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Abstract: Atopic dermatitis (AD) is a skin allergy accompanied by acute and chronic dermal
inflammation. In traditional oriental medicine, Laminaria japonica has been used to treat various
diseases, including inflammatory diseases. Therefore, to determine the therapeutic potential of
L. japonica against AD, we investigated the inhibitory effects of L. japonica water extract (LJWE) on the
inflammatory mediators and AD-like skin lesions. We determined the cell viability of LJWE-treated
HaCaT cells using the cell counting kit-8 assay and the levels of inflammatory cytokines using
cytometric bead array kits. Additionally, we analyzed the modulatory effects of LJWE on the
signaling pathways in tumor necrosis factor-α/interferon-γ-stimulated HaCaT cells via Western
blotting. Furthermore, we determined the in vivo effect of LJWE on NC/Nga mice and found
that LJWE remarkably improved the skin moisture, reduced dermatitis severity, and inhibited
the overproduction of inflammatory mediators in 2,4-dinitrochlorobenzene-sensitized NC/Nga
mice. We also observed that LJWE inhibits the expression of inflammatory chemokines in human
keratinocytes by downregulating the p38 mitogen-activated protein kinase signaling pathway and
activating the signal transducer and activator of transcription 1. In conclusion, LJWE has the
therapeutic potential against AD by healing AD-like skin lesions, and suppressing inflammatory
mediators and major signaling molecules.
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1. Introduction

Atopic dermatitis (AD), a skin allergy that affects infants and adults, is characterized by clinical
symptoms such as redness, dryness, itchiness, and the thickening of the inflamed skin lesions [1,2].
The pathogenesis of AD is affected by a variety of factors, including genetics, environment, psychological
state, host immune dysfunction, and defective epidermal barriers [1]. Although the pathogenesis of
AD is not fully clarified, many researchers have found that AD is associated with a defective skin
barrier and leads to allergic responses in inflamed keratinocytes [3]. In the skin lesion of acute AD,
the secretion of IL-4, IL-5, and IL-13 by Th-2 cells, and IgE production by B cells, are increased [4].
However, the increased productions of interferon (IFN)-γ and tumor necrosis factor (TNF)-α are
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observed in the chronic phase [5]. In particular, keratinocytes stimulated by pro-inflammatory
cytokines secrete inflammatory mediators under the regulation of nuclear factor-kappa B (NF-κB),
mitogen-activated protein kinases (MAPKs), and signal transducer and activator of transcription
(STAT), leading to the infiltration of monocytes, mast cells, and T lymphocytes and the stimulation
of inflammatory response in the dermis [6–8]. Although current therapies recommend the use of
anti-inflammatory agents (e.g., corticosteroids), immunosuppressants (e.g., cyclosporin, methotrexate,
and azathioprine), and biologics which are effective [9], they can exert adverse side effects and prove
to be inefficient in patients who are drug tolerant. Therefore, the development and application of
herbal medicines and their derivatives, as complementary and alternative candidates, to relieve the
symptoms of AD are increasing because of their long-term use and effectiveness against AD [10].

Laminaria japonica, a member of brown algae, is known as “Gonpo” or “Dasima” in Korea,
“Kunbu” or “Haidai” in Chinese, and “Kelp” in Europe and North America [9]. In traditional oriental
medicines, L. japonica has been used to treat scrofula, goiter, edema, testicular pain and swelling,
chronic bronchitis, and pulmonary tuberculosis [11,12]. Recently, it has been demonstrated that
L. japonica has various biological activities such as anti-tumor, anti-coagulation, anti-viral; it also
induces hypoglycemia and hypolipidemia. The in vitro and in vivo immunomodulatory effects of
L. japonica and its components are well known [11,13–15]. In particular, a previous study showed
that L. japonica inhibited the overproduction of ultraviolet B -induced inflammatory cytokines and
mediators in human keratinocytes [16]. Although L. japonica is a potent candidate against AD,
its anti-AD properties remain undetermined. In this study, we investigated the inhibitory effects
of L. japonica water extract (LJWE) on the overproduction of inflammatory cytokines in TNF-α and
IFN-γ-stimulated human keratinocytes, and assessed the beneficial effects of LJWE in AD-like skin
lesions in NC/Nga mice.

2. Materials and Methods

2.1. Materials

Dulbecco’s modified Eagle’s medium (DMEM) was obtained from Hyclone (Logan, UT, USA).
Phosphate-buffered saline, fetal bovine serum (FBS), penicillin, and streptomycin were obtained
from Gibco-BRL (Gaithersburg, MD, USA). The Cell Counting Kit-8 (CCK-8) was purchased from
Dojindo Molecular Technologies Inc. (Rockville, MD, USA). The bicinchoninic acid assay (BCA) kit,
IFN-γ and TNF-α were purchased from Thermo Fisher Scientific (Waltham, MA, USA). L-leucine,
isoleucine, phenylalanine, tryptophan, linolenic acid, palmitic acid and stearic acid were purchased
from Cayman chemical (Ann Arbor, MI, USA). The 15-hydroxy-5,8,11,13-eicosatetraenoic acid,
stearidonic acid, eicosapentaenoic acid, arachidonic acid, and linoleic acid were obtained from
Targetmol (Boston, MA, USA). MS-grade acetonitrile, water and formic acid were purchased from
Thermo Fisher Scientific (Waltham, MA, USA). The p-STAT1, STAT1, p-IκBα, IκBα, p-p38, p38,
p-ERK, ERK, p-JNK, JNK, p65, and β-actin antibodies were purchased from Cell Signaling Technology
(Beverly, MA, USA). p50 and anti-proliferating cell nuclear antigen antibodies were obtained from
Santa Cruz Biotechnology (Santa Cruz, CA, USA).

2.2. Preparation and Chemical Profiling of LJWE

LJWE was obtained from the KOCBiotech (Daejeon, Republic of Korea) and stored in the
herbarium (voucher number #KW-6) of the Herbal Medicine Research Division. Dried L. japonica
(1 kg) was extracted with distilled water (10 L, v/v) under reflux for 3 h at 100 ◦C and lyophilized
after filtration. Brownish LJWE powder was stored at −20 ◦C until further use. To determine the
constituents of LJWE, we performed an ultra-performance liquid chromatography-tandem mass
spectrometry (UPLC–MS/MS) analysis, according to previously reported methods [17,18]. Briefly,
a Dionex UltiMate 3000 system coupled with a Thermo Q-Exactive mass spectrometer was used.
Chromatographic separation was achieved by an Acquity BEH C18 column (100 × 2.1 mm, 1.7 µm)
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with acetonitrile, 0.1% formic acid in water. Data acquisition and analysis were performed using
Xcalibur, TraceFinder 3.2, and Compound Discoverer 3.1 softwares (Thermo Fisher Scientific, Waltham,
MA, USA).

2.3. Cell Viability and Treatments

HaCaT cells, from an immortalized human skin keratinocyte cell line, were purchased from
Elabscience (Houston, TX, USA). The cells were cultured in DMEM supplemented with 10% FBS,
100 µg/mL streptomycin, and 100 U/mL penicillin at 37 ◦C in a humidified incubator with 5% CO2.
To determine the cell viability, the cells were seeded at a density of 1 × 104 cells/well in a 96-well
plate and incubated with LJWE (25–200 µg/mL) for 24 h. The viability of the LJWE-treated cells was
determined using the CCK-8 assay, according to the manufacturer’s guidelines. For measuring the
chemokine levels, the cells (1 × 104 cells/well in a 96-well plate) were pretreated with LJWE for 1 h and
incubated with or without IFN-γ and TNF-α (each 10 ng/mL) for 24 h. After incubation, the levels
of interleukin (IL)-8, regulated on the activation of normal T-cell expressed and secreted (RANTES),
and thymus and activation-regulated chemokine (TARC) in culture medium were determined.

2.4. Western Blotting

HaCaT cells were seeded in 10 cm dishes and cultured until approximately 70% confluency
was obtained. The cells were pretreated with LJWE for 1 h and incubated with or without
TNF-α/IFN-γ (each 10 ng/mL) for 3 h. Whole cell lysates and nuclear proteins were extracted
using cold radioimmunoprecipitation assay buffer with protease and phosphatase inhibitors
(Biosesang, Seongnam, Korea) and NE-PER* nuclear and cytoplasmic extraction reagents
(Pierce Biotechnology, Rockford, IL, USA), respectively. The protein content of the cell was quantitated
using the BCA kit. Equal amounts of the extracted protein (20 µg) were separated using 4–15%
Mini-PROTEAN* TGX™ Precast Protein Gels (Bio-Rad, Hercules, CA, USA) via electrophoresis and
then transferred on to Fluoro Trans* polyvinylidene fluoride membrane (Pall Corporation, Dreieich,
Germany). The membranes were blocked with 5% skim milk (Sigma, St. Louis, MO, USA) or 3% bovine
serum albumin (MP Biomedicals, Irvine, CA, USA) for 2 h, and the primary antibodies (1:1000 dilution)
were incubated with the membrane in blocking solution at 4 ◦C overnight, followed by the incubation
with secondary antibodies (horseradish peroxidase-conjugated anti-IgG) at 4 ◦C for 1 h. ChemiDoc
Imaging System (Bio-Rad, Hercules, CA, USA) was used to detect protein expression.

2.5. Animal Study

Female NC/Nga mice (5 week-old) were purchased from Japan SLC (Shizuoka, Japan). The mice
were acclimatized under standard housing conditions (22 ± 2 ◦C and 50 ± 10% humidity with a 12/12 h
light/dark cycle) for 7 days. Water and food were provided ad libitum to the mice. All procedures
involving animals were approved by the Institutional Animal Care and Use Committee of the KPC
lab (Gwangju, Republic of Korea; approved number, KPC-P160006). The mice were exposed to
2,4-dinitrochlorobenzene (DNCB; Sigma-Aldrich, St. Louis, MO, USA) to induce AD. Briefly, to induce
AD-like skin lesions, 0.2 mL of 1% DNCB dissolved in acetone-olive oil (3:1, v/v) solution after
the the complete removal of dorsal coat hair was used. Subsequently, DNCB-sensitized mice were
challenged by applying 0.8% DNCB thrice per week, for 2 weeks, on the same region of dorsal
skin. The mice were randomly divided into five groups (n = 7), normal control (vehicle alone),
negative control (DNCB alone), positive control (DNCB + 5 mg/kg of prednisolone), low-dose LJWE
(LJWE L; DNCB + 100 mg/kg of LJWE), and high-dose LJWE (LJWE H; DNCB + 100 mg/kg of LJWE)
groups. LJWE and prednisolone was dissolved in distilled water (vehicle) and the dose volume
administered was 10 mL/kg. At the end of the experimental period, the mice were sacrificed using
CO2 anesthesia and the serum samples were collected for further analyses.
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2.6. Analysis of Dermatitis Severity, Scratching Behavior, and Trans-Epidermal Water Loss (TEWL)

The severity of skin lesions was blindly graded every two weeks, for 4 weeks, according to the
method reported by Kang et al. [19]. The total severity index of dermatitis was defined as the sum of
individual scores graded as follows: 0 (none), 1 (mild), 2 (moderate), and 3 (severe) for each of the five
symptoms: erythema, itchiness/dryness, edema/hematoma, excoriation/erosion, and lichenification.
The scratching frequency was recorded using a digital camera, and the number of scratching behaviors
with the hind limbs on the dorsal skin was counted for 20 min. Trans-epidermal water loss (TEWL)
from mouse dorsal skin was measured every two weeks, for 4 weeks, using Tewameter* TM300
(CK electronic GmbH, Germany) and data were recorded under specific conditions of 24–25 ◦C
and 50–60% humidity after achieving stabilization at approximately 30–45 s.

2.7. Estimation of Inflammatory Chemokines

The chemokines (TARC, RANTES, and IL-8) present in the culture medium of HaCaT cells and
the chemokines (RANTES and TARC) present in the mice were measured using cytometric bead array
kits (LEGENDplex, Biolegend, San Diego, CA, USA) according to the manufacturer’s instructions.
The levels of IgE were estimated using a commercial ELISA kit (mouse IgE ELISA MAX™, Biolegend,
San Diego, CA, USA).

2.8. Statistical Analysis

Data are represented as the mean ± standard error of the mean (SEM). Most data using one-way
analysis of variance (ANOVA) with Dunnett’s post-hoc test, or the Mann–Whitney U test with the
Kruskal–Wallis test were analyzed via Prism (GraphPad, San Diego, CA, USA). Western blot analysis
was compared using the unpaired two-tailed t test.

3. Results and Discussion

3.1. Inhibitory Effects of LJWE on the Overproduction of Inflammatory Chemokines in
TNF-α/IFN-γ-Stimulated HaCaT Cells

Keratinocytes largely form epidermis and maintain skin homeostasis via the secretion of
inflammatory chemokines and cytokines, thereby leading to the recruitment of immune cells. TNF-α and
IFN-γ can synergistically induce chemokine production in keratinocytes [20]. In the pathogenesis
of AD, the stimulation of keratinocytes with TNF-α/IFN-γ results in the production of inflammatory
chemokines, including IL-8, RANTES, and TARC [5,21–23]. These chemokines aggravate dermal
inflammation by giving rise to AD-like skin lesions that are associated with the development and severity
of AD. Stimulated keratinocytes secrete IL-8 resulting in the infiltration of T cells and neutrophils into
the epidermis [24,25]. TARC and RANTES secreted by keratinocytes play an important role in the
activation of macrophages and infiltration of T helper 2 cells in the inflamed tissues [5]. Therefore,
we investigated whether LJWE could suppress these chemokines in HaCaT human keratinocyte cells
co-stimulated with TNF-α/IFN-γ.

To determine the optimal effective range of LJWE, we treated HaCaT cells with varying
concentrations of LJWE ranging from 25 to 200 µg/mL for 24 h. However, no remarkable changes in
the cell viability were observed up to the concentration of 200 µg/mL regardless of the co-stimulation
of TNF-α/IFN-γ (Figure 1A). We then examined the inhibitory effect of LJWE on the expression of
inflammatory chemokines in TNF-α/IFN-γ-stimulated HaCaT cells. Consistent with the results of
previous reports [24,26], co-stimulation with TNF-α/IFN-γ in HaCaT cells significantly increased the
expression of TARC, RANTES, and IL-8 compared to the vehicle control (p < 0.001). Additionally,
LJWE significantly inhibited the expression of TARC, RANTES, and IL-8 in a dose-dependent manner
(p < 0.001) (Figure 1B). These data suggest that LJWE can suppress the expression of inflammatory
chemokines by TNF-α/IFN-γ co-stimulation in human keratinocytes.
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Figure 1. Laminaria japonica water extract (LJWE) inhibits the expression of inflammatory chemokines
in tumor necrosis factor (TNF)-α/interferon (IFN)-γ-stimulated HaCaT cells. (A) Cell viability in
the presence of LJWE. The cells were treated with 0–200 µg/mL of LJWE with (+) or without (−)
TNF-α/IFN-γ-stimulation for 24 h, and the cell viability was measured using the Cell Counting Kit-8
assay. (B) The inhibitory effects of LJWE on the overproduction of interleukin (IL)-8, regulated on
activation normal T-cell expressed and secreted (RANTES), and thymus and activation-regulated
chemokine (TARC). *** p < 0.001 vs. control treated with vehicle.

3.2. Effects of LJWE on the Expression of MAPK/NF-κB/STAT1 in TNF-α/IFN-γ-Stimulated HaCaT Cells

The expression of inflammatory chemokines, including TARC, RANTES, and IL-8 in
TNF-α/IFN-γ-stimulated HaCaT cells was primarily regulated by MAPKs, NF-κB, and/or STAT
signaling pathways [24,27,28]. NF-κB and STAT1, the important transcription factors that are activated
by pro-inflammatory cytokines, that are present in the cytoplasm translocate into the nucleus and lead to
the expression of several inflammatory chemokine and cytokine genes [29,30]. TNF-α/IFN-γ stimulation
in HaCaT cells activates intracellular MAPK signaling pathways, thereby inducing the activation
and translocation of NF-κB and STAT1. Thus, we first evaluated the modulatory effect of LJWE
on the TNF-α/IFN-γ-induced phosphorylation of MAPKs (p38, ERK, JNK, and IκBα) in the
signaling pathway of HaCaT cells. We observed that LJWE inhibited the phosphorylation of
p38-MAPK in TNF-α/IFN-γ-stimulated HaCaT cells, while LJWE did not inhibit the phosphorylation
or degradation of ERK, JNK, and IκBα (Figure 2A). Similar to our results, several studies
found that p38-MAPK, but not ERK and JNK, were involved in the TNF-α/IFN-γ-induced
expression of inflammatory chemokines in HaCaT cells [27,31,32]. We then determined whether
LJWE could inhibit the activation and intranuclear translocation of NF-κB and STAT1 after
TNF-α/IFN-γ-stimulation. In accordance with the previous reports, co-stimulation with TNF-α/IFN-γ
increased the intranuclear translocation of NF-κB p65, whilst LJWE did not affect this phenomenon
(Figure 2B). We determined that the phosphorylation of STAT1 was inhibited by LJWE in LJWE-treated
HaCaT cells (Figure 2C, upper panel). Furthermore, LJWE inhibited the intranuclear translocation
of STAT1 in a dose-dependent manner (Figure 2C, lower panel). Kwon et al. [27] demonstrated that
blocking STAT1 activation through the p38 MAPK pathway inhibited chemokine productions in HaCaT
cells using p38-MAPK inhibitor. These findings indicate that the inhibitory effects of LJWE on the



Nutrients 2020, 12, 3238 6 of 13

production of inflammatory chemokines in human keratinocytes could be partially contributed by the
downregulation of the p38-MAPK signaling pathway, and STAT1 activation.
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Figure 2. Modulatory effects of LJWE on mitogen-activated protein kinases (MAPKs),
nuclear factor-kappa B (NF-κB), and signal transducer and activator of transcription 1 (STAT1) signaling
pathways in tumor necrosis factor (TNF)-α/interferon (IFN)-γ-stimulated HaCaT cells. The cells
were pretreated with (+) or without (−) LJWE for 1 h and incubated in the presence (+) or absence
(−) of TNF-α/IFN-γ (each 10 ng/mL) for 5, 15, and 30 min. Western blotting was performed to
determine the phosphorylation and degradation of p38, extracellular signal-regulated kinase (ERK)
and c-Jun N-terminal kinase (JNK), Inhibitor kappa B-alpha (IκBα), and STAT1 in whole cell lysates.
The translocation of NF-κB and STAT1 was determined 3 h post-TNF-α/IFN-γ treatment. (A) Effects of
LJWE on the phosphorylation and degradation of MAPKs in whole cell lysates. (B) Effects of LJWE on
the nuclear translocation of NF-κB. (C) Effects of LJWE on the activation (upper panel) and nuclear
translocation (lower panel) of STAT1. * p < 0.05 vs. control treated with vehicle. PCNA, proliferating cell
nuclear antigen.

3.3. Healing of DNCB-Induced AD-Like Skin Lesions by LJWE in NC/Nga Mice

NC/Nga mice have been widely used as an experimental model for the investigation of the
pathogenesis of AD and the development of anti-AD drug candidates. The pathological changes in
the skin of NC/Nga mice mimic AD by rapidly developing symptoms such as itchiness, erythema,
erosive lesions with edema, and hemorrhage on the skin [33,34]. The NC/Nga mice gradually increased
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their IgE production, whereas TARC and its receptor were highly expressed in the skin lesions of the
mice. Moreover, DNCB, a cytotoxic benzene derivative, resulted in AD-like skin lesions in NC/Nga
mice. To determine the beneficial effects of LJWE on AD-like skin lesions, DNCB-sensitized NC/Nga
mice were administered with prednisolone (5 mg/kg) and LJWE (100 or 300 mg/kg per day) for 4 weeks
(Figure 3A). During the experimental period, the body weight of LJWE-treated mice increased as
expected (Figure 3B, upper left panel). Repeated exposure to DNCB apparently induced AD-like
symptoms, such as erythema, dryness, thickening, and lichenification, whereas the severity of AD
was significantly reduced in the LJWE-treated mice in comparison with those in the negative control
group (p < 0.001, Figure 3B, upper right panel). We monitored the frequency of dorsal skin scratching
to evaluate the antipruritic effect of LJWE on DNCB-sensitized NC/Nga mice. The frequency of
scratching was significantly reduced in the LJWE-treated mice as compared to in the vehicle control
(p < 0.001, Figure 3B, lower left panel), thereby reducing the severity of AD. We estimated TEWL
in DNCB-sensitized NC/Nga mice to examine the effect of LJWE on the functions of skin barriers.
Although the DNCB-sensitized group showed a significant increase in TEWL score, the LJWE treatment
significantly reduced TEWL at all doses (p < 0.001, Figure 3B, lower right panel). Therefore, we found
that LJWE improved the health of the skin and its healing in vivo, indicating that LJWE is a potential
therapeutic candidate to treat AD.

We measured the levels of inflammatory chemokines (TARC and RANTES) and serum IgE to
determine the anti-pruritic and anti-inflammatory effects of LJWE. The TARC, RANTES, and IgE
levels in the DNCB-sensitized mice were significantly higher than those in the vehicle group (p < 0.001,
Figure 3C). The increased expression of TARC and RANTES induced by DNCB decreased post LJWE
treatment. Additionally, the LJWE treatment significantly decreased the IgE levels, an important
inflammatory mediator, and induced pruritus ((p < 0.01, Figure 3C). Several reports have reported
elevated serum levels of TARC in patients suffering from AD and that the severity of the disease is
closely correlated with chemokine levels [27]. Therefore, TARC was considered to play an important
role in the pathogenesis of AD. Furthermore, the elevated serum levels of RANTES that enable
eosinophil recruitment were found in the patients suffering from AD [35]. Collectively, these data
suggest that the beneficial effects of LJWE may affect the progression of AD-like skin lesions by
inhibiting dermal inflammation and itching through the regulation of inflammatory chemokines and
the serum IgE levels. However, further studies are required to clarify the precise mechanisms driving
the LJWE-mediated healing of skin lesions and modulation of inflammatory cytokines (e.g., IL-1β,
IL-6, and IL-31).
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Figure 3. LJWE ameliorates atopic dermatitis (AD)-like skin lesions in NC/Nga mice.
(A) Schematic representation of the experiment investigating the effect of LJWE on AD-like
skin lesions induced by 2,4-dinitrochlorobenzene (DNCB). (B) Changes in the body weight,
severity score of dermatitis, and trans-epidermal water loss (TEWL) during the experimental
periods. (C) Inhibitory effects of LJWE on the overproduction of TARC, RANTES and IgE.
Normal (no DNCB/vehicle); negative control (N.C., DNCB/vehicle); positive control (P.C., DNCB/5 mg/kg
of prednisolone); low-dose LJWE (LJWE L; DNCB + 100 mg/kg per day of LJWE); high-dose LJWE
(LJWE H; DNCB + 300 mg/kg per day of LJWE). All data are expressed as the mean ± standard error of
the mean (SEM) (n = 7). * p < 0.05, ** p < 0.01, *** p < 0.001 versus N.C.

3.4. Chemical Profiling of LJWE Using UPLC–MS/MS

Most of the identified compounds in LJWE were compared with the retention time and the
mass spectrum of reference standards. In cases of hexadecanamide, oleamide, and stearamide,
we matched the m/z and the MS fragment information with mass spectrum databases including
mzCloud (www.mzcloud.org) and MassBank of North America (http://mona.fiehnlab.ucdavis.edu).
In Figure 4 and Table 1, three amino acids and 11 fatty acid derivatives in LJWE were identified
in agreement with previous reports [36]. Several reports demonstrated anti-AD properties of
long-chain polyunsaturated fatty acids as indispensable components of a diet [37,38]. Linoleic acid
and linolenic acid improve AD-like skin lesion in 2, 4-dinitrofluorobenzene-sensitized mice [39].
Eicosapentaenoic acid can ameliorate allergic dermal inflammation through the suppression of
leukotriene B4 [40]. Anti-AD effects of the other compounds have not been found. Collectively,

http://mona.fiehnlab.ucdavis.edu
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nutraceutical interactions of long-chain polyunsaturated fatty acids in LJWE could attribute to improve
AD-like lesions and promote skin healing.
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Figure 4. UPLC–tandem MS analysis of LJWE. (A) Total ion chromatogram of LJWE.
(B) Extracted ion chromatograms of LJWE. 1, leucine/isoleucine; 2, phenylalanine; 3, tryptophan;
4, 15-hydroxy-5,8,11,13-eicosatetraenoic acid; 5, stearidonic acid; 6, eicosapentaenoic acid;
7, linolenic acid; 8, hexadecanamide; 9, arachidonic acid; 10, oleamide; 11, linoleic acid; 12, stearamide;
13, palmitic acid; 14, stearic acid.



Nutrients 2020, 12, 3238 10 of 13

Table 1. Chemical characterization of LJWE constituents using ultra-performance liquid chromatography-tandem mass spectrometry.

No Rt (min) Calculated (m/z) Estimated (m/z) Adduct Error (ppm) Formula MS/MS Fragments (m/z) Identifications

Amino acids

1 2.2 132.102 132.102 [M + H]+ 2.683 C6H13NO2 86 L-Leucine/Isoleucine *
2 3.6 166.086 166.087 [M + H]+ 2.284 C9H11NO2 166, 120 Phenylalanine *
3 4.8 205.097 205.098 [M + H]+ 1.948 C11H12N2O2 188, 159, 146 L-Tryptophan *

Fatty acid derivatives

4 18.6 319.228 319.228 [M − H]− 1.736 C20H32O3 319, 301, 257, 219, 175, 113 15-Hydroxy-5,8,11,13
-eicosatetraenoic acid *

5 20.0 275.202 275.202 [M − H]− 2.033 C18H28O2 275, 231 Stearidonic acid *
6 20.6 301.217 301.218 [M − H]− 1.673 C20H30O2 301, 257, 203 Eicosapentaenoic acid *
7 20.7 277.217 277.218 [M − H]− 1.928 C18H30O2 277 Linolenic acid *
8 21.2 256.263 256.264 [M + H]+ 1.305 C16H33NO 256, 116, 102, 88 Hexadecanamide
9 21.3 303.233 303.234 [M − H]− 2.083 C20H32O2 303, 259 Arachidonic acid *

10 21.4 282.279 282.280 [M + H]+ 2.069 C18H35NO 282, 265, 247, 177, 149, 135 Oleamide
11 21.5 279.233 279.234 [M − H]− 1.934 C18H32O2 279 Linoleic acid *
12 21.9 284.294 284.295 [M + H]+ 1.430 C18H37NO 284, 88 Stearamide
13 22.2 255.233 255.233 [M − H]− 1.458 C16H32O2 255 Palmitic acid *
14 23.3 283.264 283.265 [M + H]+ 1.838 C18H36O2 283 Stearic acid *

Rt, retention time. * Compared with retention time (Rt) and the mass spectrum of reference standards.
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4. Conclusions

To the best of our knowledge, this is the first study to investigate the beneficial effects of LJWE,
as shown in in vitro and in vivo conditions that mimic AD. LJWE inhibits inflammatory chemokines,
improves clinical symptoms, and the severity of the disease and these effects could be attributed to the
inhibition of the STAT1 signaling pathway. Taken together, LJWE is an effective nutraceutical that can
potentially be used to manage AD. Further studies are needed to ensure the safety and efficiency of
LJWE against AD.
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