of participants showing urinary ketones [16]. It has been postulated that as the
skeletal muscle is a major target of insulin action, muscle wasting (sarcopenia) promotes insulin
resistance with increased risk of hyperglycemia [68,69]. Additionally, hyperleptinemia has been
observed in patients with SMA types 1 to 3, which implies an indirect link to insulin resistance [70].
Nevertheless, even if glucose and insulin metabolism show an increased risk of insulin resistance,
HbA1c levels are usually normal in most SMA patients examined [16,69,70].
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Table 2. Altered Glucose Metabolism in Patients with Spinal Muscular Atrophy.

Altered Metabolic
Aspect Reference Study Design Study Aim Enrollment Patient Features Main Findings

Glucose, ketone Bruce et al. (1995)
[64] Case study

To describe a phenomenon of
hypoglycemia in patients

with SMA.
SMA: 2

SMA type 2 100%;
age 14 years old
and 20 years old,

respectively

• Repeated episodes of hypoglycemia in both cases.
• One associated with acidosis and ketonuria.
• Hypoglycemia was explained by reducing muscle

protein, leading to lower availability of amino
acids (alanine) as substrates for gluconeogenesis
in the liver.

• Regular meals and a late evening meal were
recommended in SMA patients with
recurrent hypoglycemia.

• Findings could be events not specific to SMA.

Glucose Orngreen et al.
(2003) [65]

Two or more
single-arm study

To investigate the effect of 23
h of fasting on plasma

glucose and other
metabolites, glucose turnover,

and hormonal changes in
NMD patients with low

muscle mass.

SMA: 4
Healthy controls:

6

SMA type 2 100%;
mean age 25 years
old; average body

weight 29.8 kg
Controls: mean
age 24 years old;

average body
weight 69.5 kg

• All SMA patients developed hypoglycemia with
continued fasting compared to nil hypoglycemia
in healthy controls.

• Patients experienced frequent attacks of headache,
nausea, and dizziness that could be alleviated by
food intake.

• Findings could be events specific to SMA.

Glucose, insulin Bowerman et al.
(2012) [17] Cross-sectional

To describe glucose
metabolism and pancreatic
developmental defects in

SMA.

SMA: 6

SMA type 1 100%;
age range

7–35 months old.
Control: age

range
4–36 months old.

• Pancreatic islets from SMA type 1 patients had
significantly more alpha cells and fewer beta cells
vs. control islets.

• Islets appeared disorganized in appearance.
• Pancreatic islet compositions were similar among

all patients independent of age.
• Findings could be events specific to SMA.

Glucose, ketone Lamarca et al.
(2013) [67] Case study

To describe a phenomenon of
DM and diabetic ketoacidosis
in a patient with type 2 SMA.

SMA: 1
SMA typ 2, age

29 years old, BMI:
10.2 kg/m2

• New onset DM presenting with blood sugar: 591
mg/dL), ketonuria (4+) and acidosis
(anion gap: 31)

• Positive family history of type 2 DM (3 patients
onset at 60–70 years old)

• Autoimmune markers for type 1 DM
were negative

• Findings could be events not specific to SMA.
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Table 2. Cont.

Altered Metabolic
Aspect Reference Study Design Study Aim Enrollment Patient Features Main Findings

Glucose, insulin,
ketone

Davies et al.
(2015) [16] Case series

To examine the impact of
fasting and glucose tolerance
in an SMA type 2 population.

SMA: 6

SMA type 2 100%;
mean age

8.9 ± 1.7 years old
(range 7–10 years

old)

• Five of the six patients demonstrated normal
HbA1c, and IGF-1 and one participant had a
slightly elevated HbA1c, considered prediabetic.

• During a 20 h fast, no participant
experienced hypoglycemia.

• At the end of fasting, insulin, alanine,
phenylalanine, and branched-chain amino acids
were significantly decreased, whereas free fatty
acids were increased considerably, and urine
ketones were detected in 50% of participants.

• During an oral glucose tolerance test, 100% of
participants showed hyperinsulinemia, and 50%
showed impaired glucose tolerance, and 83%
showed insulin resistance.

• Findings could be events specific to SMA.

Glucose Berti et al. (2020)
[66] Cross-sectional

To describe the incidence of
hypoglycemia in type 1 SMA

patients after short-term
fasting (> 4 h but <6 h)

SMA:45

SMA type 1:
100%; median age:

42 months old
(hypoglycemic) vs.

21.5 months old
(non-hypoglycemic);
BMI: −2.19 kg/m2

• Hypoglycemia in 17 of 45 patients (5 with fasting
for acute illness and 12 with fasting for planned
procedure).

• Main presentations associated with hypoglycemia
are hyperhidrosis and tachycardia

• All symptomatic cases improved after
intravenous glucose.

• Conclude that despite type 1 patients fasting for
less than 6 h, hypoglycemia was still common.

• Findings could be events not specific to SMA.

Glucose, insulin,
IGF-1

Brener et al. (2020)
[69] Cross-sectional

To determine the IGF-1 status
in SMA patients and its
association with insulin

resistance.

SMA: 34

SMA type 1: 47%,
type 2: 29%, type
3: 24%; mean age:

7.1 years old;
mean BMI:
−1.60 kg/m2

• Insulin-resistant patients (n = 20) had higher IGF-1
levels compared to insulin-sensitive patients
(n = 14).

• Insulin-resistant SMA patients had normal lipid
profile and normal glycemic control
(HbA1c levels).

• IGF-1 status is associated with insulin resistance
in SMA patients with early-onset sarcopenia.

• Findings could be events specific to SMA.

SMA: spinal muscular atrophy, DM: diabetes mellitus (DM), IGF-1: insulin-like growth factor-1 (IGF-1).
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Similarly, perturbations of glucose metabolism affecting glucose sensitivity and pancreatic defects
have been observed in the SMA mice model [17,39,71]. In particular, the metabolic defects in the SMA
Smn 2B/−mice model were characterized by fasting hyperglycemia, glucose intolerance, hypersensitivity
to insulin, and hyperglucagonemia [17]. In the same study, analysis of pancreatic tissue from infants
with SMA type 1 has recapitulated similar pancreatic development defects. Reduced SMN protein
levels may also affect the insulin-like growth factor 1 (IGF-1) pathway in the liver of SMA mouse
model [72]. IGF-1 is an anabolic hormone with a molecular structure comparable to insulin, which shows
myotrophic effects on muscle tissue. Dysregulation of the IGF-1 signaling pathway has also been
reported in biopsies from patients with type 1 SMA [73]. A recent study further indicated that IGF1
status is associated with insulin resistance in young SMA patients with early-onset sarcopenia [69].
However, the authors concluded that the myotrophic effect of IGF-1 might be adversely affected by
insulin resistance, so therapeutic interventions for dysregulated glucose metabolism in SMA should
target insulin resistance.

Nevertheless, it has been suggested that SMA patients receiving partial SMN restoration therapy
may increase the risk of having pancreatic and glucose metabolism defects [71]. Meticulous monitoring
of glucose homeostasis in SMA patients is essential to clarify the role of SMN in glucose metabolism
and pancreatic function.

4. Altered Vitamin Level in SMA

A previous study indicates that the activity of SMN depends on folic acid and vitamin B12, both of
which are necessary for protein methylation [74]. SMN binds to certain proteins with arginine- and
glycine-rich domains, which are modified to dimethylarginine. The binding of other proteins that
interact with SMN can also be greatly enhanced by methylation. Inadequate intake of folic acid and
vitamin B12 may lead to protein hypomethylation [75], and subsequently may affect the clinical severity
of SMA.

The SMN protein may play an active role in bone remodeling or uptake of vitamin D and
calcium [35]; therefore, patients with SMA are often accompanied by osteopenia and may contend
with fractures due to minor injuries. Compared with other neuromuscular disorders, reduced bone
mineral density seems more significant in patients with SMA, especially in those losing ambulatory
function [76]. Suboptimal vitamin D intake is frequently observed in patients with all SMA types [18,77].
Low serum levels of vitamin D and 25-OH vitamin D have been reported in patients with type 2 or
3 SMA [34]. However, in a small group of patients with type 1 SMA, the corresponding serum vitamin
D levels did not reflect insufficient consumption [78]. Low bone mineral density (BMD) and femur
fractures are highly prevalent in all SMA subtypes from a young age; however, few patients met
osteoporosis criteria [79]. Adequate bone health assessment and intervention may be an unmet medical
need for patients with SMA. It is imperative to determine the natural trajectory of BMD changes at
different skeletal sites, especially in adolescent and young adult patients with SMA, and determine if
low BMD and propensity to fracture are related to immobility and muscle weakness or direct action of
SMN on bone turnover. More work is required to identify effective interventions to delay the decline
in BMD and prevent fractures in patients with SMA.

Besides vitamin D and calcium, vitamin E, vitamin K, and folate intakes have been reported
below values of Recommended Dietary Allowance (RDA) in half the cohort of patients with SMA [77].
Further research is needed to determine the appropriate intake of vitamin D and other macro- and
micro-nutrients in this population.

5. Dietary Issues in SMA

Patients with SMA are at higher risk of suboptimal nutrition intake, and nearly half of the cohort
demonstrated either undernutrition (underweight) or overnutrition (overweight) over time [18,77].
Changes in body composition, especially the loss of lean body mass, can be particularly harmful to
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SMA patients because it can impair the respiratory strength of already weak muscles [43]. Therefore,
nutrition support is considered a core component of multidisciplinary care for SMA patients [15,80].

However, the specific nutritional challenges in this population are not well described, and a particular
diet has not been scientifically evaluated. An early study showed that when the mother was fed
a lipid-rich diet, the pups of SMA mice could have a longer survival period and improved motor
function [39]. These findings suggested that higher fat content may confer protective benefits during
motor neuron loss. However, an updated study reported that low-fat diets could nearly double
survival in Smn 2B/− mice, independent of changes in SMN levels, liver steatosis, or enhanced hepatic
functions [81]. Although both studies are in the preclinical phase, such controversies suggest a need to
establish clinical nutrition guidance from evidence-based research to provide better care for SMA patients.

The advances in therapy for SMA have improved survival and quality of life, which poses new
challenges. The survival of patients with severe SMA has generated new phenotypes, and long-term
outcomes are unknown [82]. Noteworthily, nutritional management may have a significant impact
on the clinical course and even prognosis. For example, previous studies indicated that nutritional
support could affect the therapeutic effects of trial agents on different SMA mice models [83,84].
Although it is difficult to show a clear association between metabolic effects in SMA patients who
received therapies at this time, it has been emphasized that nutritional care must also be revised and
monitored according to individual needs, especially in the SMA therapeutic era [15]. Optimal nutritional
management for patients with SMA includes longitudinal evaluation of weight and length and dietary
analysis. Recent studies have demonstrated that a modified diet based on measured energy expenditure
and optimized protein can improve ventilation and lean body mass in patients with SMA [18,85].
In the future, non-invasive approaches for body composition assessment, e.g., bioelectrical impedance
analysis, can be used to evaluate the nutritional status of children with SMA. Further research is
needed to assess the use of elemental and semi-elemental formulas in SMA management, including the
optimal intake of macronutrients and micronutrients for nutritional support and the ideal fat content
and composition.

6. Conclusions

Active nutrition support and metabolism surveillance are crucial for patients with SMA,
and a comprehensive nutritional assessment could guide individualized nutrition therapy for this
vulnerable population. With the emergence of new gene-targeted and disease-modifying therapies,
which may affect the metabolism of SMA patients, personalized nutritional optimization may become
particularly important. Metabolomics study in SMA patients, before and after the disease onset,
may provide valuable information regarding the direct or indirect effect of SMN deficiency on metabolic
abnormalities. Furthermore, identifying and quantifying the specific metabolites in biofluids of SMA
patients may serve as an authentic biomarker or therapeutic target for SMA.
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