Supplementary materials.

Opposing effect of naringenin and quercetin on the junctional compartment of MDCK II cells to modulate the tight junction.

Mio Nakashima^{1,2}, Misaki Hisada^{1,#}, Natsuko Goda¹, Takeshi Tenno^{1,3}, Ayaka Kotake⁴, Yuko Inotsume⁴, Ikuo Kameoka⁴, and Hidekazu Hiroaki^{1,2,3,*}

¹Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi, 464-8601, Japan, ²Department of Biological Sciences, Faculty of Science, Nagoya University, ³BeCerllBar, LLC., Nagoya, Aichi, Japan, ⁴Cosmetics Research Department, Nicca Chemical Co. Ltd., Fukui, Japan.

Working title: *Opposing effects of naringenin and quercetin on the tight junction* #Present address, Research Center, Koken Co.,Ltd., 2-13-10, Ukima, Kita-ku, Tokyo, 115-0051, Japan

*All correspondence should be addressed to Hidekazu Hiroaki, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi, 464-8601, Japan; <u>hiroaki.hidekazu@f.mbox.nagoya-u.ac.jp</u>; Tel. +81(52)789-4535; Fax. +81(52)747-6816

Supplementary Figure S1. Effects of quercetin (QUE) on cell morphology in MDCK II cells. Statistical analyses were performed by Turkey-Kramer multiple comparison tests. (A) Relative level of long diameter, (B) short diameter and (C) area. Different from the value of the control cells, *p<0.05. n=11.

Cells were treated with flavonoids at a concentration of 100 μ M for 48 hours. Different from the value of the control cells, *p<0.05.

Supplementary Figure S3. Effects of flavonoids on the morphology and TJ integrity of MDCK II cells. Bright-field differential interference contrast (DIC) images (A-C) and immunofluorescence staining of CLD-2 images (D-F) of MDCK II cells are arrayed. Cells were treated with QUE at a concentration of 100 μ M for 48 hours and then treated with QUE or DMSO at a concentration of 100 μ M for 48 hours after washed with medium. (A, D) control (DMSO), (B, E) QUE-DMSO and (C, F) QUE-QUE. Scale bar = 100 μ m. For immunofluorescence staining, brightness is modified to 150%.

Supplementary Figure S4. Effects of QUE on CLD-2 expression in MDCK II cells.

Cells were treated with QUE at a concentration of 100 μ M for 48 hours and treated with QUE or DMSO at a concentration of 100 μ M for 48 hours after being washed with medium. Bands in the red line are focused.

Supplementary Figure S5. Effects of flavonoids on CLD-2 expression in MDCK II cells.

Cells were treated with flavonoids at a concentration of 100 μ M for 48 hours. (A)-(C) Bands in the red line are focused. Bands in the black line is shown in Fig. 4. (D) Value in the red line represent relative revel of CLD-2 (bands in the red line).

(A) LNX1-NAR

ω₂-1H (ppm) 6 (E) LNX1-NHD

Supplementary Figure S6. Direct interaction between LNX-1(PDZ2) and the flavonoids or

CLD-1. (a) (A)-(G) Chemical structure of the flavonoids titrated. (H) CLD-1 ligand. (b) Overlaid HSQC spectra of 0.1 mM LNX-1(PDZ2) in the absence (black) and presence (red) of 2 equivalent of NAR (A), NRG (B), NRT (C), HST (D), NHD (E), HSD (F), QUE (G) and 1 equivalent of CLD-1 (H). (c) Normalized chemical shift changes in the presence of 2 equivalent of NAR (A), NRG (B), NRT (C), HSD (F), QUE (G) and 1 equivalent of CLD-1 (H).

(A) ZO1-NAR

(B) ZO1-NRG

<u>(D) ZO1-HST</u>

Supplementary Figure S7. Direct interaction between ZO-1(PDZ1) and the flavonoids. (a) Chemical structure of the flavonoids titrated. (b), (d) Overlaid HSQC spectra of 0.1 mM ZO-1(PDZ1) in the absence (black) and presence of 2 or 10 equivalent (red) of NAR (A), NRG (B) and NRT (C), 2 equivalent of HST (D), 2 or 10 equivalent of NHD (E), 2 or 5 equivalent of hesperidin (F), 2 or 4 equivalent of QUE (G) and 2 equivalent of RUT (H), respectively. (c), (e) Normalized chemical shift changes in the presence of 2 or 10 equivalent of NAR (A), NRG (B) and NRT (C), 2 equivalent of HST (D), 2 or 10 equivalent of NHD (E), 2 or 5 equivalent of HSD (F), 2 or 4 equivalent of HST (D), 2 or 10 equivalent of NHD (E), 2 or 5 equivalent of HSD (F), 2 or 4 equivalent of HST (D), 2 or 10 equivalent of NHD (E), 2 or 5 equivalent of HSD (F), 2 or 4 equivalent of QUE (G) and 2 equivalent of NHD (E), 2 or 5 equivalent of HSD (F), 2 or 4 equivalent of QUE (G) and 2 equivalent of NHD (E), 2 or 5 equivalent of HSD (F), 2 or 4 equivalent of QUE (G) and 2 equivalent of NHD (E), 2 or 5 equivalent of HSD (F), 2 or 4 equivalent of QUE (G) and 2 equivalent of NHD (E), 2 or 5 equivalent of HSD (F), 2 or 4 equivalent of QUE (G) and 2 equivalent of RUT (H).

A β-ac	cL tin	D-1 N N	CLD-3 CONICO VOILO VARA	Control TO	4 CL ~~~~	LD-7 Autom	M. W. (x 42	1,000)
ŰĽ	-						20	
	1-Control	1-NAR	3-Control	3-NAR	4-Control	4-NAR	7-Control	7-NAR
β -actin	10298	12159	7206	10395	10787.6	12474	9696	6625
CLD-X	8619	11399	1587	2703.23	31611.7	34191.3	17677	15773
Relative level(%)	100	112	100	118	100	94	100	131

Supplementary Figure S8. Effects of NAR on CLD1, 3, 4, 7 expression in MDCK II cells.

Cells were treated with NAR at a concentration of 100 μ M for 48 hours.

В

(A) Western blotting analysis of CLD-1, -3, -4 and -7 expression in cell lysates from control and 100

µM NAR-treated MDCK II cells. (B) Western blotting densitometry is above table.

Supplementary Figure S9. Effects of compounds on CLD-2 expression in MDCK II cells. Cells were treated with compounds at each concentration for 48 hours. (A), (B) Bands in the black line is shown in Fig. 7.

compound	LNX1-PDZ2		affaat on CLD2			
	interaction	interaction	Δδave.(2eq) [ppm]	interaction	$\Delta \delta ave.(X eq) [ppm]$	effect on CLD2
Naringenin	±	±	0.0022	++	0.0043 (10eq)	+++
Naringin	±	±	0.0008	++	0.0041 (5eq)	++
Narirutin	±	±	0.0009	++	0.0057 (10eq)	±
Hesperetin	±	++	0.0052	no data	no data	
Hesperidin	±	±	0.0087	++	0.0040 (5eq)	++
Neohesperidin	±	±	0.0011	+	0.0029 (10eq)	±
Quercetin	precipitation	precipitation	0.0015	precipitation	0.0012 (4eq)	
Rutin	no data	±	0.0019	no data	no data	±

Supplementary Table S1. Effects of flavonoids on NMR and the amount of CLD2.

We show interactions between ZO-1 / LNX-1 and flavonoids, and effects of CLD2 by flavonoids.

	research information	QUE concentration	time	cell type	effect on CLD	toxicity	other signaling
1	The Journal of Nutrition, Volume 138, Issue 6, 2008, 1067-1073.	200 µM	24 h	Caco-2	unaffect CLD1, 3, 7	-	not involved in ML-7
2	The Journal of Nutrition, Volume 139, Issue 5, 2009, 965-974.	100 µM	0-48 h	Caco-2	increase CLD4	no	further investigation
3	Nutrients 2015, 7(6), 4578-4592.	0.5-100 µM	24 h	A549	decrease CLD2	-	not involved in ERK, Akt
4	Am J Transl Res. 2019; 11(8): 4683-4695.	25 µmol/kg	twice/day, 3 days	rat brain tissue	increase CLD5	no	activate Wnt-β-catenin
5	Biological Trace Element Research, 2020	75 mg/kg	at 3-h intervals, 35 days	mouse testis	decrease CLD11	no	further investigation
6	this research	100 µM	48 h	MDCK II	decrease CLD2	yes	further investigation

Supplementary Table S2. Effects of quercetin (QUE) on some CLD.

Result of research is the above.