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Abstract: Selenium is an essential micronutrient commonly deficient in human populations. Selenium
deficiency increases the risks of pregnancy complications; however, the long-term impact of selenium
deficiency on offspring disease remains unclear. This study investigates the effects of selenium
deficiency during pregnancy on offspring metabolic function. Female C57BL/6 mice were allocated to
control (>190 µg selenium/kg, n = 8) or low selenium (<50 µg selenium/kg, n = 8) diets prior to mating
and throughout gestation. At postnatal day (PN) 170, mice underwent an intraperitoneal glucose
tolerance test and were culled at PN180 for biochemical analysis. Mice exposed to selenium deficiency
in utero had reduced fasting blood glucose but increased postprandial blood glucose concentrations.
Male offspring from selenium-deficient litters had increased plasma insulin levels in conjunction with
reduced plasma thyroxine (tetraiodothyronine or T4) concentrations. Conversely, females exposed to
selenium deficiency in utero exhibited increased plasma thyroxine levels with no change in plasma
insulin. This study demonstrates the importance of adequate selenium intake around pregnancy for
offspring metabolic health. Given the increasing prevalence of metabolic disease, this study highlights
the need for appropriate micronutrient intake during pregnancy to ensure a healthy start to life.
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1. Introduction

It is well accepted that a healthy pregnancy is required to ensure optimal fetal development and a
healthy start to life for the developing child. Deficiencies in key dietary components during pregnancy
have been shown to increase offspring risk of developing conditions such as insulin resistance, type 2
diabetes mellitus (T2DM) and metabolic dysfunction [1]. Given that, globally, diabetes mellitus type 1
and T2DM combined now impacts approximately 1 in 11 adults [2], and rates of obesity and insulin
resistance are increasing over time, understanding the factors that contribute to these diseases is of
paramount importance. Several clinical studies have linked decreased micronutrient status to poor
pregnancy outcomes [3]. Often clinical studies are confounded by deficiencies in macronutrients as well
as multiple micronutrients, making it difficult to delineate exact mechanisms of action for individual
perturbations [3]. In contrast, animal studies allow manipulation of single dietary components to
assess how each factor may program disease outcomes in offspring.
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Selenium is one micronutrient that is commonly deficient in the human diet, with both human and
animal studies demonstrating that selenium deficiency can increase the risk of a range of pregnancy
complications [4,5]. Human clinical studies have linked reduced maternal selenium status to an
increased risk for pregnancy-induced hypotension [6], preeclampsia [7], gestational diabetes mellitus [8]
and small-for-gestational age newborns [9]. Importantly, clinical studies have also demonstrated that
pregnancy complications such as these are associated with adverse disease outcomes later in life [10,11].
However, the long-term impact of selenium deficiency during pregnancy on offspring disease outcomes
is largely unknown. Selenium is required for the formation of 25 selenoproteins, many of which
are important for regulating cellular homeostasis. The recommended dietary intake for selenium
during pregnancy is 65 µg/day, with limited data supporting this recommendation [3,12]. Selenium
deficiency impairs the function of selenoproteins, including glutathione peroxidases, which have
been reported to influence regulation of enzymes in the insulin signalling cascade and glucose
metabolism [13]. Additionally, selenoprotein N dysfunction is detrimental to myogenesis and skeletal
muscle development [14]. As skeletal muscle is the largest site of glucose utilisation and is commonly
implicated in the development of insulin resistance, it is possible that aberrant selenium levels may alter
skeletal muscle development and contribute to impaired carbohydrate metabolism later in life [15].

Selenium is also known to play a major role in regulating thyroid hormone metabolism [16].
The selenoprotein iodothyronine deiodinases (DIO) regulate the production and metabolism of thyroid
hormones. While DIO1 and DIO2 are localised to several peripheral tissues, DIO3 is expressed only
within fetal tissues such as the placenta [17]. We have recently published data from a mouse model
of selenium deficiency during pregnancy that demonstrates reduced placental expression of DIO2
and DIO3 and increased maternal and fetal thyroid hormone concentrations during pregnancy [18].
Thyroid hormones regulate numerous metabolic processes and are essential for healthy pregnancy
outcomes and fetal development [19]. It is thus possible that selenium deficiency may program
offspring disease indirectly through altering thyroid function. Our mouse model of selenium deficiency
also resulted in placental insufficiency with reduced fetal glucose concentrations and fetal growth
restriction, two factors also associated with programmed disease outcomes in offspring [18].

Given the disruption of fetal thyroid hormone and glucose concentrations that occurred during
development, it is pertinent to investigate the long-term impact of selenium deficiency during
pregnancy on thyroid hormone metabolism and glucose homeostasis in offspring. In this study,
we aim to characterise the long-term effects of maternal dietary selenium deficiency prior to pregnancy,
throughout gestation and during lactation on offspring metabolic health later in life. Given that
programmed disease outcomes often occur in a sexually dimorphic manner, the potential biochemical
pathways that regulate metabolic outcomes were assessed separately in male and female offspring.

2. Materials and Methods

2.1. Animal Procedures

All experiments were approved by the Griffith University Animal Ethics Committee, conducted
in accordance with the Australian Code of Practice for Care and Use of Animals for Scientific Purposes,
with all experimental protocols complying with policies and regulations approved by the Griffith
University Animal Ethics Committee (MSC/01/16/AEC). Animal procedures, including mating and diet,
have been previously described [18]. Housing and husbandry of animals, as well as conceptualisation of
experimental design, was done so in accordance with the Developmental Origins of Health and Disease
(DOHaD) research “Animals in Research: Reporting In Vivo Experiments” (ARRIVE) guidelines.

Briefly, female C57BL/6 mice were obtained from the Animal Resources Centre (ARC, Perth,
Western Australia) and stored in environmentally controlled conditions of 23 ◦C and standard 12 h
light/dark cycles, with additional environmental enrichment. After acclimatisation for one week,
mice were randomly allocated to either a control (>190 µg Se/kg, n = 8) or low selenium (<50 µg Se/kg,
n = 8) diet four weeks prior to mating, throughout gestation and lactation. The custom diet used in the
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model has been previously described [18]. Quantities of selenium within the diet were verified using
inductively coupled plasma mass spectrometry. After mice gave birth, offspring were left unhandled
until postnatal day (PN) 8 from which point in time they were weighed daily. Offspring were weaned
at PN24 and after which, were placed on normal animal chow (230 µg selenium/kg, Teklad Global 18%
Protein Rodent Diet Irradiated, ENVIGO, Madison, WI, USA). All mice had access to water and their
respective diets ad libitum. From weaning (PN24) onwards, mice were group-housed with one or two
other litter mates of the same sex, with food and water manually weighed daily to calculate food and
water intake per cage. Daily food and water intake values were determined daily until PN180. Average
food and water intake was determined by dividing by the number of animals per cage. One male
and one female from each litter were culled at PN30 via cervical dislocation (n = 1 pup per sex from
6–8 litters per group) and plasma/tissues collected. The remainder of the litter was aged until PN180
and then also culled via cervical dislocation for tissue collection (n = 6–8).

2.2. Post-Mortem Tissue Collection

At PN30 and PN180, blood was collected via cardiac puncture into lithium heparin tubes (HEP;
Microvette CB 300 µL, Lithium Heparin, SARSTEDT, Nümbrecht, Germany; Cat. no. 16.443),
which were subsequently centrifuged at 2000× g for 5 min followed by collection of blood plasma.
The liver, adrenals, skeletal muscle and reproductive organs were collected, wet weighed, snap-frozen
in liquid nitrogen and stored at −80 ◦C.

2.3. Glucose Tolerance Testing

Glucose levels were measured using an Accu-Chek Performa II glucometer (Mannheim, Germany).
Random blood glucose levels were measured in whole blood at the time of euthanasia at PN30 (n = 6–8)
or PN180 (n = 6–8). Fasting blood glucose levels were measured at PN90 and PN170 (n = 6–8).
This involved fasting mice overnight, followed by a tail snip the following morning at 10:00 a.m. to
assess fasting blood glucose. Immediately following the fasting blood glucose measurement at PN170,
mice were subjected to an intraperitoneal (IP) glucose tolerance test (GTT). Mice were administered
with 1 g/kg of glucose (D-(+)-Glucose, Sigma-Aldrich, Darmstadt, Germany) in saline (0.9% sodium
chloride solution, Sigma-Aldrich) via IP injection (20% Glu in 0.9% NaCl solution). Glucose levels
were measured at 0-, 30-, 60-, 90-, 120- and 180-min post-injection.

2.4. Hormone Analysis

Levels of insulin, corticosterone, tetraiodothyronine (thyroxine) and triiodothyronine were
measured in plasma at PN180 as previously described [18,20]. Briefly, insulin was measured in
duplicate using a single assay with the Ultra-Sensitive Mouse Insulin ELISA kit (Crystal Chem
Inc., Elk Grove Village, IL, USA; Cat. no. 90080) following the manufacturer’s guidelines (n = 5–7).
Corticosterone levels were also measured in duplicate within a single assay using the DetectX
Corticosterone Enzyme Immunoassay kit (Arbor Assays, Ann Arbor, MI, USA; Cat. no. K014-H1)
following the manufacturer’s protocol (n = 5–7). Thyroxine was measured in offspring plasma using
a competitive ELISA kit (Invitrogen, Carlsbad, CA, USA; Cat. no. EIAT4C). Triiodothyronine (T3)
was measured using a total T3 radioimmunoassay (RIA) kit (Beckman Coulter, Czech Republic;
Cat. no. IM1699). Concentrations of all hormones in plasma were measured at the same time with
respective calibrators, with final concentrations determined from the standard curve developed using
the provided protocols.

2.5. Quantitative PCR

RNA was extracted from the gastrocnemius using the RNeasy mini kit (Qiagen, Melbourne,
Australia; Cat. no. 74106), as described previously [18,20]. As this was muscle tissue, an additional
step was included, which involved the addition of proteinase K (20 mg/mL) and incubation at 55 ◦C
for 1 h. The final RNA concentration was measured via absorbance spectrophotometry using the



Nutrients 2020, 12, 267 4 of 16

NanoDrop 2000/2000c. Conversion of RNA into cDNA for qPCR analysis was completed using the
Bio-Rad iScript gDNA clear cDNA synthesis kit (Hercules, CA, USA; Cat. no. 172-5035). All PCRs
were performed with thermocycling parameters as follows: initial activation step—95 ◦C for 2 min,
followed by 40 cycles of denaturation—95 ◦C for 5 s and combined annealing/extension 60 ◦C for 10 s
on the StepOne real-time PCR system (Applied Biosystems, Carlsbad, CA, USA). Twenty nanograms
of cDNA in 10 µL per reaction were used to perform qPCR, with samples run in duplicate. All PCR
reactions were performed in correspondence with the MIQE guidelines.

Measurement of mRNA expression of metabolic and thyroid pathway genes was conducted using
KiCqStart SYBR green PCR primers (Sigma-Aldrich, St. Louis, MI, USA), as described in Table 1.
No product was detected in the non-template control on any run and melt curve analysis demonstrated
a single spike for all genes measured. All samples were run in triplicate within a single plate per gene.
All expression was normalised to the geometric mean of hypoxanthine phosphoribosyl transferase 1
(Hprt1, NM_013556) and beta-2-microglobulin (B2m, NM_009735). Several potential reference genes
were assessed; however, these genes demonstrated consistent expression in the skeletal muscle tissue
and were not impacted by treatment. Final expression was calculated using the 2-∆∆Ct method, with n
= 6–8 per group.

Table 1. qPCR primer list.

Group Gene Name Gene
Acronym

Accession
Number Primer Sequence

Housekeepers

Hypoxanthine Phosphoribosyl
transferase 1 Hprt1 NM_013556 F′ AGGGATTTGAATCACGTTTG

R′ TTTACTGGCAACATCAACAG

Beta-2-Microglobulin B2m NM_009735 F′ GTATGCTATCCAGAAAACCC
R′ CTGAAGGACATATCTGACATC

Insulin Receptor
Pathway

Solute Carrier Family 2 Member 4
(GLUT4) Slc2a4 NM_009204 F′ CAATGGTTGGGAAGGAAAAG

R′ AATGAGTATCTCATAGGAGGC

Insulin Receptor Insr NM_010568 F′ AAGACCTTGGTTACCTTCTC
R′ GGATTAGTGGCATCTGTTTG

Phosphatidylinositol 3-Kinase
Catalytic Subunit Type 3 Pik3c3 NM_181414 F′ CTATGGAGAATTTAGTGGAGAG

R′ CTTCATATGTGAGTTGCTTGG

Thymoma Viral Proto-Oncogene 2 Akt2 NM_007434 F′ GAAAGGAGACTGTAAAAAGTGG
R′ ATACAGTATCGTCTTGGGTC

Glycogen Synthase Kinase 3 Beta Gsk3b NM_019827 F′ CACTCTTCAACTTTACCACTC
R′ ATTAGTATCTGAGGCTGCTG

Phosphoglycerate Kinase 1 Pgk1 NM_008828 F′ CTATCATAGGTGGTGGAGAC
R′ ACACTAGGTTGACTTAGGAG

Uncoupling Protein 3 Ucp3 NM_009464 F′ CAAGAAATGCCATTGTCAAC
R′ GAAGTTGTCAGTAAACAGGTG

Thyroid
Transporters and

Receptors

Solute Carrier Family 16 Member 10
(Mct10) Slc16a10 NM_001114332 F′ TCCTATTGCAGGGTTACTTC

R′ GATCTTTCTTTGCTTCTTGC

Thyroid Hormone Receptor α Thra NM_178060 F′ CATGGACTTGGTTCTAGATG
R′ CTGTAGCAACATGTATCAGG

Thyroid Hormone Receptor β Thrb NM_001113417 F′ GAGACTCTAACTTTGAATGGG
R′ CGATCTGAAGACATTAGCAG

2.6. Western Immunoblotting

Total protein was extracted from approximately 60 mg of frozen gastrocnemius tissue, as previously
described [20]. Quantitation of total protein was conducted using a bicinchoninic acid (BCA) protein
assay, with all samples normalised to 2 µg/µL for use in Western blotting procedures. Protein
samples (6 per group) were loaded into 15-well 12% polyacrylamide gels followed by separation via
electrophoresis at 120 V for approximately 2 h. Following electrophoresis, total protein loading for each
lane on the membrane was assessed using RevertTM 700 Total Protein stain, as per the manufacturer’s
instructions. After each membrane was scanned, the total protein stain was removed before membranes
were blocked using Odyssey blocking buffer (Millipore, Burlington, MA, USA) for 1 h, then incubated
with the following antibodies overnight: anti-glucose transporter 4 (GLUT4, 1:1000; Abcam, Cat.
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no. ab654) or protein kinase B (Pan-AKT, 1:1000; Cell Signalling, Cat. no. 4691S). Membranes were
washed, followed by a one-hour incubation with Li-Cor secondary antibodies (1:10,000, IRDye 680
goat anti-rabbit). Finally, protein expression was visualised with the Li-Cor Odyssey CLX imaging
system. Protein expression of GLUT4 and Pan-AKT was normalised to total protein content.

2.7. Statistical Analysis

A maximum of one male and one female was selected from each litter for each of the analyses at
PN30 and PN180. As some litters had limited numbers of female offspring, that meant that for some
litters, less than n = 8 was available for analysis (PN30 and PN180 n = 6–8). Weight at PN30 and PN180,
food and water consumption, allometry, as well as glucose and hormone concentrations, were analysed
by two-way analysis of variance (ANOVA—GraphPad Prism 8.2.1; RRID:SCR 002798). The main
effects of maternal selenium deficiency (Treatment; Ptrt) and sex (Sex; Psex), with any interactions
between treatment and sex, were assessed (Interaction; Pint). When a major effect of sex, treatment
or an interaction between sex and treatment was detected, a Sidak post hoc analysis was performed.
Given that male samples were run on a separate plate for QPCR and a separate gel for Western blotting
compared to females, analysis of qPCR and western blotting was conducted using unpaired t-tests.
All data are presented as means ± SEM with p < 0.05 considered statistically significant.

3. Results

3.1. Offspring Weights, Food and Water Consumption

As the impact of maternal selenium deficiency on offspring development has not been previously
investigated, it is important to monitor how this developmental insult impacts offspring weight and
dietary behaviour. Overall, LS did not impact pup number per litter but a sex by treatment interaction
(Pint < 0.05) and posthoc analysis (p < 0.05) demonstrated a reduction in the number of female but not
male offspring (NS Male 2.13 ± 0.30, NS Female 3.5 ± 0.57, LS Male 2.63 ± 0.46, LS Female 1.63 ± 0.57).
Body weight at PN30 was not different between offspring from normal and selenium-deficient litters
(Figure 1A). Female weight was significantly less than male weight at PN30 (Psex < 0.05). These results
were reflected at PN180 (Figure 1B—Psex < 0.0001). Food and water consumption from weaning (PN24)
until PN180 was also not different between treatment groups; however, females ate significantly less
(Psex < 0.01) and drank significantly less (Psex < 0.001) than males, regardless of treatment, over a
6-month period.

3.2. PN30 Offspring Allometry

Key parameters were investigated at PN30, which is roughly equivalent to that of an adolescent
human, a time that often precedes the development of pathologies associated with non-communicable
diseases (Table 2). At PN30, mice from selenium-deficient litters had increased tibialis anterior (TA)
muscle weight (Ptrt < 0.05), with posthoc analysis demonstrating that selenium deficiency increased
TA weight by 26% in male offspring (p < 0.05). While selenium deficiency had no overall impact on
the weight of other skeletal muscles, a sex by treatment interaction demonstrated that the extensor
digitorum longus (EDL) was 18% heavier in male offspring from selenium-deficient pregnancies
compared to male offspring from control pregnancies (Table 2, Pint < 0.05, p < 0.05). Muscles from male
offspring were heavier than female offspring (Psex < 0.05)
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Figure 1. Offspring weights, food and water consumption. Body weight at (A) PN30 and (B) PN180 
as well as average daily consumption of (C) normal chow and (D) water from weaning until PN180. 
Open bars (white) indicate offspring from litters that consumed a normal selenium diet, whereas 
closed bars (black) are offspring from litters that consumed a low selenium diet throughout pregnancy 
and up until weaning. Data are mean ± SEM and analysed by two-way ANOVA with treatment (Ptrt) 
and sex (Psex) as major factors. Pint represents the interaction between trt and sex. Multiple 
comparisons were determined by Sidak posthoc testing. Significance determined by p < 0.05. n = 6–9. 

Table 2. PN30 allometry. 

 Male Female 
Ptrt Psex Pint 

(mg) Control Low Control Low 
Liver 717.37 ± 46.21 785.03 ± 24.44 665.82 ± 38.67 714.83 ± 19.39 0.1507 0.1344 0.8147 

Adrenal 2.11 ± 0.24 1.96 ± 0.24 2.03 ± 0.11 1.95 ± 0.24 0.5711 0.8387 0.8722 
Brain 374.55 ± 10.92 376.12 ± 10.65 380.90 ± 6.79 377.98 ± 8.97 0.9454 0.6793 0.8208 

Gastrocnemius 50.87 ± 1.75 57.05 ± 3.11 48.50 ± 2.01 46.36 ± 3.36 0.4315 0.0160 0.1123 
Tibialis Anterior 16.55 ± 0.70 20.80 ± 1.87 * 14.49 ± 0.61 15.76 ± 0.95 0.0231 0.0047 0.2017 

Soleus 3.64 ± 0.39 3.63 ± 0.24 3.10 ± 0.13 3.01 ± 0.25 0.8641 0.0534 0.8855 
EDL 4.19 ± 0.33 4.93 ± 0.26 * 4.33 ± 0.20 3.59 ± 0.15 0.9992 0.0257 0.0076 

Testes 35.17 ± 1.96 33.71 ± 1.63 - -  
Ovaries - - 4.98 ± 0.88 4.01 ± 0.77 

Data are mean ± SEM with all weights in milligrams. All weights are litter averages for each sex. All 
measurements of adrenals, gastrocnemius, tibialis anterior, soleus, EDL (extensor digitorum longus), 
testes and ovaries include the total weight from both the left and right side of the body. Data analysed 
by two-way ANOVA with treatment (Ptrt) and sex (Psex) as major factors. Pint represents an interaction 
between treatment and sex. When a major effect was detected, a Sidak posthoc test was performed. Bold 
text indicates that a major effect reached significance. * = p < 0.05 indicated posthoc analysis compared 
to control of same sex. Unpaired t-test was conducted on reproductive organs. n = 6–9 litters. 

3.3. PN180 Offspring Allometry 

Physiological and metabolic parameters were investigated at approximately PN170–180, which 
in mice is equivalent to mature adulthood, an equivalent age at which metabolic dysfunction may 
become apparent in humans (Table 3). At PN180, there was no difference in the weight of any organs 

Figure 1. Offspring weights, food and water consumption. Body weight at (A) PN30 and (B) PN180
as well as average daily consumption of (C) normal chow and (D) water from weaning until PN180.
Open bars (white) indicate offspring from litters that consumed a normal selenium diet, whereas closed
bars (black) are offspring from litters that consumed a low selenium diet throughout pregnancy and up
until weaning. Data are mean ± SEM and analysed by two-way ANOVA with treatment (Ptrt) and sex
(Psex) as major factors. Pint represents the interaction between trt and sex. Multiple comparisons were
determined by Sidak posthoc testing. Significance determined by p < 0.05. n = 6–9.

Table 2. PN30 allometry.

Male Female
Ptrt Psex Pint

(mg) Control Low Control Low

Liver 717.37 ± 46.21 785.03 ± 24.44 665.82 ± 38.67 714.83 ± 19.39 0.1507 0.1344 0.8147
Adrenal 2.11 ± 0.24 1.96 ± 0.24 2.03 ± 0.11 1.95 ± 0.24 0.5711 0.8387 0.8722

Brain 374.55 ± 10.92 376.12 ± 10.65 380.90 ± 6.79 377.98 ± 8.97 0.9454 0.6793 0.8208
Gastrocnemius 50.87 ± 1.75 57.05 ± 3.11 48.50 ± 2.01 46.36 ± 3.36 0.4315 0.0160 0.1123

Tibialis Anterior 16.55 ± 0.70 20.80 ± 1.87 * 14.49 ± 0.61 15.76 ± 0.95 0.0231 0.0047 0.2017
Soleus 3.64 ± 0.39 3.63 ± 0.24 3.10 ± 0.13 3.01 ± 0.25 0.8641 0.0534 0.8855
EDL 4.19 ± 0.33 4.93 ± 0.26 * 4.33 ± 0.20 3.59 ± 0.15 0.9992 0.0257 0.0076

Testes 35.17 ± 1.96 33.71 ± 1.63 - -
Ovaries - - 4.98 ± 0.88 4.01 ± 0.77

Data are mean ± SEM with all weights in milligrams. All weights are litter averages for each sex. All measurements
of adrenals, gastrocnemius, tibialis anterior, soleus, EDL (extensor digitorum longus), testes and ovaries include the
total weight from both the left and right side of the body. Data analysed by two-way ANOVA with treatment (Ptrt)
and sex (Psex) as major factors. Pint represents an interaction between treatment and sex. When a major effect was
detected, a Sidak posthoc test was performed. Bold text indicates that a major effect reached significance. * = p < 0.05
indicated posthoc analysis compared to control of same sex. Unpaired t-test was conducted on reproductive organs.
n = 6–9 litters.

3.3. PN180 Offspring Allometry

Physiological and metabolic parameters were investigated at approximately PN170–180, which in
mice is equivalent to mature adulthood, an equivalent age at which metabolic dysfunction may become
apparent in humans (Table 3). At PN180, there was no difference in the weight of any organs between
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mice from normal selenium and selenium-deficient litters. As expected, organ weights from male
offspring were heavier than female offspring (Psex < 0.0001), except for the adrenal which was heavier
in females than males. The heavier orgnans in males than females reflects the lower body weights of
females at PN180 observed in Figure 1B.

Table 3. PN180 allometry.

Male Female
Ptrt Psex Pint

(mg) Control Low Control Low

Liver 1431.69 ± 55.10 1347.10 ± 54.17 1080.80 ± 53.76 998.97 ± 37.44 0.9797 <0.0001 0.1311
Adrenal 2.09 ± 0.29 1.82 ± 0.30 3.59 ± 0.25 3.55 ± 0.57 0.6604 <0.0001 0.7542

Brain 425.30 ± 8.64 428.70 ± 4.09 426.46 ± 5.48 443.66 ± 1.52 0.1205 0.2199 0.2918
Gastrocnemius 146.76 ± 3.80 148.15 ± 3.18 115.42 ± 1.85 114.70 ± 1.75 0.9092 <0.0001 0.7183

Tibialis Anterior 41.80 ± 1.51 42.58 ± 2.11 35.86 ± 1.22 35.45 ± 0.77 0.3946 <0.0001 0.2460
Soleus 8.52 ± 0.35 8.04 ± 0.33 6.98 ± 0.33 6.19 ± 0.33 0.1338 <0.0001 0.7474
EDL 9.84 ± 0.63 9.57 ± 0.19 8.38 ± 0.42 7.92 ± 0.22 0.0721 <0.0001 0.6543

Testes 95.11 ± 2.80 91.06 ± 1.73 - -
Ovaries - - 3.47 ± 0.35 4.83 ± 1.28

Data are mean ± SEM with all weights in milligrams. All weights are litter averages for each sex. All measurements
of adrenals, gastrocnemius, tibialis anterior, soleus, EDL (extensor digitorum longus), testes and ovaries include the
total weight from both the left and right side of the body. Data analysed by two-way ANOVA with treatment (Ptrt)
and sex (Psex) as major factors. Pint represents an interaction between treatment and sex. When a major effect was
detected, a Sidak posthoc test was performed. Bold text indicates that a major effect reached significance. Unpaired
t-test was conducted on reproductive organs. n = 6–8 litters.

3.4. Glucose Metabolism

As we had previously demonstrated that selenium deficiency reduced blood glucose levels
in the fetus [18], glucose metabolism was investigated in the offspring from this model. At PN30,
blood glucose levels were significantly reduced in the low selenium group (Ptrt < 0.01, Figure 2A),
irrespective of sex. Posthoc analysis indicates this was equally reduced in both sexes (p < 0.05).
At PN90 (Figure 2B), fasting blood glucose levels were not impacted by selenium deficiency but were
significantly lower in females compared to males (Psex < 0.05). An interaction between treatment and
sex (Pint < 0.05) suggested that selenium deficiency may have impacted PN90 fasting blood glucose
in one sex but not the other; however, posthoc analysis did not reach statistical significance. Fasting
blood glucose concentrations at PN170 were not affected by perinatal selenium deficiency (Figure 2C),
although females had a reduced fasting blood glucose (Psex < 0.001), compared to males.

In contrast to the fasting plasma glucose concentrations, the postprandial glucose assessment
at PN180 was shown to be impacted by perinatal selenium deficiency. The area under the glucose
tolerance curve (AUC, Figure 2D) was increased in mice from selenium-deficient litters (Ptrt < 0.01),
more so in females (p < 0.01). Irrespective of treatment, the AUC was reduced in females compared to
males (Psex < 0.0001). The peak blood glucose (Figure 2E) occurred at approximately 30 min post IP
glucose injection in all groups; however, offspring from selenium-deficient litters had significantly
increased blood glucose values at this peak (Ptrt < 0.01) with posthoc analysis demonstrating this to
be occurring predominantly in females (p < 0.01). Approximately three hours post IP injection of
glucose (Figure 2F), blood glucose was still significantly increased in mice from selenium-deficient
litters (Ptrt < 0.05), again more so in females (p < 0.05).
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(AUGC), (E) peak blood glucose concentrations 30 min post IP and (F) blood glucose concentrations 
180 min post IP. Open bars (white) indicate offspring from litters that consumed a normal selenium 
diet, whereas closed bars (black) are offspring from litters that consumed a low selenium diet 
throughout pregnancy and up until weaning. Data are mean ± SEM and analysed by two-way 
ANOVA with treatment (Ptrt) and sex (Psex) as major factors. Pint represents the interaction between 
treatment and sex. Multiple comparisons were determined by Sidak posthoc testing. * = p < 0.05, ** = 
p < 0.01 compared to control of same sex. n = 6–9. 
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controls. Although plasma corticosterone levels (Figure 3B) were greater in females than males (Psex 
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Figure 2. Offspring glucose metabolism. Offspring random glucose concentrations at (A) PN30 and
fasting blood glucose concentrations at (B) PN90 and (C) PN170. Following an intraperitoneal (IP) of
glucose at PN170, the following parameters were determined: (D) GTT area under the glucose curve
(AUGC), (E) peak blood glucose concentrations 30 min post IP and (F) blood glucose concentrations
180 min post IP. Open bars (white) indicate offspring from litters that consumed a normal selenium diet,
whereas closed bars (black) are offspring from litters that consumed a low selenium diet throughout
pregnancy and up until weaning. Data are mean ± SEM and analysed by two-way ANOVA with
treatment (Ptrt) and sex (Psex) as major factors. Pint represents the interaction between treatment and
sex. Multiple comparisons were determined by Sidak posthoc testing. * = p < 0.05, ** = p < 0.01
compared to control of same sex. n = 6–9.

3.5. Endocrine Analysis

Each of the major hormones that regulate glucose homeostasis were investigated. Plasma insulin
levels at PN180 (Figure 3A) were significantly greater in males compared to females (Psex < 0.001).
While overall, selenium deficiency did not impact offspring insulin concentrations (Ptrt = 0.2), a sex by
treatment interaction (Pint < 0.05) and posthoc analysis (p < 0.05) demonstrated that male offspring of
selenium-deficient mothers had a 54% increase in plasma insulin concentrations compared to controls.
Although plasma corticosterone levels (Figure 3B) were greater in females than males (Psex < 0.01),
there were no differences due to treatment in either sex. There were significant differences in thyroxine
levels (Figure 3C) between males and females (Psex < 0.0001) and a significant interaction between
sex and treatment (Pint < 0.01). Posthoc analysis determined that thyroxine levels were reduced in
males (p < 0.01) and increased in females (p < 0.05) from dams exposed to selenium-deficient diets.
T3 concentrations were not impacted by sex or treatment (Figure 3D).
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Figure 3. Offspring plasma hormone levels. PN180 plasma levels of (A) insulin, (B) corticosterone,
(C) tetraiodothyronine (thyroxine) and (D) triiodothyronine. Open bars (white) indicate offspring from
litters that consumed a normal selenium diet, whereas closed bars (black) are offspring from litters that
consumed a low selenium diet throughout pregnancy and up until weaning. Data are mean ± SEM
and analysed by two-way ANOVA with treatment (Ptrt) and sex (Psex) as major factors. Pint represents
the interaction between treatment and sex. Multiple comparisons were determined by Sidak posthoc
testing. * = p < 0.05, ** = p < 0.01 compared to control of same sex. n = 6–9.

3.6. Skeletal Muscle Metabolic Protein and Gene Expression

Given the major role of skeletal muscle in regulating systemic carbohydrate metabolism
and insulin signalling, key genes and proteins implicated in insulin resistance were investigated
(Figure 4). Males from selenium-deficient litters had significantly reduced expression of the
insulin-regulated glucose transporter, GLUT4 (Slc2a4, Figure 4A—p < 0.01) and the insulin receptor
(Insr, Figure 4B—p < 0.05). In addition, male offspring of selenium-deficient dams had reduced
expression of key insulin signalling genes: phosphatidylinositol 3-kinase catalytic subunit Type 3
(Pik3c3, Figure 4C—p < 0.01), protein kinase B2 (Akt2, Figure 4D—p < 0.05) and phosphoglycerate
kinase 1 (Pgk1, Figure 4F—p < 0.05). Females from selenium-deficient litters had increased expression
of Akt2 (Figure 4D—p < 0.05) within the gastrocnemius; however, no other genes were affected.
Investigations into the protein expression of GLUT4 and Pan-AKT in the gastrocnemius of both
males and females were also conducted. Protein expression of GLUT4 was reduced in deficient male
offspring of selenium-deficient dams (p < 0.05, Figure 4G). Conversely, protein expression of GLUT4
was increased (p < 0.05) in female offspring of selenium-deficient dams compared to controls. Pan-AKT
protein expression levels were reduced by approximately 30% in skeletal muscle of male offspring
(p < 0.05, Figure 4H).
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Figure 4. Insulin receptor pathway in the skeletal muscle of offspring. PN180 insulin receptor pathway
mRNA and protein expression in the gastrocnemius. Expression of (A) Slc2a4, (B) Insr, (C) Pik3c3,
(D) Akt2, (E) Gsk3b and (F) Pgk1 in males and females at PN180. Protein expression of (G) GLUT4 and
(H) Pan-AKT is shown in both males and females. Open bars (white) indicate offspring from litters that
consumed a normal selenium diet, whereas closed bars (black) are offspring from litters that consumed
a low selenium diet throughout pregnancy and up until weaning. Data are mean ± SEM and analysed
by unpaired t-tests between mice for litters on a normal selenium diet and a low selenium diet in both
males and females. * = p < 0.05, ** = p < 0.01, *** = p < 0.001 compared to control of same sex. n = 6–8.
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3.7. Skeletal Muscle Thyroid Hormone Gene Expression

As plasma thyroxine levels were dysregulated in a sex-specific manner at PN180, expression
of genes involved in thyroid hormone signalling was also investigated in skeletal muscle (Figure 5).
Thyroid hormone receptor α (Thr1, Figure 5A), the thyroid hormone transporter monocarboxylate
transporter 10 (Mct10, Figure 5C) and uncoupling protein 3 (Ucp3, Figure 5D) were all significantly
reduced (p < 0.05) in males from selenium-deficient litters. Conversely, expression of Mct10
(Figure 5C) and Ucp3 (Figure 5D) were increased within the gastrocnemius of female offspring
from selenium-deficient litters (p < 0.05), with no changes in Thra or Thrb gene expression.
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Figure 5. Thyroid hormone transporters and receptors in offspring skeletal muscle. PN180 mRNA
expression in the gastrocnemius of thyroid hormone transporters and receptors. Expression of (A) ThrA,
(B) ThrB, (C) Mct10 and (D) Ucp3 in males and females at PN180. Open bars (white) indicate offspring
from litters that consumed a normal selenium diet, whereas closed bars (black) are offspring from litters
that consumed a low selenium diet throughout pregnancy and up until weaning. Data are mean ±
SEM and were analysed by unpaired t-tests between mice for litters on a normal selenium diet and a
low selenium diet in both males and females. * = p < 0.05 compared to control of same sex. n = 6–8.

4. Discussion

The effects of poor micronutrient status during pregnancy on DOHaD is of growing interest,
and elucidating the implications on adult physiology is of paramount importance. The specific
effects of individual deficits of essential trace elements such as selenium on pregnancy outcomes,
placental function and fetal development are becoming increasingly known [3,21]; however, the specific
consequences of maternal selenium deficiency on offspring metabolic physiology have not previously
been demonstrated. We have recently shown that maternal selenium deficiency during pregnancy
increases maternal and fetal thyroid hormone concentrations, alters fetal and placental glucose
metabolism and induces fetal growth restriction [18]. As selenium deficiency induced variances to
these systems during pregnancy, we hypothesised that alterations to glucose metabolism and thyroid
hormone homeostasis may persist for offspring into adult life [22]. In this study, we examined the
effects of maternal selenium deficiency during pregnancy on offspring metabolism and endocrine
status. Given the major role of skeletal muscle tissue for systemic glucose homeostasis, we also
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investigated if any programmed metabolic dysfunction in offspring may be caused by changes to key
insulin and thyroid signalling pathways in muscle tissue.

A major finding of the current study is that offspring from selenium-deficient pregnancies
developed glucose intolerance by PN180. This is the first study to demonstrate that a mild selenium
deficit during pregnancy may program alterations in the metabolic state of offspring. It is likely that
this alteration in offspring glucose metabolism may be a consequence of altered glucose concentrations
during fetal life [23]. Our previous publication demonstrated that selenium deficiency reduces fetal
blood glucose levels at E18.5 [18]. As glucose is the primary energy substrate for the developing
fetus [24], this likely contributed to the fetal growth restriction evident in this model. In the current
study, we show that blood glucose levels remain reduced at PN30 in offspring of selenium-deficient
dams, although fasting glucose concentrations were no longer different between treatment groups
by PN90. Whilst fasting blood glucose remained unaffected by prenatal diet at PN180, postprandial
glucose concentrations were elevated and remained elevated three hours after glucose administration
in selenium deficient offspring. Given that the fetus completed its gestation in an environment with
reduced glucose availability, the “thrifty phenotype” hypothesis suggests that the fetus would have
adapted to a low glucose environment by altering mechanisms to increase glucose availability to ensure
survival [25]. It is therefore unsurprising that once the offspring began to consume adequate nutrients
in the post-weaning environment, the capacity to handle glucose was perturbed.

Plasma levels of insulin were also significantly increased in male offspring of selenium-deficient
dams at PN180, which is suggestive of insulin resistance [26]. Given that clinical studies have shown
selenium deficiency can reduce birth weight [9], a known predictor of offspring insulin resistance,
this may be the mechanism through which this occurs. Investigations into the Dutch famine (1944–1945)
have shown that when women were impacted by severe macronutrient deficiency during pregnancy,
offspring were similarly born with a low birth weight with adult offspring developing impaired glucose
tolerance [27]. Previous studies have demonstrated that programmed glucose intolerance and insulin
resistance may be due to alterations to skeletal muscle physiology [28]. Ozanne et al. demonstrated that
perinatal protein restriction in rats results in reduced skeletal muscle mass and while metabolic health
appeared to be improved during adolescence, when the animals were aged into adulthood, insulin
sensitivity and glucose uptake were significantly reduced in skeletal muscle [29]. In the current study,
skeletal muscle size was increased in the adolescent offspring; however, at PN180, skeletal muscle size
was similar between treatments. Furthermore, at E18.5, it was shown that placental selenoprotein N
(SelN) expression was reduced [18]. During embryogenesis, SelN is important for muscle organisation
and myoblast proliferation [30]. SelN may have been similarly impaired in the developing skeletal
muscle, which could have altered muscle formation possibly contributing the phenotype observed
in adulthood [31]. It is likely that the programmed phenotype in offspring has occurred because
of complex interactions between reduced fetal glucose, altered skeletal muscle formation as well as
changes to circulating hormones.

The manifestation of insulin resistance in skeletal muscle occurs due to reduced insulin-stimulated
glucose uptake as well as impaired post-receptor and intracellular signalling pathways [26]. At PN180,
mRNA and protein expression of the GLUT4 receptor was reduced in males and increased in females
exposed to a low-selenium diet during early development. Interestingly, expression of Akt2 was
decreased in males and increased in females and at the protein level, Pan-AKT was reduced in
males. Furthermore, mRNA expression of several genes involved in the insulin receptor pathway
and glucose metabolism were also decreased in male skeletal muscle at PN180, including Insr, Pik3c3
and Pgk1. Abdul-Ghani and DeFronzo described insulin receptor alterations, decreased PI3-kinase
activation, impaired GLUT4 translocation and reduced glucose phosphorylation in the pathogenesis
of skeletal muscle insulin resistance [26]. Similarly, these observations have been associated with
programmed metabolic disease and the pathogenesis of insulin resistance [32]. Female offspring
in the same model also have glucose intolerance; however, they exhibit increased GLUT4 protein
expression and intracellular mRNA expression of Akt2, indicating attempts of positive adaptations
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to glucose intolerance [33]. These results indicate exposure to selenium deficiency in utero causes
a sexually dimorphic adaptation of glucose metabolism in offspring. While we have previously
demonstrated that sexually dimorphic placental adaptations to maternal dietary insults likely mediate
sex-specific disease outcomes in offspring, the placental adaptations noted in the current model were
mostly similar between sexes [3]. The sexually dimorphic metabolic phenotype in the current study
therefore likely reflects postnatal differences between males and females. While there are likely to be
multiple postnatal factors involved [34], it would be of significant interest to investigate the potential
role of estrogen in protecting female offspring from programmed metabolic disease in this model.
This would be of particular interest given that increased concentrations of estrogen in females have
been previously shown to play a major role in sexual dimorphic counterregulatory responses in healthy
humans exposed to an acute bout of hypoglycaemia [35]. Another key hormone known to be different
between men and women that is an important regulator of glucose homeostasis is cortisol. In the
current model, while prenatal treatment had no impact on adrenal size or corticosterone concentrations,
females had larger adrenal glands and increased plasma corticosterone levels when compared to
males. Corticosterone has been previously shown to inhibit insulin-stimulated glucose uptake in
skeletal muscle [36] and so it may be possible that the increased corticosterone concentrations in female
offspring may play a role in modulating the programmed phenotype in the current study.

In addition to the potential roles of fetal hypoglycaemia and altered skeletal muscle function
in the development of offspring disease, selenium deficiency may have altered offspring metabolic
function as a consequence of programming thyroid dysfunction [37]. Korevaar et al. have previously
demonstrated that maternal thyroid function is associated with offspring brain morphology and thyroid
function in children at six years of life [38]. Animal models have similarly demonstrated that altered
maternal thyroid status can disrupt the setpoint of the hypothalamus-pituitary-thyroid (HPT) axis in
offspring [39]. Previously, we demonstrated that maternal selenium deficiency reduces placental DIO
expression and increases maternal and fetal thyroid hormone levels [18]. Here, we show that thyroid
hormone status remains impaired in offspring at PN180. In male offspring from mothers exposed to a
selenium-deficient diet, plasma thyroxine levels were reduced, with no changes in triiodothyronine
levels. Expression of genes known to be stimulated by thyroid hormone signalling was also reduced
in the male gastrocnemius. In humans, negative associations between free thyroxine and insulin
sensitivity suggest a potential role for thyroid hormone signalling in the development of insulin
resistance [40]. Specifically, subclinical hypothyroidism is associated with insulin resistance, as seen in
the male offspring [41].

In contrast to the programmed decrease in thyroxine in male offspring, selenium deficiency
programmed an increase in thyroxine in female offspring. Insulin resistance is also demonstrated
to be associated with hyperthyroidism, due to an increased demand for glucose, as observed in the
female offspring in this study [42]. Prevalence of thyroid disorders is commonly higher in females [43];
therefore, it is possible that the observed sexual dimorphism may be in part due to sexually specific
adaptive processes of the thyroid gland to stress [44]. Sexual dimorphic programmed changes to the HPT
axis have been observed previously in animal models that investigate developmental programming,
with sex-specific responses of the HPT axis to a high-fat/high-carbohydrate diet previously being
demonstrated in rats [45]. In support of the potential impact that increased thyroid hormone levels
may play in female offspring, expression of genes known to be stimulated by thyroid signalling was
increased in muscle tissue from females, specifically Mct10 and Ucp3. Glucose intolerance observed in
females was also more severe than that observed in male offspring, with no change in plasma insulin
levels at PN180. As discussed above, the sexual dimorphic variances observed may be due to endocrine
function differences between males and females.

The novel findings of this study that demonstrate prenatal selenium deficiency induces sexually
dimorphic changes to offspring metabolic health, particularly those related to thyroid function, highlight
the urgent need for further research to investigate the role of sex hormones in programmed thyroid
dysfunction. Furthermore, given that previous studies have demonstrated the benefits of pre/postnatal
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exercise in the prevention of programmed disease, and that exercise can stimulate GLUT4 glucose
uptake in skeletal muscle independent of insulin, future studies should investigate whether exercise
can ameliorate some of the effects demonstrated in the current study [46,47].

5. Conclusions

The current study is the first to demonstrate that selenium deficiency, from before pregnancy up
until weaning, can program metabolic and thyroid dysfunction in offspring. Importantly, we have
identified programmed changes to insulin and thyroid signalling within the skeletal muscle as likely
causes of the offspring disease. Given the large number of populations that are selenium-deficient
and the increasing rates of thyroid dysfunction and diabetes mellitus, it is important that action is
taken to ensure women obtain adequate selenium during pregnancy to maximise the health of the
developing child.
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4. Pieczyńska, J.; Grajeta, H. The role of selenium in human conception and pregnancy. J. Trace Elem. Med. Biol.
2015, 29, 31–38. [CrossRef]

5. Rayman, M.P.; Wijnen, H.; Vader, H.; Kooistra, L.; Pop, V. Maternal selenium status during early gestation
and risk for preterm birth. CMAJ 2011, 183, 549–555. [CrossRef] [PubMed]

6. Lewandowska, M.; Sajdak, S.; Lubinski, J. Serum Selenium Level in Early Healthy Pregnancy as a Risk
Marker of Pregnancy Induced Hypertension. Nutrients 2019, 11, 1028. [CrossRef] [PubMed]

7. Rayman, M.P.; Bath, S.C.; Westaway, J.; Williams, P.; Mao, J.; Vanderlelie, J.J.; Perkins, A.V.; Redman, C.W.
Selenium status in UK pregnant women and its relationship with hypertensive conditions of pregnancy.
Br. J. Nutr. 2015, 113, 249–258. [CrossRef] [PubMed]

8. Kong, F.J.; Ma, L.L.; Chen, S.P.; Li, G.; Zhou, J.Q. Serum selenium level and gestational diabetes mellitus:
a systematic review and meta-analysis. Nutr. J. 2016, 15, 94. [CrossRef]

9. Lewandowska, M.; Sajdak, S.; Lubinski, J. The Role of Early Pregnancy Maternal Selenium Levels on the
Risk for Small-for-Gestational Age Newborns. Nutrients 2019, 11, 2298. [CrossRef]

10. Palmsten, K.; Buka, S.L.; Michels, K.B. Maternal pregnancy-related hypertension and risk for hypertension
in offspring later in life. Obstet. Gynecol. 2010, 116, 858. [CrossRef]

11. Yan, J.; Yang, H. Gestational diabetes mellitus, programing and epigenetics. J. Matern.-Fetal Neonatal Med.
2014, 27, 1266–1269. [CrossRef] [PubMed]

12. Bogden, J.D.; Kemp, F.W.; Chen, X.; Stagnaro-Green, A.; Stein, T.P.; Scholl, T.O. Low-normal serum selenium
early in human pregnancy predicts lower birth weight. Nutr. Res. 2006, 26, 497–502. [CrossRef]

http://dx.doi.org/10.3390/nu11040894
http://www.ncbi.nlm.nih.gov/pubmed/31010060
http://dx.doi.org/10.1038/nrendo.2017.151
http://www.ncbi.nlm.nih.gov/pubmed/29219149
http://dx.doi.org/10.1111/1440-1681.12954
http://dx.doi.org/10.1016/j.jtemb.2014.07.003
http://dx.doi.org/10.1503/cmaj.101095
http://www.ncbi.nlm.nih.gov/pubmed/21324870
http://dx.doi.org/10.3390/nu11051028
http://www.ncbi.nlm.nih.gov/pubmed/31071931
http://dx.doi.org/10.1017/S000711451400364X
http://www.ncbi.nlm.nih.gov/pubmed/25571960
http://dx.doi.org/10.1186/s12937-016-0211-8
http://dx.doi.org/10.3390/nu11102298
http://dx.doi.org/10.1097/AOG.0b013e3181f3a1f9
http://dx.doi.org/10.3109/14767058.2013.853733
http://www.ncbi.nlm.nih.gov/pubmed/24125565
http://dx.doi.org/10.1016/j.nutres.2006.08.008


Nutrients 2020, 12, 267 15 of 16

13. Ojeda, M.L.; Nogales, F.; del Valle, P.M.; Díaz-Castro, J.; Murillo, M.L.; Carreras, O. Metabolic syndrome and
selenium in fetal programming: gender differences. Food Funct. 2016, 7, 3031–3038. [CrossRef] [PubMed]

14. Rederstorff, M.; Krol, A.; Lescure, A. Understanding the importance of selenium and selenoproteins in
muscle function. Cell. Mol. Life Sci. 2006, 63, 52–59. [CrossRef]

15. Augusto, V.; Padovani, C.R.; Campos, G.R. Skeletal muscle fiber types in C57BL6J mice. Braz. J. Morphol. Sci.
2004, 21, 89–94.

16. Köhrle, J. Selenium and the control of thyroid hormone metabolism. Thyroid 2005, 15, 841–853. [CrossRef]
17. Marsili, A.; Zavacki, A.M.; Harney, J.W.; Larsen, P.R. Physiological role and regulation of iodothyronine

deiodinases: A 2011 update. J. Endocrinol. Investig. 2011, 34, 395–407. [CrossRef]
18. Hofstee, P.; Bartho, L.A.; McKeating, D.R.; Radenkovic, F.; McEnroe, G.; Fisher, J.J.; Holland, O.J.;

Vanderlelie, J.J.; Perkins, A.V.; Cuffe, J.S. Maternal selenium deficiency during pregnancy in mice increases
thyroid hormone concentrations, alters placental function and reduces fetal growth. J. Physiol. 2019, 597,
5597–5671. [CrossRef]

19. Delitala, A.P.; Capobianco, G.; Cherchi, P.L.; Dessole, S.; Delitala, G. Thyroid function and thyroid disorders
during pregnancy: A review and care pathway. Arch. Gynecol. Obstet. 2019, 299, 327–338. [CrossRef]

20. Bartho, L.A.; Holland, O.J.; Moritz, K.M.; Perkins, A.V.; Cuffe, J.S. Maternal corticosterone in the mouse alters
oxidative stress markers, antioxidant function and mitochondrial content in placentas of female fetuses.
J. Physiol. 2019, 597, 3053–3067. [CrossRef]

21. Richard, K.; Holland, O.; Landers, K.; Vanderlelie, J.J.; Hofstee, P.; Cuffe, J.S.; Perkins, A.V. Effects of maternal
micronutrient supplementation on placental function. Placenta 2017, 54, 38–44. [CrossRef] [PubMed]

22. Pappas, A.C.; Zoidis, E.; Chadio, S.E. Maternal Selenium and Developmental Programming. Antioxidants
2019, 8, 145. [CrossRef] [PubMed]

23. Hay, W.W., Jr. Placental-fetal glucose exchange and fetal glucose metabolism. Trans. Am. Clin. Climatol.
Assoc. 2006, 117, 321. [PubMed]

24. Michelsen, T.M.; Holme, A.M.; Holm, M.B.; Roland, M.C.; Haugen, G.; Powell, T.L.; Jansson, T.; Henriksen, T.
Uteroplacental glucose uptake and fetal glucose consumption: A quantitative study in human pregnancies.
J. Clin. Endocrinol. Metab. 2018, 104, 873–882. [CrossRef] [PubMed]

25. Thorn, S.R.; Rozance, P.J.; Brown, L.D.; Hay, W.W. The intrauterine growth restriction phenotype: Fetal
adaptations and potential implications for later life insulin resistance and diabetes. Semin. Reprod. Med. 2011,
29, 225–236. [CrossRef]

26. Abdul-Ghani, M.A.; DeFronzo, R.A. Pathogenesis of insulin resistance in skeletal muscle. BioMed Res. Int.
2010, 2010, 476279. [CrossRef]

27. Ravelli, A.C.; van der Meulen, J.H.; Michels, R.; Osmond, C.; Barker, D.J.; Hales, C.; Bleker, O.P. Glucose
tolerance in adults after prenatal exposure to famine. Lancet 1998, 351, 173–177. [CrossRef]

28. DeFronzo, R.A.; Tripathy, D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes.
Diabetes Care 2009, 32, S157–S163. [CrossRef]

29. Ozanne, S.; Wang, C.; Coleman, N.; Smith, G. Altered muscle insulin sensitivity in the male offspring of
protein-malnourished rats. Am. J. Physiol. Endocrinol. Metab. 1996, 271, E1128–E1134. [CrossRef]

30. Castets, P.; Lescure, A.; Guicheney, P.; Allamand, V. Selenoprotein N in skeletal muscle: from diseases to
function. J. Mol. Med. 2012, 90, 1095–1107. [CrossRef]

31. Clarke, N.F.; Kidson, W.; Quijano-Roy, S.; Estournet, B.; Ferreiro, A.; Guicheney, P.; Manson, J.I.; Kornberg, A.J.;
Shield, L.K.; North, K.N. SEPN1: Associated with congenital fiber-type disproportion and insulin resistance.
Ann. Neurol. 2006, 59, 546–552. [CrossRef] [PubMed]

32. Devaskar, S.U.; Thamotharan, M. Metabolic programming in the pathogenesis of insulin resistance. Rev.
Endocr. Metab. Disord. 2007, 8, 105–113. [CrossRef] [PubMed]

33. Stanford, K.I.; Goodyear, L.J. Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake
in skeletal muscle. Adv. Physiol. Educ. 2014, 38, 308–314. [CrossRef] [PubMed]

34. Aiken, C.E.; Ozanne, S.E. Sex differences in developmental programming models. Reproduction 2013, 145,
R1–R13. [CrossRef] [PubMed]

35. Sandoval, D.A.; Ertl, A.C.; Richardson, M.A.; Tate, D.B.; Davis, S.N. Estrogen blunts neuroendocrine and
metabolic responses to hypoglycemia. Diabetes 2003, 52, 1749–1755. [CrossRef]

http://dx.doi.org/10.1039/C6FO00595K
http://www.ncbi.nlm.nih.gov/pubmed/27334401
http://dx.doi.org/10.1007/s00018-005-5313-y
http://dx.doi.org/10.1089/thy.2005.15.841
http://dx.doi.org/10.1007/BF03347465
http://dx.doi.org/10.1113/JP278473
http://dx.doi.org/10.1007/s00404-018-5018-8
http://dx.doi.org/10.1113/JP277815
http://dx.doi.org/10.1016/j.placenta.2016.12.022
http://www.ncbi.nlm.nih.gov/pubmed/28031147
http://dx.doi.org/10.3390/antiox8050145
http://www.ncbi.nlm.nih.gov/pubmed/31130660
http://www.ncbi.nlm.nih.gov/pubmed/18528484
http://dx.doi.org/10.1210/jc.2018-01154
http://www.ncbi.nlm.nih.gov/pubmed/30339207
http://dx.doi.org/10.1055/s-0031-1275516
http://dx.doi.org/10.1155/2010/476279
http://dx.doi.org/10.1016/S0140-6736(97)07244-9
http://dx.doi.org/10.2337/dc09-S302
http://dx.doi.org/10.1152/ajpendo.1996.271.6.E1128
http://dx.doi.org/10.1007/s00109-012-0896-x
http://dx.doi.org/10.1002/ana.20761
http://www.ncbi.nlm.nih.gov/pubmed/16365872
http://dx.doi.org/10.1007/s11154-007-9050-4
http://www.ncbi.nlm.nih.gov/pubmed/17657604
http://dx.doi.org/10.1152/advan.00080.2014
http://www.ncbi.nlm.nih.gov/pubmed/25434013
http://dx.doi.org/10.1530/REP-11-0489
http://www.ncbi.nlm.nih.gov/pubmed/23081892
http://dx.doi.org/10.2337/diabetes.52.7.1749


Nutrients 2020, 12, 267 16 of 16

36. Zhao, J.; Lin, H.; Jiao, H.; Song, Z. Corticosterone suppresses insulin-and NO-stimulated muscle glucose
uptake in broiler chickens (Gallus gallus domesticus). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2009,
149, 448–454. [CrossRef]

37. Ventura, M.; Melo, M.; Carrilho, F. Selenium and thyroid disease: From pathophysiology to treatment. Int. J.
Endocrinol. 2017, 2017, 1297658. [CrossRef]

38. Korevaar, T.I.; Muetzel, R.; Medici, M.; Chaker, L.; Jaddoe, V.W.; de Rijke, Y.B.; Steegers, E.A.; Visser, T.J.;
White, T.; Tiemeier, H. Association of maternal thyroid function during early pregnancy with offspring IQ
and brain morphology in childhood: A population-based prospective cohort study. Lancet Diabetes Endocrinol.
2016, 4, 35–43. [CrossRef]

39. Alonso, M.; Goodwin, C.; Liao, X.; Page, D.; Refetoff, S.; Weiss, R.E. Effects of maternal levels of thyroid
hormone (TH) on the hypothalamus-pituitary-thyroid set point: studies in TH receptor β knockout mice.
Endocrinology 2007, 148, 5305–5312. [CrossRef] [PubMed]

40. Fernández-Real, J.-M.; López-Bermejo, A.; Castro, A.; Casamitjana, R.; Ricart, W. Thyroid function is
intrinsically linked to insulin sensitivity and endothelium-dependent vasodilation in healthy euthyroid
subjects. J. Clin. Endocrinol. Metab. 2006, 91, 3337–3343. [CrossRef]

41. Vyakaranam, S.; Vanaparthy, S.; Nori, S.; Palarapu, S.; Bhongir, A.V. Study of insulin resistance in subclinical
hypothyroidism. Int. J. Health Sci. Res. 2014, 4, 147. [PubMed]

42. Dimitriadis, G.; Raptis, S. Thyroid hormone excess and glucose intolerance. Exp. Clin. Endocrinol. Diabetes
2001, 109, S225–S239. [CrossRef] [PubMed]

43. Bjoro, T.; Holmen, J.; Kruger, O.; Midthjell, K.; Hunstad, K.; Schreiner, T.; Sandnes, L.; Brochmann, H.
Prevalence of thyroid disease, thyroid dysfunction and thyroid peroxidase antibodies in a large, unselected
population. The Health Study of Nord-Trondelag (HUNT). Eur. J. Endocrinol. 2000, 143, 639–647. [CrossRef]
[PubMed]

44. Bauer, M.; Glenn, T.; Pilhatsch, M.; Pfennig, A.; Whybrow, P.C. Gender differences in thyroid system function:
relevance to bipolar disorder and its treatment. Bipolar Disord. 2014, 16, 58–71. [CrossRef] [PubMed]

45. Jaimes, L.; Romero, F.; Charli, J.-L.; Joseph-Bravo, P. Sex Dimorphic Responses of the Hypothalamus-
Pituitary-Thyroid Axis to Maternal Separation and Palatable Diet. Frontiers in endocrinol. 2019, 10, 445.
[CrossRef] [PubMed]

46. Clapp, J.F., III. Effects of diet and exercise on insulin resistance during pregnancy. Metab. Syndr. Relat. Disord.
2006, 4, 84–90. [CrossRef]

47. Borghouts, L.; Keizer, H. Exercise and insulin sensitivity: a review. Int. J. Sports Med. 2000, 21, 1–12.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cbpc.2008.10.106
http://dx.doi.org/10.1155/2017/1297658
http://dx.doi.org/10.1016/S2213-8587(15)00327-7
http://dx.doi.org/10.1210/en.2007-0677
http://www.ncbi.nlm.nih.gov/pubmed/17690164
http://dx.doi.org/10.1210/jc.2006-0841
http://www.ncbi.nlm.nih.gov/pubmed/25580384
http://dx.doi.org/10.1055/s-2001-18584
http://www.ncbi.nlm.nih.gov/pubmed/11460573
http://dx.doi.org/10.1530/eje.0.1430639
http://www.ncbi.nlm.nih.gov/pubmed/11078988
http://dx.doi.org/10.1111/bdi.12150
http://www.ncbi.nlm.nih.gov/pubmed/24245529
http://dx.doi.org/10.3389/fendo.2019.00445
http://www.ncbi.nlm.nih.gov/pubmed/31354623
http://dx.doi.org/10.1089/met.2006.4.84
http://dx.doi.org/10.1055/s-2000-8847
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Animal Procedures 
	Post-Mortem Tissue Collection 
	Glucose Tolerance Testing 
	Hormone Analysis 
	Quantitative PCR 
	Western Immunoblotting 
	Statistical Analysis 

	Results 
	Offspring Weights, Food and Water Consumption 
	PN30 Offspring Allometry 
	PN180 Offspring Allometry 
	Glucose Metabolism 
	Endocrine Analysis 
	Skeletal Muscle Metabolic Protein and Gene Expression 
	Skeletal Muscle Thyroid Hormone Gene Expression 

	Discussion 
	Conclusions 
	References

