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Abstract: Caffeine intake is strongly linked to lipid metabolism. We previously reported
the age-dependent physiological effects of caffeine intake in a Caenorhabditis elegans model.
Since nutritional status can actively influence metabolism and overall health, in this study, we evaluated
the effect of caffeine intake on lipid metabolism in adult-stage C. elegans. We found that, in C. elegans,
fat storage and the level of phosphoethanolamine (PE) were significantly reduced with caffeine
intake. In addition, mitochondrial activity decreased and mitochondrial morphology was disrupted,
and the expression of oxidative stress response genes, hsp-6, gst-4, and daf-16, was induced by caffeine
intake. Furthermore, the level of an energy metabolism sensor, phospho-AMP-activated protein
kinase, was increased, whereas the expression of the sterol regulatory element binding protein
gene and its target stearoyl-CoA desaturase genes, fat-5, -6, and -7, was decreased with caffeine
intake. These findings suggest that caffeine intake causes mitochondrial dysfunction and reduces
lipogenesis. Interestingly, these changes induced by caffeine intake were partially alleviated by PE
supplementation, suggesting that the reduction in mitochondrial activity and lipogenesis is in part
because of the low PE level, and proper dietary supplementation can improve organelle integrity.

Keywords: caffeine; 1,3,7-trimethylxanthine; phosphoethanolamine; mitochondrial activity; oxidative
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1. Introduction

Caffeine is the most popular drug consumed worldwide; approximately 80% of the world’s
population consumes caffeinated foods every day [1,2]. Caffeine is rapidly absorbed through the
gastrointestinal tract, moves through cellular membranes [3], is metabolized in the liver, and results
in three metabolites: paraxanthine, theophylline, and theobromine [1,3]. Lipid accumulation and
metabolism are dependent on the presence and production of intracellular second messenger molecules
such as cyclic adenosine monophosphate (cAMP). The increased cAMP response is short-lived because
it is rapidly degraded by phosphodiesterase (PDE). The intracellular signal can be sustained for a longer
period by the inhibition of PDEs such as methylxanthines that are present in caffeine. Caffeine has
also been associated with loss in body weight and increased energy expenditure in humans and
animal models [4–7]. These studies indicate the strong relationship between caffeine intake and lipid
metabolism. However, it is largely unknown how caffeine intake modulates various physiological
processes in animals including lipid metabolism at the molecular level.

Nutrients 2020, 12, 3348; doi:10.3390/nu12113348 www.mdpi.com/journal/nutrients

http://www.mdpi.com/journal/nutrients
http://www.mdpi.com
https://orcid.org/0000-0002-8660-4176
http://dx.doi.org/10.3390/nu12113348
http://www.mdpi.com/journal/nutrients
https://www.mdpi.com/2072-6643/12/11/3348?type=check_update&version=2


Nutrients 2020, 12, 3348 2 of 22

Caenorhabditis elegans is an excellent animal model to study the metabolic effects of nutrient
intake on the body because it is easy to maintain in large populations and convenient for organ
observation owing to its transparent body. Furthermore, C. elegans offers a relevant model to elucidate
the molecular mechanisms of metabolic regulation that are conserved in mammals, which would lead
to the understanding of the basis of metabolic disorders [8,9]. Although several studies have reported
that caffeine intake has both beneficial and adverse effects on C. elegans development, reproduction,
and aging in an age- and dose-dependent manner [10–16], the effects on its metabolism are still elusive.

In this study, we investigated the control of lipid metabolism by 10 mM of caffeine intake in
adult-stage C. elegans and its association with mitochondrial activity. We observed reductions in
fat storage, phosphoethanolamine (PE) level, and mitochondrial activity. Expression of oxidative
stress response genes, hsp-6 and gst-4 and the level of phospho-AMPK were increased, and DAF-16,
which is activated by phospho-AMPK to respond to metabolic stress, was activated by nuclear
localization. It appears that the phospho-AMPK activated by caffeine intake also decreases lipogenesis
by reducing the expression of sbp-1, an ortholog of C. elegans sterol regulatory element binding protein
(SREBP) gene and its target stearoyl-CoA desaturase (SCD) genes, fat-5, fat-6, and fat-7. We further
investigated the effects of PE supplementation with caffeine intake on mitochondrial activity and stress
responses and found that the changes caused by caffeine intake were alleviated by PE supplementation.
Taken together, this study suggests that caffeine intake reduces the level of PE, induces mitochondrial
stress, and causes an energy imbalance, which induces the AMPK-mediated stress response and reduces
fat storage. In addition, our findings suggest that the PE level is a key component in maintaining
mitochondrial integrity.

2. Materials and Methods

2.1. Caenorhabditis elegans Strains and Treatment with Caffeine

C. elegans strains were maintained at either 15 or 20 ◦C on nematode growth medium (NGM)
agar plates seeded with Escherichia coli strain OP50, as described previously [17]. The following
strains were used in the present study: N2 (C. elegans wild isolate, Bristol variety), SJ4103:
zcIs14 [myo-3::GFP(mit)], RW1596: myo-3(st386) V; stEx30 [myo-3p::GFP::myo-3+rol-6(su1006)], SJ4005:
zcIs4 [hsp-4::GFP], SJ4100: zcIs13 [hsp-6::GFP], TJ375: gpIs1 [hsp-16.2p::GFP], CL2166: dvIs19
[(pAF15)gst-4p::GFP::NLS]III, GR1352: xrIs87 [daf-16(alpha)::GFP::daf-16B+rol-6(su1006)], CE548:
sbp-1(ep79) III; epEx141 [sbp-1::GFP::SBP-1+rol-6(su1006)], BX150: lin-5B&lin-15A(n765) X; waEx18
[fat-5::GFP+lin15(+)], BX115: lin-5B&lin-15A(n765) X; waEx16 [fat-6::GFP+lin15(+)], and BX113:
lin-5B&lin-15A(n765) X; waEx15 [fat-7::GFP+lin15(+)]. To examine the effects of caffeine intake,
10 mM of caffeine (Sigma-Aldrich, St. Louis, MO, USA) was added to NGM before autoclaving,
as previously described [13]. Synchronized L4-stage animals were exposed to caffeine for 24 h at 20 ◦C,
and then the adult-stage animals were examined.

2.2. Analysis of Lipid Composition Using Gas Chromatography-Time of Flight-Mass
Spectrometry (GC-TOF-MS)

Sample preparation for the analysis of lipid composition in C. elegans was performed as previously
described with minor modifications [18]. Briefly, L4-stage wild-type N2 hermaphrodites were
individually cloned onto either caffeine-containing (10 mM) or caffeine-free (0 mM) NGM agar plates
and grown for 24 h at 20 ◦C. Five thousand adult animals from each treatment were collected in M9
buffer and washed three times. After centrifugation, the M9 buffer was removed, and the samples were
frozen in liquid nitrogen. Each sample was extracted with 80% methanol and internal standard solution
(2-chloro-phenylalanine, 1 mg/mL in water) using an MM400 mixer mill (Retsch®, Haan, Germany)
at a frequency of 30 s−1 for 10 min, followed by sonication for 10 min. Subsequently, the extracted
samples were centrifuged, and the supernatants were filtered through 0.2 µm polytetrafluoroethylene
filters (Chromdisc, Daegu, Korea). The filtered samples were completely evaporated using a speed
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vacuum concentrator (Biotron, Seoul, Korea). The final concentration of each sample was 10 mg/mL in
methanol for MS analysis.

GC-TOF-MS analysis was performed as previously reported [19]. The dried samples were
oximated with methoxyamine hydrochloride (20 mg/mL in pyridine) for 90 min at 30 ◦C and silylated
with MSTFA for 30 min at 37 ◦C. Finally, the samples were injected into a GC-TOF-MS instrument
(Thermo Fisher Scientific, West Palm Beach, FL, USA) in splitless mode. MS data analysis and
multivariate statistical analysis were conducted as previously described [19]. Selected metabolites
derived from GC-TOF-MS data were tentatively identified using standard compounds and comparisons
of their retention time and MS fragments. We also confirmed the MS spectrum data for selected
metabolites with available databases including the National Institute of Standards and Technology
(NIST) database (Version 2.0, 2011, FairCom, Gaithersburg, MD, USA), Wiley 9, and the Human
Metabolome Database (HMDB; http://www.hmdb.ca). Significant differences between groups (p-value)
were evaluated using PASW Statistics (IBM SPSS Inc., Chicago, IL, USA).

2.3. Analysis of Mitochondrial Activity

L4-stage wild-type N2 hermaphrodites were treated with caffeine for 24 h at 20 ◦C. The adult-stage
animals were then incubated for 4 h at 20 ◦C with 10 µM of MitoTracker Red (Invitrogen, Carlsbad,
CA, USA), which is a fluorescent probe that accumulates in active mitochondria. After MitoTracker
staining, the animals were immobilized using 0.2 mM tetramisole hydrochloride (Sigma-Aldrich,
St. Louis, MO, USA) in M9 buffer and mounted on a poly-l-lysine- (Sigma-Aldrich, St. Louis,
MO, USA) coated glass slide. Live images of stained animals were observed under a fluorescence
microscope (Zeiss Axioscope, Oberkochen, Germany), and the average pixel intensity of MitoTracker
Red fluorescence was measured using ImageJ.

2.4. Live Image Observation of Fluorescence-Tagged Transgenic Animals

The synchronized L4-stage transgenic animals expressing GFP were treated with caffeine for 24 h
at 20 ◦C. The animals were then immobilized using 0.2 mM tetramisole hydrochloride (Sigma-Aldrich,
St. Louis, MO, USA) in M9 buffer and mounted on a poly-l-lysine- (Sigma-Aldrich, St. Louis,
MO, USA) coated glass slide. Live images of animals were observed under a fluorescence microscope
(Zeiss Axioscope, Oberkochen, Germany). Using ImageJ, we measured the average pixel intensity
of fluorescence in GFP-tagged transgenic animals including SJ4103, RW1596, SJ4005, SJ4100, TJ375,
CL2166, GR1352, CE548, BX150, BX115, and BX113 for quantification.

2.5. Analysis of Mitochondrial Reactive Oxygen Species (ROS) and Superoxide Levels Using
Fluorescence Microscopy

To examine the effect of caffeine intake on mitochondrial ROS and superoxide levels, CellROX®

Green (Invitrogen, Carlsbad, CA, USA) and MitoSOX (Invitrogen, Carlsbad, CA, USA) staining were
performed as previously described [20,21]. CellROX® Green and MitoSOX were freshly prepared
at 5 mM for the stock solution and diluted in M9 buffer at a 1:1000 dilution before treatment.
Synchronized adult-stage animals fed with either a caffeine-free or a caffeine diet were transferred
into the staining solution and stained for 20 min at 20 ◦C. Animals were mounted on a poly-l-lysine-
(Sigma-Aldrich, St. Louis, MO, USA) coated glass slide and then observed under a fluorescence
microscope (Zeiss Axioscope, Oberkochen, Germany). Relative quantitation of mitochondrial ROS and
superoxide levels was measured using ImageJ.

2.6. Western Blot Analysis

Western blot analysis was performed as previously described [22]. Whole animal protein
extract prepared from 300 gravid adult hermaphrodites from each treatment was used per gel
well. Antibodies bound to a nitrocellulose membrane (PROTRAN BA83, Whatman, Sigma-Aldrich,
St. Louis, MO, USA) were visualized using an ECL Western blotting detection kit (Amersham,
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GE Healthcare Life Sciences, Pittsburgh, PA, USA), and the respective band intensities were measured
using a LAS-3000 image analyzer with Multi Gauge (v.3.0) (Fuji Film, Tokyo, Japan). The following
primary and secondary antibodies were used: rabbit anti-AMPK (1:1000, Cell Signaling Technology,
Danvers, MA, USA), rabbit anti-pAMPK (1:1000, Cell Signaling Technology, Danvers, MA, USA),
mouse anti-α-tubulin (1:1000; Sigma-Aldrich, St. Louis, MO, USA), HRP-conjugated goat anti-rabbit
IgG (1:1000; Santa Cruz Biotechnology, Dallas, TX, USA), and HRP-conjugated donkey anti-mouse IgG
(1:1000; Jackson ImmunoResearch, West Grove, PA, USA).

2.7. Analysis of Body Fat Using Nile Red (NR) and Oil Red O Staining

Body fat content was measured as previously described [23]. In brief, a stock solution was
prepared by dissolving NR (Invitrogen, Carlsbad, CA, USA) in acetone (5 mg/mL). Synchronized
adult-stage animals were treated with 40% isopropanol for 3 min at 20 ◦C, and NR working solution
(30 µg/mL) was added to each sample for 2 h at 20 ◦C in the dark. For Oil Red O staining, a stock
solution was prepared by dissolving Oil Red O (500 mg) in 100% isopropanol (100 mL), and the stock
solution was diluted in water (3:2) to 60% isopropanol, and filtered with a 0.2 µm sterile syringe filter.
Synchronized adult-stage animals were treated with 40% isopropanol for 3 min at 20 ◦C, and Oil Red O
solution was added to each sample for 2 h at 20 ◦C in the dark. Body fat content was measured in lipid
droplets of NR-stained or Oil Red O-stained animals using a Zeiss microscope at 20×magnification.
Using ImageJ, we measured the average pixel intensity for the quantification of NR and Oil Red O
staining. For each case, three independent experiments were performed.

2.8. Supplementation with PE and Ethanolamine (ETA)

PE and ETA were purchased from Sigma-Aldrich (St. Louis, MO, USA). PE or ETA was added to
autoclaved NGM before pouring into agar plates. The synchronized L4-stage animals were placed
onto NGM agar media supplemented with either PE (0.1 mM to 50 mM) or ETA (5 mM) and with or
without 10 mM of caffeine for 24 h at 20 ◦C and subjected to the respective experiments.

2.9. Statistical Analysis

All experiments were repeated more than three times for statistical evaluation of the data.
The p values were calculated using either two-tailed Student’s t-test or one-way ANOVA test. p < 0.05
was considered significant. The data are expressed as the mean ± standard deviation (SD).

3. Results

3.1. Reduction in the Level of PE and Mitochondrial Activity, and the Disruption of Mitochondrial Morphology
with Caffeine Intake in C. elegans

Previous studies have suggested that caffeine intake affects lipid metabolism [7,24,25]. Therefore,
we attempted to evaluate lipid metabolism regulation by caffeine intake in C. elegans. GC-TOF-MS
chromatography was performed to analyze changes in fatty acid composition owing to caffeine intake.
The levels of glycerophosphoric acid, phosphoglyceric acid, palmitic acid, elaidic acid, oleic acid,
stearic acid, oleamide, and glycerol monostearate were significantly altered with less than 2-fold
differences (p < 0.05) compared to the levels in the caffeine-free diet control group; however, the levels of
PE and arachidonic acid (AA) showed more than a 2-fold decrease or increase, respectively (Figure 1 and
Supplementary Table S1, p < 0.05). The most drastic reduction in lipid compositions by caffeine intake
was PE based on the analysis by GC-TOF-MS chromatography (Figure 1). This result suggests that the
low level of PE causes major effects of caffeine intake in C. elegans. Therefore, further investigation was
focused on the effects of PE after caffeine intake. PE is a major component of the mitochondrial inner
membrane where the energy production process occurs [26,27].
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transgene, Pmyo-3::mitoGFP, which is expressed in the mitochondria of the muscle cells (Figure 2C). 
Furthermore, the morphological changes in mitochondria leading to damage in muscle cells of 
caffeine-fed animals were also observed using a transgene, MYO-3::GFP, in the muscle cells (Figure 
2D). These results indicated that caffeine intake decreased the mitochondrial activity and disrupted 
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Figure 1. Caffeine intake altered the level of lipid composition in Caenorhabditis elegans. Fold change in
fatty acids between the caffeine-free diet group (control, white bar) and the caffeine-fed group (black bar),
as determined by gas chromatography. Fatty acids were extracted from 5000 adult animals for each
group. The dotted lines indicate a relative difference of more than 2-fold compared to the control.
Significant differences between groups (p-value) are shown in Supplementary Table S1. Error bars
represent standard deviation (SD).

To investigate the possible alterations in mitochondria owing to the low level of PE in caffeine-fed
animals, we examined both mitochondrial activity in the intestine and morphological changes in the
muscle cells of C. elegans using MitoTracker staining (Figure 2A,B). In the caffeine-free diet animals,
the mitochondrial activity in the intestine was normal, and the majority of muscle mitochondria
showed a tubular morphology (Figure 2A,B). In contrast, the animals that ingested caffeine showed a
significant decrease in mitochondrial activity in the intestine (p < 0.05) and alterations in mitochondrial
morphology, including fragmentation (12.2% ± 1.2), swelling (19.4% ± 2.1), and aggregation (6.9% ± 0.8)
in the muscle cells (Figure 2A,B). We confirmed the alterations in mitochondrial morphology owing to
caffeine intake using transgenic animals containing the transgene, Pmyo-3::mitoGFP, which is expressed
in the mitochondria of the muscle cells (Figure 2C). Furthermore, the morphological changes in
mitochondria leading to damage in muscle cells of caffeine-fed animals were also observed using a
transgene, MYO-3::GFP, in the muscle cells (Figure 2D). These results indicated that caffeine intake
decreased the mitochondrial activity and disrupted mitochondrial morphology.
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Figure 2. Caffeine intake reduced mitochondrial activity and disrupted mitochondrial morphology in
Caenorhabditis elegans. (A) Comparison of mitochondrial activity in the intestine of caffeine-fed animals
(10 mM) and that of the caffeine-free diet control group (0 mM) using MitoTracker staining. The graph
shows the relative level of mitochondrial activity using ImageJ analysis. Statistical significance was
calculated using Student’s t-test. **, p < 0.01. Error bars represent standard deviation. (B) Comparison
of mitochondrial morphology in the muscle cells of caffeine-fed animals (10 mM) and that of the
caffeine-free diet control group (0 mM) using MitoTracker staining. The graph indicates the percentage
of animals with mitochondria classified as tubular, intermediate, fragmented, swollen, or aggregated.
(C) The effect of caffeine intake on mitochondrial morphology was analyzed in the transgenic animal
SJ4103 expressing a mitochondrial-targeted GFP under control of the muscle-specific myo-3 promoter.
The graph indicates the percentage of animals with muscle mitochondria classified as indicated.
(D) Myofilament abnormality owing to caffeine intake was visualized using the MYO-3::GFP transgene.
Representative fluorescent images in the caffeine-free diet control group (0 mM) showed normal
filament organization. MYO-3::GFP abnormalities (aggregations) were observed in the caffeine-fed
animals (10 mM). The graph indicates the percentage of animals classified as having normal muscle or
damaged muscle (aggregations).

3.2. Caffeine Intake Activates AMPK and DAF-16 by Inducing Mitochondrial Stress Response in C. elegans

It was previously reported that changes in mitochondrial activity and morphology are associated
with cellular stress responses as a cellular adaptation to regulate cell survival [28]. In addition,
mitochondrial damage can induce unfolded protein stress responses [29,30] and mitochondrial
morphology can play a role in mitochondrial energetics in C. elegans [31,32]. To examine whether
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the mitochondrial changes owing to caffeine intake affect cellular stress responses, we investigated
transgenic animals expressing a gene involved in three different stress response pathways, including an
endoplasmic reticulum chaperone (hsp-4), a mitochondrial chaperone (hsp-6), and a cytosolic chaperone
(hsp-16.2), and quantified the relative protein levels of each reporter (Figure 3A). Among three cellular
stress responses, caffeine-fed adult-stage transgenic animals expressing HSP-6 showed significantly
increased expression levels of GFP fluorescence compared to those in the caffeine-free diet control
group, suggesting that caffeine intake induces mitochondrial stress response (Figure 3A). Furthermore,
we found that caffeine intake increased the level of gst-4 expression, an antioxidant enzyme, in transgenic
animals expressing the Pgst-4::GFP gene (Figure 3B). This finding suggests that caffeine intake
induces the oxidative stress response. In addition, we determined the levels of ROS and superoxide
in mitochondria using CellROX Green and MitoSox Red, the fluorescence dyes that have been
used to detect the mitochondrial ROS and mitochondrial superoxide, respectively. MitoSox Red,
a mitochondrial superoxide indicator failed to stain in caffeine-fed animals (Supplementary Figure S1).
However, CellROX staining showed the increased level of mitochondrial ROS in caffeine-fed
animals while only the basal level of mitochondrial ROS was detected in caffeine-free diet animals
(Supplementary Figure S2). These results indicate that caffeine intake activates mitochondrial oxidative
stress response by elevating mitochondrial ROS but not by superoxide.

The correlation between mitochondrial functions and AMPK under dietary stress conditions
in C. elegans has been reported previously [33–35]. Therefore, by performing Western blot, we next
examined whether caffeine intake affects the activation of AMPK. We found that caffeine intake indeed
activated AMPK by increasing the level of phosphorylated AMPK (p-AMPK) (Figure 3C). We further
assessed a possible association by caffeine intake between the activation of AMPK and DAF-16, a direct
target of phospho-AMPK, as a key transcription factor in the insulin/IGF signaling pathway [36,37].
The daf-16 gene encodes a FOXO transcription factor, which is expressed in the cytoplasm and localized
to the nuclei when activated in most cells including the neurons, muscles, hypodermis, and intestine
in C. elegans [38–40]. We compared the subcellular localization of DAF-16::GFP transgene in both
caffeine-free diet controls and caffeine-fed animals (Figure 3D). Caffeine-fed transgenic animals showed
significant DAF-16::GFP nuclear localization in the neurons, hypodermis, and intestine (Figure 3D).
Taken together, we suggest that caffeine intake induces the mitochondrial stress response and increases
gst-4 expression, which activates AMPK phosphorylation and promotes DAF-16 nuclear localization.
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Figure 3. Caffeine intake activates AMPK and DAF-16 by inducing the mitochondrial stress response in
Caenorhabditis elegans. (A,B) HSP-4::GFP, HSP-6::GFP, HSP-16.2::GFP, and GST-4::GFP transgenic animals
synchronized at the L4-stage were fed either 0 or 10 mM of caffeine for 24 h at 20 ◦C, and respective
fusion proteins were observed under fluorescence microscopy and quantified using ImageJ analysis.
Statistical significance was calculated using Student’s t-test. *, p < 0.05. n.s., p > 0.05. Error bars
represent standard deviation (SD). (C) Western blot analysis of phospho-AMPK protein levels in
animals fed the caffeine-free diet (0 mM) or caffeine diet (10 mM). AMPK and phospho-AMPK band
intensities were normalized against those of β-Actin in the same lane. Then, the normalized AMPK
and p-AMPK band intensities were converted to a relative value compared to the normalized AMPK
and p-AMPK band intensities of 0 mM, as shown in the graph; values are mean ± SD of three biological
replicates of lysates from 300 animals. Statistical significance was calculated using Student’s t-test.
* p < 0.05. (D) Images show DAF-16::GFP expression pattern in both caffeine-free diet animals and
caffeine-fed animals in the respective tissues. The graph indicates the percentage of animals that show
the distribution of subcellular localization of DAF-16 in the respective tissues.
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3.3. Caffeine Intake Reduces Lipogenesis and Fat Storage in C. elegans

AMPK phosphorylation has been implicated in the regulation of multiple metabolic processes in
cells, including sterol regulatory element binding protein (SREBP), a master transcriptional regulator
of lipid synthesis [41,42]. SCD is a key target of SREBP [43–46], and there are three C. elegans scd
orthologs, fat-5, fat-6, and fat-7 [47,48]. Therefore, we examined the levels of sbp-1, a C. elegans ortholog
of human SREBP, and its target genes using transgenic animals expressing sbp-1, fat-5, fat-6, and fat-7
(Figure 4A,B). Caffeine-fed transgenic animals showed significantly decreased expression of not only
SBP-1::GFP, but also FAT-5, -6, and -7::GFP (Figure 4A,B). These results indicated that caffeine intake
reduced lipogenesis.
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Figure 4. Caffeine intake suppresses lipogenesis and fat storage in Caenorhabditis elegans. (A) SBP-1::GFP
transgenic animals synchronized at the L4-stage were exposed to caffeine (10 mM) for 24 h
at 20 ◦C. A reduced level of SBP-1::GFP in the intestine was observed in caffeine-fed animals.
Statistical significance was calculated using Student’s t-test. *, p < 0.05. Error bars represent standard
deviation (SD). (B) FAT-5::GFP, FAT-6::GFP, and FAT-7::GFP transgenic animals synchronized at the
L4-stage were exposed to caffeine (10 mM) for 24 h at 20 ◦C. The caffeine-fed transgenic animals showed
reduced intensity levels of FAT-5::GFP, FAT-6::GFP, and FAT-7::GFP in the intestine. The graph indicates
the effect of caffeine intake on the relative levels of fusion protein intensity values in the respective
transgenic animals. Statistical significance was calculated using Student’s t-test. *, p < 0.05. Error bars
represent SD. (C,D) Caffeine-fed animals displayed reduced lipid content as quantified by Nile Red
(NR) and Oil Red O staining. Wild-type animals synchronized at the L4-stage were exposed to caffeine
(10 mM) for 24 h at 20 ◦C. The graphs show the relative NR fluorescence or Oil Red O intensity in
caffeine-fed animals compared to those in animals fed a caffeine-free diet. Statistical significance was
calculated using Student’s t-test. *, p < 0.05. Error bars represent SD.

As caffeine-fed animals showed the down-regulated expression of lipogenesis genes, sbp-1, fat-5,
fat-6, and fat-7, we further examined fat storage in these animals with both NR and Oil Red O staining,
the dyes that selectively stain lipid droplets in the cells. The fat storage was decreased in wild
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type N2 animals fed with caffeine compared to that in animals fed the caffeine-free diet (Figure 4C,D),
indicating that caffeine intake suppresses fat storage in C. elegans.

3.4. PE Supplementation Improves Mitochondrial Activity and Morphology in Caffeine-Fed Animals

Dietary intake of phospholipids is known to have beneficial effects on several chronic diseases,
including heart disease, inflammation, cancer, metabolic disease, and health promotion [49].
We investigated the effects of PE supplementation to determine whether PE supplementation
alleviates the mitochondrial dysfunction induced by caffeine intake. We examined the effects of
PE supplementation at concentrations of 0.1 mM, 1 mM, 5 mM, 10 mM, or 50 mM on mitochondrial
activity in the intestine of C. elegans (Supplementary Figure S2). We found that PE supplementation
significantly improved the mitochondrial activity that was decreased by caffeine intake and its effect was
saturated at 5 mM of PE (Supplementary Figure S2 and Figure 5A), suggesting that PE supplementation
has a beneficial effect on mitochondrial activity under caffeine diet conditions and that supplementation
with 5 mM PE is optimal.
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Figure 5. Supplementation with phosphoethanolamine (PE) or ethanolamine (ETA) mitigated the
altered mitochondrial activity and morphology owing to caffeine intake in Caenorhabditis elegans.
(A) Comparison of mitochondrial activity in the intestine of animals fed caffeine supplemented
with PE with that of caffeine-fed animals using MitoTracker staining. The graph shows the relative
levels of mitochondrial activity using ImageJ analysis. Statistical significance was calculated using
one-way ANOVA. * p < 0.05. Error bars represent standard deviation (SD). (B) Comparison of
mitochondrial morphology in the muscle cells of animals fed caffeine supplemented with PE with that
of caffeine-fed animals using MitoTracker staining. The graph indicates the percentage of animals with
mitochondria classified as tubular, intermediate, fragmented, swollen, or aggregated. (C) The effect of
caffeine intake with PE supplementation on mitochondrial morphology was analyzed in the transgenic
strain SJ4103 expressing a mitochondrial-targeted GFP under the control of the muscle-specific myo-3
promoter. The graph indicates the percentage of animals with muscle mitochondria classified as normal,
fused, or fragmented. (D) Myofilament abnormality owing to caffeine intake visualized using the
MYO-3::GFP transgene. Representative fluorescent images are shown for both the caffeine-free diet
condition (0 mM) and PE supplementation condition (PE), resulting in normal filament organization.
The MYO-3::GFP abnormalities (aggregations) observed in caffeine-fed animals (10 mM) were restored
by PE supplementation. The graph indicates the percentage of animals classified as having normal
muscle or damaged muscle (aggregations) in the respective conditions. (E) Comparison of mitochondrial
activity in the intestine of animals fed caffeine supplemented with ETA with that of caffeine-fed animals
using MitoTracker staining. The graph shows the relative levels of mitochondrial activity using ImageJ
analysis. Statistical significance was calculated using one-way ANOVA. *, p < 0.05. Error bars represent
SD. (F) The effect of caffeine intake with ETA supplementation on mitochondrial morphology was
analyzed in the transgenic strain SJ4103 expressing a mitochondrial-targeted GFP under the control
of the muscle-specific myo-3 promoter. The graph indicates the percentage of animals with muscle
mitochondria classified as normal, fused, or fragmented.

To confirm whether the PE supplementation also improves the mitochondrial morphology
disrupted by caffeine intake, we analyzed the mitochondrial morphology and the integrity of muscle
cells with PE supplementation through both MitoTracker staining and transgenic animals expressing
the transgene, Pmyo-3::mitoGFP or myo-3::GFP (Figure 5B–D). PE supplementation also significantly
improved mitochondrial morphology in caffeine-fed animals (Figure 5B–D), indicating that PE is
an important component for mitochondrial activity and morphology and PE supplementation can
overcome mitochondrial defects induced by caffeine intake.

We investigated the effects of supplementation with ethanolamine (ETA), a precursor of PE,
on mitochondrial activity and morphology in caffeine-fed animals. ETA supplementation also
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alleviated the decrease in mitochondrial activity in the intestine and the disruption in mitochondrial
morphology in the muscle cells owing to caffeine intake (Figure 5E,F). Taken together, our findings
clearly support the premise that the decrease in PE level induced by caffeine intake leads to defects in
mitochondrial activity and morphology.

3.5. PE Supplementation Suppresses the Activation of AMPK and DAF-16 Induced by Caffeine Intake in
C. elegans

Next, we determined whether PE supplementation alleviates the increased activation of AMPK and
DAF-16 by reducing mitochondrial stress response under caffeine intake conditions. First, we measured
the changes in mitochondrial stress response with caffeine intake and PE supplementation through
observations of hsp-6::GFP and gst-4::GFP transgenic animals, and found significant reductions in
the expression of both transgenes with PE supplementation (Figure 6A,B). These results indicated
that PE supplementation decreased the mitochondrial stress response induced by caffeine intake.
We further examined whether PE supplementation could suppress the activity of AMPK and DAF-16
induced by caffeine intake. We found that the protein level of phospho-AMPK was indeed significantly
reduced in wild-type animals with PE supplementation (Figure 6C). This result indicated that dietary
intake of PE can decrease the level of phospho-AMPK in caffeine-fed animals. Furthermore, we also
examined whether the nuclear localization of DAF-16 is suppressed by PE supplementation using
transgenic animals expressing a daf-16::GFP transgene (Figure 6D). Notably, animals fed caffeine with
PE supplementation showed a reduced level of DAF-16 nuclear accumulation in all three tissues,
including the neurons, hypodermis, and intestine. These results indicated that the reduction in PE
levels by caffeine intake likely modulated DAF-16::GFP nuclear localization. Importantly, these findings
suggest that the cellular PE level is one of the critical factors that regulate the signaling pathways
triggered by a mitochondrial stress response in organisms.
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transgenic animals supplemented with PE. The expression level of sbp-1::GFP in animals fed caffeine 
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Figure 6. Phosphoethanolamine (PE) supplementation mitigates mitochondrial stress response and
activation of AMPK and DAF-16 owing to caffeine intake in Caenorhabditis elegans. (A,B) HSP-6::GFP and
GST-4::GFP transgenic animals were synchronized at the L4-stage and fed either 0 or 10 mM of caffeine
for 24 h at 20 ◦C with PE supplementation, and the respective fusion proteins were observed under
fluorescence microscopy and quantified using ImageJ analysis. Statistical significance was calculated
using one-way ANOVA. *, p < 0.05. Error bars represent standard deviation (SD). (C) Western blot
analysis of phospho-AMPK protein levels in animals fed caffeine with PE supplementation. Respective
AMPK and phospho-AMPK band intensities were normalized against those of β-Actin in the same
lane. Then, the normalized AMPK and phospho-AMPK band intensities were converted to a relative
value in comparison to that of the normalized AMPK and phospho-AMPK band intensities at 0 mM,
as shown in the graph; values are mean ± SD of three biological replicates of lysates from 300 animals.
Statistical significance was calculated using the Student’s t-test. *, p < 0.05. (D) Images show the
DAF-16::GFP expression patterns of animals fed caffeine supplemented with PE in the respective
tissues. DAF-16::GFP transgenic animals were synchronized at the L4-stage and were fed either 0 or
10 mM of caffeine for 24 h at 20 ◦C with PE supplementation, and the fusion protein was observed
under fluorescence microscopy. The graph indicates the percentage of animals that show a distribution
in the subcellular localization of DAF-16 in the respective tissues.

3.6. PE Supplementation Suppresses the Effects of Caffeine Intake on Lipid Metabolism in C. elegans

Next, we attempted to elucidate whether the effects of caffeine intake on lipid metabolism are
suppressed by PE supplementation. We first examined the expression level of sbp-1::GFP in transgenic
animals supplemented with PE. The expression level of sbp-1::GFP in animals fed caffeine with PE
supplementation was increased significantly; however, the level was moderate (Figure 7A). This result
suggested that the low PE level partially contributed to the decreased expression of sbp-1::GFP in
animals fed caffeine, and other unknown factors are required to fully rescue the decreased lipogenesis
owing to caffeine intake.
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Figure 7. Phosphoethanolamine (PE) supplementation improves lipogenesis and fat storage affected
by caffeine intake in Caenorhabditis elegans. (A) SBP-1::GFP transgenic animals synchronized at the
L4-stage were exposed to caffeine with PE supplementation for 24 h at 20 ◦C. An increased level of
SBP-1::GFP in the intestine was observed in animals fed caffeine with PE supplementation. Statistical
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significance was calculated using one-way ANOVA. *, p < 0.05. **, p < 0.01. Error bars represent standard
deviation (SD). (B,C) Animals fed caffeine supplemented with PE showed partially increased lipid
content as quantified by both Nile Red (NR) and Oil Red O staining. Wild-type animals synchronized
at the L4-stage were exposed to caffeine (10 mM) with PE supplementation for 24 h at 20 ◦C. The graphs
show the relative NR fluorescence or Oil Red O intensity of animals fed caffeine supplemented with
PE compared to those of caffeine-fed animals. Statistical significance was calculated using one-way
ANOVA. *, p < 0.05. **, p < 0.01. Error bars represent SD.

We also examined the effect of PE supplementation on fat storage in animals fed caffeine.
A significant improvement in fat storage was observed in animals fed caffeine supplemented with PE,
although the level was not similar to that of the animals fed a caffeine-free diet (Figure 7B). This result
suggested that the decrease in PE level because of caffeine intake in part reduced fat storage through
lipogenesis. Taken together, we propose that caffeine intake causes a reduction in the cellular level of PE,
which activates phospho-AMPK and DAF-16 nuclear localization, and suppresses lipogenesis, which is
mediated by the increased mitochondrial stress response (Figure 8). In summary, our findings indicate
that dietary PE supplementation in caffeine-fed animals bestows beneficial effects on mitochondrial
integrity disrupted owing to caffeine intake.
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mitochondrial stress and lipogenesis owing to caffeine intake in Caenorhabditis elegans.

4. Discussion

Environment and nutritional status have been explored as important regulators in developmental
processes and metabolic pathways [50–52]. The effects of caffeine, the most widely consumed diet
component, have been studied in a C. elegans model to understand its physiological roles both at the
molecular and organismal level [10–16,53,54]. Previous studies have shown age- and dose-dependent
adverse and beneficial effects of caffeine intake. Intake of a higher dose of caffeine (>10 mM) at the
earlier developmental stage of animals showed adverse effects, such as developmental arrest, activation
of stress-response pathways, and stimulation of food-avoidance behavior [10–12], whereas animals
treated with a low dose of caffeine (<10 mM) at the later developmental stage generally showed
beneficial effects. Therefore, we examined the physiological effects of caffeine ingestion with 10 mM
caffeine feeding at the fourth larval stage, and observed these effects in adult-stage C. elegans in this
study. At this stage of C. elegans, most developmental processes are completed, and thus, it is convenient
to investigate caffeine’s effects on metabolism and overall health. We also recently reported the reduced
fertility caused by defective oocytes and eggshell integrity resulting from the decreased production of
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yolk protein owing to caffeine intake in adult-stage C. elegans [13], thereby suggesting that caffeine
modulates metabolism. Here, we further examined the effects of caffeine intake on metabolism by
analyzing lipid composition in caffeine-fed animals because caffeine intake is known to be closely
linked to lipid metabolism [4–7]. We found that caffeine intake significantly reduced the level of PE,
leading to a decrease in mitochondrial activity and disruption in mitochondrial morphology. Notably,
upon PE supplementation, these adverse effects of caffeine intake on mitochondrial functions were
partially alleviated.

Phospholipids can have different structures in an aqueous environment depending on their
shapes [55]. For example, phosphatidylcholine has a cylinder shape that can assemble into lamellar
phase. On the other hand, phosphatidylethanolamine has a cone shape that can assemble into hexagonal
phase. PE is the second-most abundant metabolite in membrane phospholipids and an intermediate of
phosphatidylethanolamine biosynthesis [56,57]. Synthesized phosphatidylethanolamine is abundant
in the mitochondrial inner membrane [26,27], and it can form a hexagonal phase that is thought
to play a role in membrane fusion events, which are important for mitochondrial function [58,59].
These findings suggest that PE utilization is essential to mitochondrial integrity. Mitochondria are
important organelles in the cells for maintaining cellular homeostasis, such as ATP generation via
oxidative phosphorylation and regulation of Ca2+ levels and multiple metabolic pathways of lipids,
amino acids, and iron-sulfur clusters [60–62]. In addition, mitochondria have vital activities, such as
stress responses, detoxification, and immune responses [63,64]. Given their crucial roles in cell
physiology, it is obvious that mitochondria are the first responders to various stressors that challenge
homeostasis in the organism. Consistently, the low PE level owing to caffeine intake observed in this
study considerably influenced mitochondrial activity and morphology. This finding was supported
by the alleviation of the adverse effects of caffeine intake with PE supplementation. Furthermore,
we found that low PE levels caused alterations in mitochondrial stress response and lipogenesis,
which were also improved upon PE supplementation; although they were not fully recovered, the effect
was significantly reduced. Therefore, our findings confirmed the roles of PE supplementation in
mitochondrial functions in caffeine-fed animals.

We also found not only a reduction in PE but also an increase in arachidonic acid (AA) with
caffeine intake in adult-stage C. elegans (Figure 1). This finding suggests the possibility that either
reduction in PE or increase in AA or both can cause the effects of caffeine intake observed in this
study. In addition, AA is also the structural phospholipid in the cell membrane [65]. In fact, the effects
on caffeine-fed animals were partially suppressed by PE supplementation, which may be attributed
to the residual increased level of AA. Therefore, the effects of the increased AA level remain to be
determined along with those of the low PE level in caffeine-fed animals. Furthermore, it is interesting
to note that PDE inhibitors induce the lipolysis pathway in mice [66]. Three main phospholipases,
including phospholipase A2, phospholipase C, and phospholipase D, act on phospholipids to produce
esterified AA [67]. Considering that caffeine is one of the PDE inhibitors [68], phospholipids can be
catalyzed by phospholipases to form AA with caffeine intake [67,69], and thus, increase the AA level.
It would be worthwhile to postulate how caffeine intake reduces the level of PE. It has been reported
that caffeine can directly interact with unsaturated lipid membranes and locate at the head group–tail
group interface of the bilayers [70]. In this sense, it is possible that caffeine interacts with PE and
neutralizes the caffeine-induced effects although the direct interaction between caffeine and PE remains
to be determined. In this study, on supplementation with ETA, the effects of caffeine intake were also
improved as with PE, suggesting that the PE biosynthesis pathway is intact. Therefore, the availability
of precursors of ETA in the PE synthesis pathway may be one possible explanation for the low level of
PE in caffeine-fed animals. For example, serine is an important precursor of ETA [71]. To elucidate this
possibility, amino acid metabolism with caffeine intake needs to be further analyzed.

Previous studies have shown that a low dose of caffeine inhibits oxidative stress,
neuroinflammation, and synaptic dysfunction in both a lipopolysaccharide-induced mouse model
and a rat model [72,73], suggesting that caffeine appears to be a potent antioxidant and has a
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protective effect on the oxidative stress response at a low dose. Our results showed that caffeine
intake induced the mitochondrial oxidative stress response, showing increased expression of the hsp-6
gene, and the gst-4 gene encoding an antioxidant enzyme (Figure 3A,B), suggesting the production
of reactive oxygen species (ROS) in caffeine-fed animals. Furthermore, we examined mitochondrial
ROS generation using CellROX Green, which showed increased ROS production in mitochondria by
caffeine intake (Figures S1 and S2), indicating that caffeine intake increases mitochondrial ROS and
oxidative stress responses.

In this study, we revealed the adverse effects of caffeine intake on mitochondrial integrity and
lipid metabolism through AMP-activated protein kinase (AMPK) activation in a C. elegans model.
In contrast, it has been previously suggested that a low dose (1–5 mM) of caffeine intake increases
mitochondrial biogenesis in myotubes in primary cultured myotubes [74]. Although there are
contradictions in the dose-dependent effect of caffeine intake in different systems, it is certain that
the mode of action owing to caffeine intake is associated with mitochondrial modulation. As an
energy-sensing signaling pathway, AMPK responds to the decreased cellular energy and is activated
by phosphorylation [75]. It was reported that DAF-16, the forkhead box transcription factor class O
(FoxO) ortholog of C. elegans, is the downstream target of phospho-AMPK in oxidative stress resistance
and longevity [36]. Phospho-AMPK also regulates lipogenesis through the suppression of SREBP in
mice [41,42], and reduces lipid accumulation in mammalian liver cells [76]. In our study, the expression
of sbp-1, a master transcriptional regulator of lipid synthesis, was decreased in caffeine-fed animals in
which AMPK was activated (Figure 4). These findings are consistent with our results, which show
that caffeine intake activates AMPK, and thus DAF-16, but suppresses SREBP, which induces stress
resistance and reduces lipogenesis, respectively (Figure 8).

It is proposed that dietary phospholipids, as a mixture or as individual phospholipids,
have beneficial effects on human health [77]. Soybean, eggs, and milk are excellent sources of PE [78],
and we can consume PE daily through these foods. As shown in this study, PE supplementation
can mitigate the adverse effects of caffeine intake. Therefore, under certain circumstances, PE is an
important dietary supplement for good health. Finally, it is remarkable that a single component,
PE, can improve mitochondrial integrity, and thus, its functions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/12/11/3348/s1,
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(PE) supplementation on mitochondrial activity, Table S1: Analysis of lipid composition after caffeine treatment
through GC-TOF-MS chromatography in Caenorhabditis elegans, Table S2: Statistical analysis by ANOVA.
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