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Abstract: Sea buckthorn oil, derived from the fruits of the shrub, also termed seaberry or sandthorn,
is without doubt a strikingly rich source of carotenoids, in particular zeaxanthin and β-carotene.
In the present study, sea buckthorn oil and an oil-in-water emulsion were subjected to a simulated
gastro-intestinal in vitro digestion, with the main focus on xanthophyll bioaccessibility. Zeaxanthin
mono- and di-esters were the predominant carotenoids in sea buckthorn oil, with zeaxanthin
dipalmitate as the major compound (38.0%). A typical fatty acid profile was found, with palmitic
(49.4%), palmitoleic (28.0%), and oleic (11.7%) acids as the dominant fatty acids. Taking into account
the high amount of carotenoid esters present in sea buckthorn oil, the use of cholesterol esterase
was included in the in vitro digestion protocol. Total carotenoid bioaccessibility was higher for the
oil-in-water emulsion (22.5%) compared to sea buckthorn oil (18.0%) and even higher upon the
addition of cholesterol esterase (28.0% and 21.2%, respectively). In the case of sea buckthorn oil, of all
the free carotenoids, zeaxanthin had the highest bioaccessibility (61.5%), followed by lutein (48.9%),
making sea buckthorn oil a potential attractive source of bioaccessible xanthophylls.

Keywords: bioaccessibility; carotenoids; simulated digestion; food matrix; apolar secondary plant
compounds; sea buckthorn oil

1. Introduction

Over the last decades, the carotenoid content and composition in various fruits and vegetables
have been extensively investigated. Most studies have been focused on provitamin A carotenoids
(particularly β-carotene), which, following human digestion and absorption, can be enzymatically
cleaved to yield vitamin A [1–3]. Besides the provitamin A carotenoids, other members of the carotenoid
family are relevant for the human body by exerting specific functions. For instance, lutein and zeaxanthin
accumulate in the macular region of the human retina and, in addition to the proven importance
of vitamin A in the normal functioning of the visual system, the two dihydroxy-xantophylls are
considered to offer protection against free-radical and blue light induced damage that can cause several
eye diseases, such as age-related macular degeneration and cataracts [4,5]. Furthermore, it has been
proposed that they may improve cognitive function [6]. In the human diet, lutein is the dominant
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xanthophyll, and even though some good few sources of zeaxanthin are known such as egg yolk,
corn and orange pepper [7,8], the usual dietary ratio of lutein to zeaxanthin is approximately 5:1 [9].
Sea buckthorn oil is of special interest for human nutrition, because of the fruits’ high content of
carotenoids, in particular zeaxanthin (present in an esterified form with one or two fatty acids), and can
be considered a noteworthy contributor of this ophthalmo-protective xanthophyll to dietary intake [10].

Despite being widespread and abundant in many food products, knowledge about the human
digestion and absorption of carotenoids is limited and a growing interest in the bioaccessibility
(i.e., the fraction of ingested compounds that becomes available for uptake by absorptive cells of the
small intestine) of these naturally occurring bioactive compounds has been observed lately. In brief,
their absorption requires the solubilization of the released carotenoids from the food matrix into a
lipid phase after ingestion or during processing and the successful enzymatic digestion of this phase.
A major obstacle in the bioaccessibility of carotenoids is represented by their entrapment in complex
structures in different carotenoid-containing foods. Their impeded release subsequently leads to a
poor incorporation within the mixed micellar fraction during the intestinal digestion, which further
translates into a very low absorption of these bioactive compounds. Food processing techniques such
as mincing, pureeing, steaming, and the addition of fat facilitate the transfer of carotenoids from the
food matrix to lipid droplets during the gastric phase and have been proven to substantially enhance
the bioaccessibility of carotenoids [11]. Moreover, oil-in-water emulsions are more readily digested
than individual oil droplets, and carotenoid bioaccessibility is considered to be higher from these
systems because of the small particle size and larger active surface area [12]. Carotenoid bioaccessibility
can also be considerably reduced by the presence of high amounts of fiber in the food matrix [13–15]
and by the presence of high concentrations of divalent minerals [16].

In the last two decades, several simulated gastro-intestinal digestion models have been proposed
in the literature for the assessment of carotenoid bioaccessibility, which differ significantly in several
aspects, such as the number of digestion steps included in the digestion model, type, source and
concentration of the enzymes used, pH, digestion time, salt concentrations etc. This has made it
impossible to compare the results from different research groups, as each in vitro model could have its
own digestive conditions applied. For this reason, Minekus et al. [17] proposed a standardized static
in vitro digestion model that has since been successfully used in numerous studies, also involving
carotenoid-containing foods [18–20].

To the best of our knowledge, the bioaccessibility of carotenoids from sea buckthorn oil has not
yet been investigated. For this purpose, in the current study, a physiologically standardized in vitro
digestion protocol [17,21] was applied in order to investigate the bioaccessibility of carotenoids from
cold-pressed sea buckthorn oil as compared to the bioaccessibility of carotenoids from an oil-in-water
emulsion prepared with the use of the above-mentioned oil.

2. Materials and Methods

2.1. Reagents

The cold-pressed oil, a kind gift from a local producer from Bihor County (in the Northern region
of Romania), was obtained by processing sea buckthorn berries, more precisely Mara variety. The oil
was stored at room temperature, away from humidity and light, until use (typically within 15 days).

Tween-20 (Art. No. P1379), pepsin from porcine gastric mucosa (Art. No. P6887), pancreatin
from porcine pancreas (Art. No. P7545), cholesterol esterase from porcine pancreas (Art. No. 26745)
and bovine bile extract (Art. No. B8631) were purchased from Sigma-Aldrich (Steinheim, Germany).

β-Carotene, β-cryptoxanthin, and zeaxanthin standards were purchased from Extrasynthese (Lyon,
France), while zeaxanthin monopalmitate, zeaxanthin dipalmitate, and β-cryptoxanthin palmitate
were obtained by semi-synthesis and purified by HPLC-PDA, as previously reported [22,23].

All used chemicals and reagents were of analytical or HPLC grade. The water used for all
experiments was treated in a Milli-Q water purification system.
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2.2. Emulsion Formation and Characterization

A sea buckthorn oil-in-water (o/w) emulsion was prepared with a 0.1 surfactant-to-oil ratio,
according to the method described by Kiokias and Oreopoulou [24]. Briefly, 9 mL water and 0.1 g
Tween-20 (used as emulsifier) were place in a tube. The cold-pressed sea buckthorn oil (1 g) was added
dropwise and the sample (kept on ice-cold water) was sonicated (Vibra Cell, Sonics & Materials Inc.,
Newtown, CT, USA) for 6 min (amplitude 75%). The stable emulsion was kept at 4 ◦C, protected from
light and oxygen, and used within five days for the experiments. The emulsion was characterized in
terms of particle size distribution and ζ-potential employing a Zetasizer NanoZS90 system (Malvern
Instruments Ltd., Malvern, UK) equipped with a He-Ne laser operating at 633 nm (5 mW), and further
subjected to a simulated gastrointestinal digestion. Specifically, the hydrodynamic diameter and
ζ-potential analysis were performed at a scattering angle of 90◦ and temperature of 25 ◦C. The emulsion
was measured three times and the mean values are reported.

2.3. In Vitro Digestion

The static in vitro digestion model described by Minekus et al. [17] was amended and applied
for the carotenoid bioaccessibility determination from sea buckthorn oil and oil-in-water emulsion.
Taking into account the short residence time in the oral cavity, both the sea buckthorn oil and oil-in-water
emulsion were subjected to a two-phase in vitro digestion consisting of gastric and small intestinal
phases. During normal in vivo human digestion, a large amount of zeaxanthin esters are converted
into free zeaxanthin [25,26], and several protocols were adapted so as to maximize the cleavage of
carotenoid esters with the use of different enzymes such as cholesterol esterase (CEL). Although the
addition of CEL in the intestinal phase was not included in the in vitro digestion model proposed by
Minekus et al. [17], it was included in the present in vitro digestion model as 1 U of CEL per mL in the
final digestion mixture, as suggested by Wen et al. [27].

2.3.1. Gastric Phase

An aliquot of 0.1 g sea buckthorn oil (1 g oil-in-water emulsion) in 6.15 mL water was combined
with 4 mL of simulated gastric fluid (SGF), 1 mL of porcine pepsin solution in SGF (2000 U/mL in final
digestion mixture) and 31 µL of CaCl2 (0.03 M). HCl (1 M) was added to reduce the pH to 3.0 and water
was added to a final volume of 12.5 mL. The mixture was homogenized and incubated at 37 ◦C for 2 h
(95 rpm) in a shaking incubator (New Brunswick Innova 44, Eppendorf AG, Hamburg, Germany).

2.3.2. Intestinal Phase

The gastric chyme was mixed with 6 mL simulated intestinal fluid (SIF), 2 mL porcine pancreatin
solution in SIF (1000 U/mL in final digesta, in lipase activity), 2 mL bile extract solution in SIF (10
mM in final digestion mixture) and 250 µL CaCl2 (0.03 M). Porcine CEL was added as 1 U/mL in final
digesta to investigate its ability to hydrolyze carotenoid esters in this in vitro digestion model. The pH
was adjusted to 7 using 1 M NaOH and water was added to a final volume of 25 mL. The mixture was
homogenized and incubated at 37 ◦C for 2 h in a shaking incubator (95 rpm).

At the end of the intestinal phase, the digesta was immediately centrifuged for 60 min at 4800 g
and 4 ◦C (Eppendorf 5810 R, Eppendorf AG, Hamburg, Germany) to minimize the enzyme activity and
to remove the undigested material. The supernatant considered to contain the carotenoids released
from the food matrix (i.e., the liberated carotenoids) was afterwards membrane-filtered (0.2 µm nylon
filter) in order to separate the micellar fraction (i.e., the bioaccessible fraction).

2.4. Carotenoid Extraction and HPLC-DAD Analysis

An aliquot of 2 mL of the mixed micellar fraction was combined with 4 mL of hexane:acetone (1:2,
v/v), vortexed, and centrifuged for 2 min at 3200× g at 4 ◦C. The upper organic phase was collected
and the lower phase was re-extracted 2 times with 4 mL hexane. The organic extracts were combined,
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evaporated to dryness with the use of a rotary evaporator (Heidolph, Heidolph Instruments GmbH &
CO, Schwabach, Germany) and stored at −20 ◦C until HPLC analyses.

For HPLC analyses, the samples were dissolved in diethyl ether in amber vials. HPLC separation
of carotenoids was carried out using a Shimadzu LC20 AT high performance liquid chromatograph
(Shimadzu Corporation, Kyoto, Japan) with a SPDM20A diode array detector and an YMC C30 reversed
phase column (250 × 4.6 mm i.d., 3 µm particle size). The mobile phase consisted of methanol/tert-butyl
methyl ether/water (83:15:2, v/v/v) as eluent A and tert-butyl methyl ether/methanol/water (80:7:2,
v/v/v) as eluent B, using a gradient program as follows: 0 min 0% solvent B, 20 min 0% B; 130 min
82% B; 132 min 0% B, followed by equilibration of column for 10 min. The flow rate was fixed at
0.8 mL/min. The DAD operated in the range of 300–600 nm for the acquisition of UV-Vis spectra,
while the chromatograms for quantitative analysis were extracted at 450 nm.

Individual carotenoids were identified by comparing their retention time, UV-Vis spectra (λmax,
spectral fine structure, cis peak intensity) with those of the available standards, and with our previous
results and literature data. Quantitative analysis was performed using external calibration with
β-carotene, β-cryptoxanthin, and zeaxanthin (1–200 µg/mL).

2.5. GC-MS Analysis of Fatty Acids

Fatty acid methyl esters (FAMEs) were obtained from total lipids using the acid-catalyzed
transesterification procedure described by Christie [28]. The FAMEs were analyzed by gas
chromatography-mass spectrometry (GC-MS) using a PerkinElmer Clarus 600 T GC-MS (PerkinElmer,
Inc., Shelton, CT, USA) fitted with a Supelcowax 10 (60 m × 0.25 mm i.d., 0.25 µm film thickness;
Supelco Inc., Bellefonte, PA, USA) capillary column, using helium as a carrier gas (flow rate of
0.8 mL/min) [29]. The temperature program for the column was: initial temperature, 140 ◦C, increase
by 7 ◦C/min to 220 ◦C, and hold for 23 min. The injection volume was 0.5 µL (split ratio of 1:24) and
the injector was set at 210 ◦C. The MS operating conditions were as follows: electron impact ionization
voltage 70 eV (E.I., positive ion electron impact mode), trap current of 100 µA, source temperature of
150 ◦C, scan rate 0.14 scan/s and scanned mass range 22–395 m/z. The identification of FAMEs was
achieved by comparing their retention times with those of known standards (37 component FAME
Mix, SUPELCO # 47885-U) and the resulting mass spectra to those in our database (NIST MS Search
2.0). The compositions of fatty acids in the studied lipids were expressed as percentages (%) of the
total FAME peak areas. All experiments were performed in triplicate.

2.6. Calculation and Statistical Analysis

In vitro bioaccessibility (percentage of bioaccessible carotenoids) was calculated as the amount
of the bioactive compound transferred into the micellar phase, in relation to the total content found
in the non-digested food sample, i.e., cold-pressed sea buckthorn oil. Zeaxanthin dipalmitate (ZDP)
hydrolysis efficiency was determined as the molar ratio of free zeaxanthin in the final digestion mixture
to zeaxanthin dipalmitate before the in vitro digestion [27].

Statistical analysis was done using unpaired t test with Welch’s correction of Graph Pad Prism
version 6.00. Analyses were performed in triplicate and values are given as mean ± SD (* significant
p < 0.05, ** very significant p < 0.01, ### extremely significant p < 0.001) versus control (sea buckthorn
oil before in vitro digestion).

3. Results and Discussion

The cold-pressed sea buckthorn oil was characterized in terms of carotenoid and fatty acid
composition and further used for the preparation of the oil-in-water emulsion. Most of the compound
profiles were in agreement with literature data.
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3.1. Carotenoid Composition

The total content of carotenoids in sea buckthorn berries was found to be relatively high
(Table 1) in comparison to other fruits [25]. Studies have shown significant differences in terms of the
composition and content of carotenoids, which can be explained by the genetic variation, geographic
location, growing conditions, stage of maturity when harvested, storage conditions, and methods of
analysis [30,31].

Table 1. Carotenoid composition of sea buckthorn oil.

Peak No. Compound UV-VIS Maxima

Carotenoid
Concentration

mg/100 g a %

1 Lutein 421,445, 473 8.95 ± 0.22 2.95
2 Zeaxanthin 426, 450, 475 9.74 ± 0.90 3.21
3 15-cis-β-carotene 337, 420, 449, 472 6.13 ± 0.20 2.03
4 all-trans-β-carotene 421, 452, 478 10.61 ± 0.41 3.50
5 α-carotene 422, 444, 473 5.76 ± 0.49 1.90
6 Zeaxanthin myristate (C14:0) 426, 450, 475 8.71 ± 0.61 2.88
7 Zeaxanthin palmitate (C16:0) 426, 450, 475 10.69 ± 0.71 3.53
8 β-cryptoxanthin myristate (C14:0) 428, 451, 476 10.00 ± 0.89 3.30
9 Lutein oleate (C18:1) 421, 446, 474 11.88 ± 0.80 3.92

10 β-cryptoxanthin palmitate (C16:0) 428, 451, 476 18.27 ± 0.42 6.03
11 Zeaxanthin dimyristate (C14:0, C14:0) 426, 450, 475 21.26 ± 0.15 7.02
12 Zeaxanthin palmitate-palmitoleate (C16:0, C16:1) 427, 450, 476 19.76 ± 0.22 6.52
13 Zeaxanthin myristate-palmitate (C14:0, C16:0) 426, 450, 475 46.08 ± 0.92 15.22
14 Zeaxanthin dipalmitate (C16:0, C16:0) 427, 450, 476 114.98 ± 1.03 37.97

Carotenoid mono-esters 59.55 ± 3.39 19.67
Carotenoid di-esters 202.07 ± 2.32 66.73

Total identified carotenoid content 302.82 ± 7.84
a Average of triplicate samples.

Being cold-pressed, the sea buckthorn oil used in the present study had a high content of total
carotenoids. Fourteen carotenoids were identified and lutein, zeaxanthin, β-carotene and α-carotene
represented the free carotenoid fraction (peaks 1–5). Free and esterified forms (with one or two
fatty acids) of zeaxanthin corresponded to 76.35% of the identified carotenoids (peaks 2, 6, 7, 11–14).
As shown in Table 1, the most abundant compound was zeaxanthin, mainly in its esterified form with
two molecules of palmitic acid, zeaxanthin dipalmitate (peak 14). During ripening, xanthophylls such
as zeaxanthin develop into esterified forms which constitute more stable forms of carotenoid storage
in fruits [32].

Pop et al. [33] investigated the carotenoid composition of berries from six Romanian sea
buckthorn varieties, and the total carotenoid content ranged between 53 and 97 mg/100 g dry
weight, with zeaxanthin dipalmitate (ZDP) present in the highest amount. In another study, three sea
buckthorn species from the cold deserts of the Himalayas were characterized and the total carotenoid
content ranged from 692 to 3420 mg/kg [34]. Depending on the origin of the berries, the total carotenoid
content in oil can reach 314–2139 mg carotenoids/100 g in sea buckthorn oil from China, and 900–1000
mg/100 g in sea buckthorn oil from the Pamir region [35].

3.2. Fatty Acid Composition

Sea buckthorn oil has a special fatty acid composition compared to other vegetable oils [36].
Eight fatty acids have been identified in the cold-pressed sea buckthorn oil (Table 2 and Figure 1).
The most abundant saturated fatty acid was palmitic acid, while palmitoleic and oleic acids were
the dominating monounsaturated fatty acids. Palmitoleic acid (16:1 n-7) is a taxonomic marker of
sea buckthorn oil and its presence in high amounts is rare among plant oils [34]. Bialek et al. [36]
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investigated the fatty acid profile of unconventional plant oils for cosmetic use and found a high
amount of palmitoleic acid (29.4%) in sea buckthorn oil. In addition, the content of SFA, MUFA, and
PUFA found were 33.5%, 51.0% and 5.2%, respectively. The percentage of palmitoleic acid in sea
buckthorn berries (pulp) ranged between 13.35 and 36.68% in various Romanian cultivars [37], while
in selected locations from India and Sweden it ranged between 31.9 and 43.3% [31]. Sea buckthorn
seed oil has been shown to have a higher amount of PUFA (65–72%) than pulp oil (3–7%) [38].

Table 2. Fatty acid composition of sea buckthorn oil.

Fatty Acid % of Total Fatty Acids *

Myristic acid (14:0) 0.31 ± 0.06
Palmitic acid (16:0) 49.42 ± 0.67

Palmitoleic acid (16:1 n-7) 28.04 ± 0.05
Stearic acid (18:0) 0.61 ± 0.10

Oleic acid (18:1 n-9) 11.74 ± 0.13
Cis-Vaccenic acid (18:1 n-7) 4.47 ± 0.12

Linoleic acid (18:2 n-6) 4.13 ± 0.13
α-linolenic acid (18:3 n-3) 1.27 ± 0.06

SFA 50.34 ± 0.83
MUFA 44.24 ± 0.30
PUFA 5.40 ± 0.18

* mean ± SD (n = 3). SFA: saturated fatty acids. MUFA: mono-unsaturated fatty acids. PUFA: poly-unsaturated
fatty acids.
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Figure 1. GC-MS chromatogram of FAMEs in sea buckthorn oil analysed on a Supelcowax 10 capillary
column. Peak identification: (14:0), myristic; (16:0), palmitic; (16:1 n-7), palmitoleic; (18:0), stearic;
(18:1 n-9), oleic; (18:1 n-7), cis-vaccenic; (18:2 n-6), linoleic; (18:3 n-3), α-linolenic acids.

By using oil and a carotenoid-rich oil-in-water emulsion as food matrices, the major limiting factor
represented by the release of carotenoids from the food matrix was removed. Another key factor in
carotenoid bioaccessibility is represented by the presence of dietary fat in the small intestine which
stimulates the release of bile acids [39]. Moreover, lipids act as an ideal carrier of these phytochemicals,
and carotenoid bioaccessibility was previously found to be enhanced by their presence [40].

Several studies have shown that dietary sources rich in MUFA could lead to an increased
carotenoid bioaccessibility [41] and absorption [42,43] compared to sources rich in SFA and PUFA.
In our case, MUFA represented 44.24% of total fatty acids, making sea buckthorn oil a promising source
of bioaccessible carotenoids.
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3.3. Sea Buckthorn Oil-in-Water Emulsion

Systems such as oil-in-water emulsions, in which oil droplets are dispersed in an aqueous phase,
can constitute a successful and effective strategy to enhance carotenoid bioaccessibility and absorption.
These systems are considered better carriers for lipophilic compounds such as carotenoids. Figure 2
illustrates the dynamic light scattering data of the emulsion, presenting a hydrodynamic diameter of
28 nm with a standard deviation of ±1.7 nm, recorded for n = 3 measurements (polydispersity index
0.310). In addition, their surface is negatively charged (−15 mV), as proven by the ζ-potential analysis.
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3.4. Bioaccessibility of Carotenoids from Sea Buckthorn Oil and Sea Buckthorn Oil-in-Water Emulsion

By using the in vitro digestion protocol proposed by Minekus et al. [17], carotenoid esters are
partially hydrolyzed during the intestinal passage by the small amount of CEL present in pancreatin [44].
However, in the case of samples that contain a high amount of carotenoid esters such as sea buckthorn
oil, the hydrolysis of xanthophyll esters is a necessary requirement for a more accurate determination
of carotenoid bioaccessibility [8]. In this respect, porcine CEL was included as 1 U per mL in the final
digestion mixture in the in vitro digestion model of both cold-pressed oil and oil-in-water emulsion,
based on its previously proven ability to participate in the hydrolytic process of carotenoid esters [45].

According to the standardized static in vitro method, if the food contains high amounts of lipids, a
concentration of 2000 U/mL pancreatic lipase activity should be reached in the final digestion step during
the intestinal phase. In our protocol, the concentration used was 1000 U/mL of lipase activity, due to
the low solubility of pancreatin at such high concentrations and based on the findings of Wen et al. [27]
that 1000 U/mL pancreatin along with 1 U/mL CEL should be sufficient for ZDP hydrolysis.

As shown in Figure 3, the highest total carotenoid bioaccessibility was observed in the case
of the oil-in-water emulsion subjected to in vitro digestion with the addition of cholesterol esterase
(27.97%), and the lowest was observed for the oil after the in vitro digestion without the addition
of cholesterol esterase (18.04%). These results are rather high compared to other studies reported
in the literature on the bioaccessibility of carotenoid-containing plant sources. Kaulmann et al. [46]
investigated the bioaccessibility of carotenoids from four varieties of Brassicaceae and Prunus and
found the highest total carotenoid bioaccessibility of 11%. Rodrigues et al. [18] compared four protocols
of in vitro digestion for the assessment of carotenoid bioaccessibility in murici (Byrsonima crassifolia),
an Amazonian fruit rich in lipids, and the highest overall bioaccessibility (22%) was obtained when
using an adapted INFOGEST method, which is more consistent with our findings.
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Figure 3. Total carotenoid bioaccessibility of sea buckthorn oil and oil-in-water emulsion (o/w) with
and without the addition of cholesterol esterase in the in vitro digestion protocol. Values are given as
mean ± SD (* significant p < 0.05, ** very significant p < 0.01).

The carotenoid profile of sea buckthorn oil (a), as well as the percentages of free carotenoids, mono-
and di-esters (b) before and after the in vitro digestion can be seen in Figure 4. The di-ester percentage
(composed only of zeaxanthin di-esters, Table 1) decreased from 66.73% in sea buckthorn oil before
in vitro digestion to 29.26% after gastrointestinal digestion, and to 27.04% upon supplementation of the
protocol with 1 U per mL of cholesterol esterase. Furthermore, free carotenoid percentage increased
from 13.60% to 31.28% and 33.26% respectively.
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Figure 4. (a) Chromatograms of sea buckthorn oil before and after in vitro digestion with and without
the addition of CEL. Peak assignments are given in Table 1. (b) Percentages of free carotenoids, mono-
and di-esters from sea buckthorn oil before and after in vitro digestion with and without the addition
of CEL.

In zeaxanthin-rich fruits such as sea buckthorn or goji berries, zeaxanthin dipalmitate constitutes
the major carotenoid [20,33,47]. The insufficient hydrolysis of carotenoid esters during the intestinal
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phase in the in vitro digestion models is a well-known issue and represents one of the major drawbacks
of these models. In the present study, the addition of CEL at the concentration of 1 U per mL in final
digestion mixture led to the increase of the ZDP hydrolysis efficiency from 6.62% to 9.55% for sea
buckthorn oil and from 6.96% to 10.07% in the case of sea buckthorn oil-in-water emulsion (Figure 5).
When using the ZDP standard as a test sample, Wen et al. [27] found an increase in hydrolysis efficiency
from 4.1% to 17.4% after the standardized in vitro digestion with pancreatin added at 1000 U lipase
activity per mL and supplementation with 1 U of CEL per mL, emphasizing the important contribution
of this enzyme in ZDP cleavage.
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Figure 5. Hydrolysis efficiency of zeaxanthin dipalmitate from sea buckthorn oil and oil-in-water
emulsion (o/w) with and without the addition of cholesterol esterase in the in vitro digestion protocol.
Values are given as mean ± SD (** very significant p < 0.01).

By using sea buckthorn oil as a test sample, and thereby providing a lipid source during the
gastrointestinal digestion, the transfer of carotenoids into mixed micelles was facilitated and the
bioaccessibility was enhanced. The effect of variations of the lipophilic phase was previously examined
by Hempel et al. [20], who tested the addition of coconut fat (rich in SFA) in the digestion of goji
berries and found a significant increase in zeaxanthin micellarization (from 6.7 ± 0.9% to 13.3 ± 0.8%).
In another study, the addition of coffee creamer (68% of the total fat comprised of SFA) led to the
increase of both the hydrolysis efficiency of ZDP (from 3.4% to 15.9%) and bioaccessibility of total
zeaxanthin (from 10.6% to 20.8%) [27].

Although a significant increase in xanthophyll esters hydrolysis could be observed, ester forms were
still incorporated into mixed micelles along with the free forms (Figure 4b). Zeaxanthin monopalmitate
(ZMP) content increased from 3.53% in sea buckthorn oil to 7.39% after the in vitro digestion protocol
and to 9.30% upon supplementation with CEL, and in the case of the o/w emulsion to 7.18% after the
in vitro digestion and 10.48% after the involvement of CEL. By this, the ability of pancreatic lipase to
hydrolyze zeaxanthin di-esters through zeaxanthin mono-esters was emphasized, even without the
addition of CEL.

In general, the bioaccessibility of xanthophylls has been shown to be higher than that of
carotenes [46,48]. In the present study, the high values of xanthophyll bioaccessibility (Figure 6)
can be also attributed to the hydrolysis of esters during the simulated digestion model, which yielded
more free carotenoids. By using CEL, and thus promoting the hydrolytic reaction, even more free
xanthophylls were produced which were incorporated into the micelles and consequently boosted
the bioaccessibility.
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Figure 6. Bioaccessibility of free carotenoids from sea buckthorn oil and oil-in-water emulsion with and
without the addition of cholesterol esterase in the in vitro digestion protocol. Carotenoid bioaccessibility
was calculated as the percentage of the respective carotenoid transferred from the test food to the
micellar phase. Values are given as mean ± SD (** very significant p < 0.01, ### extremely significant
p < 0.001).

Regarding free β-cryptoxanthin (peak 15), due to the fact that it was not present in the sea
buckthorn oil prior to in vitro digestion, the bioaccessibility could not be determined. However,
the presence of free β-cryptoxanthin after the simulated gastrointestinal digestion clearly indicated
that not only zeaxanthin esters were subjected to hydrolysis, but also β-cryptoxanthin esters.

In the case of sea buckthorn oil, the bioaccessibility of all-trans-β-carotene was 20.36% and for
the o/w emulsion 26.65%. Using the COST INFOGEST protocol to investigate spinach carotenoid
liberation and in vitro accessibility, and after the addition of fat (butter), [19] found the highest in vitro
accessibility of β-carotene 6.2 ± 0.6%.

Sea buckthorn oil has a unique chemical composition, combining high concentrations of carotenoids
with a very particular fatty acid profile and a high content of tocopherols. The most important carotenoid
in the Romanian sea buckthorn oil is zeaxanthin, mostly in esterified forms. In the present study
we showed that both sea buckthorn oil and oil-in-water emulsion are highly bioaccessible sources of
zeaxanthin, β-cryptoxanthin and β-carotene. In this respect, approximately 1.4 g of sea buckthorn
oil would provide the AREDS 2 recommended daily intake of zeaxanthin (2 mg) for the prevention
of eye diseases such as age-related macular degeneration. Sea buckthorn oil can have a positive
impact on cognitive performance in both the elderly and young subjects due to its high content of
zeaxanthin [6,49]. Additionally, sea buckthorn oil could improve vitamin A status, providing more
bioaccessible β-carotene and β-cryptoxanthin compared to other sources. Palmitoleic acid (16:1 n-7) is
an active molecule found in high concentrations in sea buckthorn, macadamia nuts and fish. Although
it can be synthesized by humans and it accumulates in the adipose tissue, palmitoleate is considered
as a plausible nonpharmaceutical approach to prevent metabolic and inflammatory diseases [50].
Palmitoleic acid has been considered a lipokine since it was found to increase insulin secretion and to
suppress hepatosteatosys in mice. Some human studies showed that it stimulates oxidative metabolism
(particularly hepatic fatty acid oxidation), can promote weight loss, and reduces blood cholesterol
and inflammation. Moreover, cis-vaccenic (18:1 n-7) acid, also present in sea buckthorn oil, has been
shown to reduce blood cholesterol, triacylglycerols and atherosclerosis in mice and was inversely
associated with diabetes in humans [50]. It has already been established that sea buckthorn oil is a
promising alternative in the treatment of gastro-intestinal disorders (liver diseases, ulcers and gastritis),
of skin and mucosa ulcerative disorders, and it is also known for lowering blood cholesterol and for its
anti-inflammatory properties [35]. The synergy between the active components of the oil, associated
with their high bioaccessibility could explain the multitude of pharmacological effects of sea buckthorn
fruits and oil.
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4. Conclusions

The number of studies regarding xanthophyll bioaccessibility is limited, compared to carotenes.
Therefore, in this study, we aimed at validating sea buckthorn oil as a valuable source of bioaccessible
xanthophylls. Overall, using a plant-based oil-in-water emulsion as a delivery system of carotenoids to
improve the bioaccessibility of these naturally occurring bioactive compounds has been proven a good
strategy. Not only were the total and individual carotenoid bioaccessibilities higher than sea buckthorn
oil, but also the hydrolysis efficiency after the introduction of CEL in the physiologically standardized
INFOGEST protocol. Furthermore, the ability of CEL to cleave zeaxanthin esters (mainly ZDP) along
with pancreatic lipase in the in vitro digestion model was highlighted. Under optimized conditions,
we obtained the highest bioaccessibility of free zeaxanthin of 64.55% after the in vitro digestion of the
oil-in-water emulsion, upon supplementation with CEL.

It should be mentioned that the complex processes occurring during human digestion are not
completely simulated during in vitro digestion, with the latter being successfully used for preliminary
studies having a specific endpoint (for example the bioaccessibility of bioactive compounds from
different food matrices) that can be further investigated in more detail using in vivo methods.

Author Contributions: A.P. and C.T. conceived and designed the experiments; C.T. performed the HPLC analysis,
obtained the emulsion, performed the simulated in vitro digestion and wrote the first draft of the manuscript;
F.V.D. performed the fatty acids analysis; M.F. characterized the emulsion (DLS and ζ-potential) and contributed
to manuscript writing; T.B. and M.I. provided support for bioaccessibility studies and critically revised the
manuscript; D.O.R. contributed to statistical analysis and manuscript revision. A.P. supervised the experimental
work, contributed to data analysis and revised the manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: This work has been developed in the framework of and supported by COST Action CA15136
EUROCAROTEN and by a grant of the Romanian Ministry of Research and Innovation, PCCDI-UEFISCDI, project
PN-III-P1-1.2-PCCDI-2017-0046/ No. 1/2018, within PNCDI III. The publication was supported by funds from
the National Research Development Projects to finance excellence (PFE)-37/2018–2020 granted by the Romanian
Ministry of Research and Innovation.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Gul, K.; Tak, A.; Singh, A.K.; Singh, P.; Yousuf, B.; Wani, A.A.; Yildiz, F. Chemistry, encapsulation, and health
benefits of β-carotene—A review. Cogent Food Agric. 2015, 1, 1018696. [CrossRef]

2. Van Loo-Bouwman, C.A.; Naber, T.H.J.; Schaafsma, G. A review of vitamin A equivalency of β-carotene in
various food matrices for human consumption. Br. J. Nutr. 2014, 111, 2153–2166. [CrossRef] [PubMed]

3. Wang, X.D. Review: Absorption and metabolism of beta-carotene. J. Am. Coll. Nutr. 1994, 13, 314–325.
[CrossRef] [PubMed]

4. Ma, L.; Dou, H.L.; Wu, Y.Q.; Huang, Y.M.; Huang, Y.B.; Xu, X.R.; Zou, Z.Y.; Lin, X.M. Lutein and zeaxanthin
intake and the risk of age-related macular degeneration: A systematic review and meta-analysis. Br. J. Nutr.
2012, 107, 350–359. [CrossRef]

5. Delcourt, C.; Carriere, I.; Delage, M.; Barberger-Gateau, P.; Schalch, W. Plasma Lutein and Zeaxanthin and
Other Carotenoids as Modifiable Risk Factors for Age-Related Maculopathy and Cataract: The POLA Study.
Investig. Opthalmol. Vis. Sci. 2006, 47, 2329–2335. [CrossRef]

6. Renzi-Hammond, L.M.; Bovier, E.R.; Fletcher, L.M.; Miller, L.S.; Mewborn, C.M.; Lindbergh, C.A.; Baxter, J.H.;
Hammond, B.R. Effects of a Lutein and Zeaxanthin Intervention on Cognitive Function: A Randomized,
Double-Masked, Placebo-Controlled Trial of Younger Healthy Adults. Nutrients 2017, 9, 1246. [CrossRef]

7. Sommerburg, O.; Keunen, J.; Bird, A.C.; Kuijk, F.J.G.M. Fruits and vegetables that are sources for lutein and
zeaxanthin: The macular pigment in human eyes. Br. J. Ophthalmol. 1998, 82, 907–910. [CrossRef]

8. Chitchumroonchokchai, C.; Failla, M.L. Hydrolysis of Zeaxanthin Esters by Carboxyl Ester Lipase during
Digestion Facilitates Micellarization and Uptake of the Xanthophyll by Caco-2 Human Intestinal Cells.
J. Nutr. 2006, 136, 588–594. [CrossRef]

http://dx.doi.org/10.1080/23311932.2015.1018696
http://dx.doi.org/10.1017/S0007114514000166
http://www.ncbi.nlm.nih.gov/pubmed/24513222
http://dx.doi.org/10.1080/07315724.1994.10718416
http://www.ncbi.nlm.nih.gov/pubmed/7963135
http://dx.doi.org/10.1017/S0007114511004260
http://dx.doi.org/10.1167/iovs.05-1235
http://dx.doi.org/10.3390/nu9111246
http://dx.doi.org/10.1136/bjo.82.8.907
http://dx.doi.org/10.1093/jn/136.3.588


Nutrients 2020, 12, 76 12 of 14

9. Edwards, J.A. Zeaxanthin: Review of Toxicological Data and Acceptable Daily Intake. J. Ophthalmol. 2016,
2016, 3690140. [CrossRef]

10. Larmo, P.S.; Järvinen, R.L.; Yang, B.; Kallio, H.P. Sea Buckthorn, Dry Eye, and Vision. In Handbook of Nutrition,
Diet and the Eye; Preedy, V.R., Ed.; Academic Press: Oxford, UK, 2014; pp. 473–480.

11. Hornero-Méndez, D.; Mínguez-Mosquera, M.I. Bioaccessibility of carotenes from carrots: Effect of cooking
and addition of oil. Innov. Food Sci. Emerg. Technol. 2007, 8, 407–412. [CrossRef]

12. Salvia-Trujillo, L.; Verkempinck, S.; Sun, L.; Van Loey, A.; Grauwet, T.; Hendrickx, M. Lipid digestion, micelle
formation and carotenoid bioaccessibility kinetics: Influence of emulsion droplet size. Food Chem. 2017, 229,
653–662. [CrossRef] [PubMed]

13. Bohn, T. Bioavailability of Non-Provitamin A Carotenoids. Curr. Nutr. Food Sci. 2008, 4, 240–258. [CrossRef]
14. Yonekura, L.; Nagao, A. Soluble Fibers Inhibit Carotenoid Micellization in Vitro and Uptake by Caco-2 Cells.

Biosci. Biotechnol. Biochem. 2009, 73, 196–199. [CrossRef] [PubMed]
15. Fernández-García, E.; Carvajal-Lérida, I.; Jarén-Galán, M.; Garrido-Fernández, J.; Pérez-Gálvez, A.;

Hornero-Méndez, D. Carotenoids bioavailability from foods: From plant pigments to efficient biological
activities. Food Res. Int. 2012, 46, 438–450. [CrossRef]

16. Corte-Real, J.; Bohn, T. Interaction of divalent minerals with liposoluble nutrients and phytochemicals during
digestion and influences on their bioavailability—A review. Food Chem. 2018, 252, 285–293. [CrossRef]

17. Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.;
Dupont, D.; et al. A standardised staticin vitrodigestion method suitable for food-an international consensus.
Food Funct. 2014, 5, 1113–1124. [CrossRef]

18. Rodrigues, D.B.; Mariutti, L.R.B.; Mercadante, A.Z. An in vitro digestion method adapted for carotenoids
and carotenoid esters: Moving forward towards standardization. Food Funct. 2016, 7, 4992–5001. [CrossRef]

19. Eriksen, J.N.; Luu, A.Y.; Dragsted, L.O.; Arrigoni, E. Adaption of an in vitro digestion method to screen
carotenoid liberation and in vitro accessibility from differently processed spinach preparations. Food Chem.
2017, 224, 407–413. [CrossRef]

20. Hempel, J.; Schädle, C.N.; Sprenger, J.; Heller, A.; Carle, R.; Schweiggert, R.M. Ultrastructural deposition
forms and bioaccessibility of carotenoids and carotenoid esters from goji berries (Lycium barbarum L.).
Food Chem. 2017, 218, 525–533. [CrossRef]

21. Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.;
Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion.
Nat. Protoc. 2019, 14, 991–1014. [CrossRef]

22. Pintea, A.; Rugină, D.; Bunea, A.; Andrei, S. Impact of Esterification on the Antioxidant Capacity of
β-Cryptoxanthin. Bull. UASVM Anim. Sci. Biotechnol. 2013, 70, 79–85.

23. Pintea, A.; Bunea, A.; Socaciu, C. Effect of esterification on thermal stability and antioxidant activity of
zeaxanthin. In Proceedings of the 7th International Congress on Pigments in Food, Novara, Italy, 18–21 June
2013; pp. 174–177.

24. Kiokias, S.; Oreopoulou, V. Antioxidant properties of natural carotenoid extracts against the AAPH-initiated
oxidation of food emulsions. Innov. Food Sci. Emerg. Technol. 2006, 7, 132–139. [CrossRef]

25. Mariutti, L.R.; Mercadante, A.Z. Carotenoid esters analysis and occurrence: What do we know so far?
Arch. Biochem. Biophys. 2018, 648, 36–43. [CrossRef] [PubMed]

26. Xavier, A.A.O.; Mercadante, A.Z. The bioaccessibility of carotenoids impacts the design of functional foods.
Curr. Opin. Food Sci. 2019, 26, 1–8. [CrossRef]

27. Wen, X.; Hempel, J.; Schweiggert, R.M.; Wang, Y.; Ni, Y.; Carle, R. Screening of critical factors influencing the
efficient hydrolysis of zeaxanthin dipalmitate in an adapted in vitro- digestion model. Food Chem. 2018, 257,
36–43. [CrossRef] [PubMed]

28. Christie, W.W. Preparation of methyl ester and other derivatives. In Gas Chromatography and Lipids. A Practical
Guide; Christie, W.W., Ed.; Oily Press: Glasgow, UK, 1989; pp. 36–47.

29. Dulf, F.V.; Vodnar, D.C.; Socaciu, C. Effects of solid-state fermentation with two filamentous fungi on the
total phenolic contents, flavonoids, antioxidant activities and lipid fractions of plum fruit (Prunus domestica
L.) by-products. Food Chem. 2016, 209, 27–36. [CrossRef]

30. Andersson, S.C.; Olsson, M.E.; Johansson, E.; Rumpunen, K. Carotenoids in Sea Buckthorn (Hippophae
rhamnoides L.) Berries during Ripening and Use of Pheophytinaas a Maturity Marker. J. Agric. Food Chem.
2009, 57, 250–258. [CrossRef]

http://dx.doi.org/10.1155/2016/3690140
http://dx.doi.org/10.1016/j.ifset.2007.03.014
http://dx.doi.org/10.1016/j.foodchem.2017.02.146
http://www.ncbi.nlm.nih.gov/pubmed/28372227
http://dx.doi.org/10.2174/157340108786263685
http://dx.doi.org/10.1271/bbb.80510
http://www.ncbi.nlm.nih.gov/pubmed/19129646
http://dx.doi.org/10.1016/j.foodres.2011.06.007
http://dx.doi.org/10.1016/j.foodchem.2018.01.113
http://dx.doi.org/10.1039/C3FO60702J
http://dx.doi.org/10.1039/C6FO01293K
http://dx.doi.org/10.1016/j.foodchem.2016.11.146
http://dx.doi.org/10.1016/j.foodchem.2016.09.065
http://dx.doi.org/10.1038/s41596-018-0119-1
http://dx.doi.org/10.1016/j.ifset.2005.12.004
http://dx.doi.org/10.1016/j.abb.2018.04.005
http://www.ncbi.nlm.nih.gov/pubmed/29654730
http://dx.doi.org/10.1016/j.cofs.2019.02.015
http://dx.doi.org/10.1016/j.foodchem.2018.02.116
http://www.ncbi.nlm.nih.gov/pubmed/29622222
http://dx.doi.org/10.1016/j.foodchem.2016.04.016
http://dx.doi.org/10.1021/jf802599f


Nutrients 2020, 12, 76 13 of 14

31. Madawala, S.R.; Brunius, C.; Adholeya, A.; Tripathi, S.B.; Hanhineva, K.; Hajazimi, E.; Shi, L.; Dimberg, L.;
Landberg, R. Impact of location on composition of selected phytochemicals in wild sea buckthorn
(Hippophae rhamnoides). J. Food Compos. Anal. 2018, 72, 115–121. [CrossRef]

32. Rodriguez-Amaya, D.B. Quantitative analysis, in vitro assessment of bioavailability and antioxidant activity
of food carotenoids—A review. J. Food Compos. Anal. 2010, 23, 726–740. [CrossRef]

33. Pop, R.M.; Weesepoel, Y.; Socaciu, C.; Pintea, A.; Vincken, J.-P.; Gruppen, H. Carotenoid composition of
berries and leaves from six Romanian sea buckthorn (Hippophae rhamnoides L.) varieties. Food Chem. 2014,
147, 1–9. [CrossRef]

34. Ranjith, A.; Kumar, K.S.; Venugopalan, V.V.; Arumughan, C.; Sawhney, R.C.; Singh, V. Fatty acids, tocols, and
carotenoids in pulp oil of three sea buckthorn species (Hippophae rhamnoides, H. salicifolia, and H. tibetana)
grown in the Indian Himalayas. J. Am. Oil Chem. Soc. 2006, 83, 359–364. [CrossRef]

35. Bal, L.M.; Meda, V.; Naik, S.; Satya, S. Sea buckthorn berries: A potential source of valuable nutrients for
nutraceuticals and cosmoceuticals. Food Res. Int. 2011, 44, 1718–1727. [CrossRef]

36. Bialek, A.; Bialek, M.; Jelinska, M.; Tokarz, A. Fatty acid profile of new promising unconventional plant oils
for cosmetic use. Int. J. Cosmet. Sci. 2016, 38, 382–388. [CrossRef] [PubMed]

37. Vescan, L.A.; Pamfil, D.; Bele, C.; Matea, C.; Sisea, C.R. Several Lipophilic Components of Five Elite Genotypes
of Romanian Seabuckthorn (Hippophae rhamnoides subs. carpatica). Not. Bot. Horti Agrobo. Cluj-Napoca
2010, 38. [CrossRef]

38. Dulf, F.V. Fatty acids in berry lipids of six sea buckthorn (Hippophae rhamnoides L., subspecies carpatica)
cultivars grown in Romania. Chem. Cent. J. 2012, 6, 106. [CrossRef]

39. Zaripheh, S.; Erdman, J.W. Factors That Influence the Bioavailablity of Xanthophylls. J. Nutr. 2002, 132,
531S–534S. [CrossRef]

40. Lemmens, L.; Colle, I.; Van Buggenhout, S.; Palmero, P.; Van Loey, A.; Hendrickx, M. Carotenoid
bioaccessibility in fruit-and vegetable-based food products as affected by product (micro)structural
characteristics and the presence of lipids: A review. Trends Food Sci. Technol. 2014, 38, 125–135. [CrossRef]

41. Nagao, A.; Kotake-Nara, E.; Hase, M. Effects of Fats and Oils on the Bioaccessibility of Carotenoids and
Vitamin E in Vegetables. Biosci. Biotechnol. Biochem. 2013, 77, 1055–1060. [CrossRef]

42. Goltz, S.R.; Campbell, W.W.; Chitchumroonchokchai, C.; Failla, M.L.; Ferruzzi, M.G. Meal triacylglycerol
profile modulates postprandial absorption of carotenoids in humans. Mol. Nutr. Food Res. 2012, 56, 866–877.
[CrossRef]

43. Lakshminarayana, R.; Raju, M.; Krishnakantha, T.P.; Baskaran, V. Lutein and Zeaxanthin in Leafy Greens
and Their Bioavailability: Olive Oil Influences the Absorption of Dietary Lutein and Its Accumulation in
Adult Rats. J. Agric. Food Chem. 2007, 55, 6395–6400. [CrossRef]

44. Chitchumroonchokchai, C.; Failla, M.L. Bioaccessibility and intestinal cell uptake of astaxanthin from salmon
and commercial supplements. Food Res. Int. 2017, 99, 936–943. [CrossRef] [PubMed]

45. Breithaupt, D.E.; Bamedi, A.; Wirt, U. Carotenol fatty acid esters: Easy substrates for digestive enzymes?
Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2002, 132, 721–728. [CrossRef]

46. Kaulmann, A.; André, C.M.; Schneider, Y.-J.; Hoffmann, L.; Bohn, T. Carotenoid and polyphenol
bioaccessibility and cellular uptake from plum and cabbage varieties. Food Chem. 2016, 197, 325–332.
[CrossRef] [PubMed]

47. Inbaraj, B.S.; Lu, H.; Hung, C.; Wu, W.; Lin, C.; Chen, B. Determination of carotenoids and their esters in
fruits of Lycium barbarum Linnaeus by HPLC–DAD–APCI–MS. J. Pharm. Biomed. Anal. 2008, 47, 812–818.
[CrossRef] [PubMed]

48. Tyssandier, V.; Lyan, B.; Borel, P. Main factors governing the transfer of carotenoids from emulsion lipid
droplets to micelles. Biochim. Biophys. Acta (BBA)-Bioenerg. 2001, 1533, 285–292. [CrossRef]

49. Eggersdorfer, M.; Wyss, A. Carotenoids in human nutrition and health. Arch. Biochem. Biophys. 2018, 652,
18–26. [CrossRef]

50. De Souza, C.O.; Vannice, G.K.; Neto, J.C.R.; Calder, P.C. Is Palmitoleic Acid a Plausible Nonpharmacological
Strategy to Prevent or Control Chronic Metabolic and Inflammatory Disorders? Mol. Nutr. Food Res. 2017,
62, 1700504. [CrossRef]

http://dx.doi.org/10.1016/j.jfca.2018.06.011
http://dx.doi.org/10.1016/j.jfca.2010.03.008
http://dx.doi.org/10.1016/j.foodchem.2013.09.083
http://dx.doi.org/10.1007/s11746-006-1213-z
http://dx.doi.org/10.1016/j.foodres.2011.03.002
http://dx.doi.org/10.1111/ics.12301
http://www.ncbi.nlm.nih.gov/pubmed/26659407
http://dx.doi.org/10.15835/nbha3824760
http://dx.doi.org/10.1186/1752-153X-6-106
http://dx.doi.org/10.1093/jn/132.3.531S
http://dx.doi.org/10.1016/j.tifs.2014.05.005
http://dx.doi.org/10.1271/bbb.130025
http://dx.doi.org/10.1002/mnfr.201100687
http://dx.doi.org/10.1021/jf070482z
http://dx.doi.org/10.1016/j.foodres.2016.10.010
http://www.ncbi.nlm.nih.gov/pubmed/28847430
http://dx.doi.org/10.1016/S1096-4959(02)00096-9
http://dx.doi.org/10.1016/j.foodchem.2015.10.049
http://www.ncbi.nlm.nih.gov/pubmed/26616956
http://dx.doi.org/10.1016/j.jpba.2008.04.001
http://www.ncbi.nlm.nih.gov/pubmed/18486400
http://dx.doi.org/10.1016/S1388-1981(01)00163-9
http://dx.doi.org/10.1016/j.abb.2018.06.001
http://dx.doi.org/10.1002/mnfr.201700504


Nutrients 2020, 12, 76 14 of 14

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Reagents 
	Emulsion Formation and Characterization 
	In Vitro Digestion 
	Gastric Phase 
	Intestinal Phase 

	Carotenoid Extraction and HPLC-DAD Analysis 
	GC-MS Analysis of Fatty Acids 
	Calculation and Statistical Analysis 

	Results and Discussion 
	Carotenoid Composition 
	Fatty Acid Composition 
	Sea Buckthorn Oil-in-Water Emulsion 
	Bioaccessibility of Carotenoids from Sea Buckthorn Oil and Sea Buckthorn Oil-in-Water Emulsion 

	Conclusions 
	References

