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Abstract: Neuropathic pain is generally characterized by sensory abnormalities such as sensory
disorders, hyperalgesia, and allodynia. Recent studies have reported that TRPV1 activation is essential
for establishing of inflammation in the neuropathy pain models, showing that the expression of
this receptor is increased, and contributing to enhanced thermal sensitivity. Nypa fruticans Wurmb
(NF), which was used as a folk remedy, is a plant that is gaining attention due to its various effects.
In this study, we investigated the antinociceptive and anti-inflammatory effects of NFE (Nypa fruticans
Wurmb extracts) by controlling the neurological function of TRPV1. In sciatic crush injury rat models,
a significant level of antinociceptive effect was observed in the thermal hyperalgesia test in which
NF extracts (NFE 500 mg/kg) were orally administered, daily. Protein quantification of the sciatic
nerve and the of the L4–L6 spinal cord showed a decrease of the TRPV1 expression, the inflammatory
expression factor, COX2, and proinflammatory factors in the NFE treated groups. Our results indicate
that NFE affects antinociceptive and anti-inflammatory by controlling TRPV1 in sciatic neuropathic
pain models.
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1. Introduction

Neuropathic pain is generally characterized by sensory abnormalities such as sensory disorders,
hyperalgesia, and allodynia. Additionally, inflammation of the central and peripheral nervous system
helps to cause and sustain chronic neuropathic pain [1]. Issues related to crushing injuries include
increased endoneurial edema, free oxygen radicals, inflammatory reactions, de- and remyelination,
axonolysis, regeneration, and degeneration [2–4]. Inflammatory mediators such as prostaglandins,
histamines, cytokines, chemokines, and growth factors are involved in nerve regeneration and
degeneration that is associated with neuropathic pain [5–7]. Recent studies have described that
TRPV1 activation is essential for establishing inflammation and neuropathy pain models, showing that
the expression of this receptor is increased, which contributes to enhanced thermal sensitivity [8,9].
Activation of TRPV1 leads to the release of peptide neurotransmitters such as CGRP and SP of neurons
involved in pain transmission and neurogenic inflammatory responses [10–12]. Although TRPV1
activation does not completely clarify how inflammatory responses are regulated, TRPV1 activation
induces neurogenic inflammation. TRPV1 can modulate the primary and stimulus-induced release of
pro-/anti-inflammatory cytokines and alleviate neurological diseases associated with inflammation [13].
Therefore, recent studies have been conducted regarding how to treat neuropathic pain by inhibiting
targets such as TNF-α, TRPV1, and COX2 [13].
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However, there is no definitive treatment for peripheral nerve damage. Many drugs have
been used for treating experimentally-induced peripheral nerve injuries, including nonsteroidal
anti-inflammatory agents, steroids, nerve growth factors, erythropoietin, thyroid hormone, growth
hormone, adrenocorticotropic hormone, and insulin-like peptides [3,14]. Considering that the use of
analgesic and anti-inflammatory drugs exerts a wide range of side effects [15], there is currently a
keen interest in developing new therapeutic agents from natural products [16]. Nypa fruticans Wurmb
(NF) is a mangrove plant that grows only on mudflats and salt marshes in Malaysia, Indonesia, Papua
New Guinea, the Philippines, and Myanmar. The average length of the leaves is 9–10 m [17]. It is
known to be rich in polyphenols, flavonoids, vitamin E, and calcium [17]. Previous studies have shown
that polyphenols and flavonoids are abundant, with chlorogenic and protocatechuic acid, as well as
kaempferol, being prevalent. These are known to have good antioxidative, anti-inflammatory, and
cholesterol-suppressing effects [18]. Folk remedies have used the roots, leaves, and stems of NF for
conditions like asthma, tuberculosis, sore throats, liver disease, and as an analgesic [19,20].

Previous studies have reported the anti-nociception, antioxidant, and anti-inflammatory effects
of NF. However, there have been no Nypa fruticans Wurmb extract (NFE) related studies regarding
the control of TRPV1 in relation to neuropathic pain. Therefore, this study was carried out with
the hypothesis that NFE has an anti-nociceptive and anti-inflammatory effect by controlling the
neurological function of TRPV1.

2. Materials and Methods

2.1. Experimental Animal

Male Sprague–Dawley rats (Hyochang science, Daegu, Korea) were used at 4 weeks of age (body
weight 100–120 g). During the experiment, water and food (solid feed) were supplied unlimitedly.
The temperature of the feed room was maintained at 20 ± 2 ◦C and the humidity 55 ± 5%. Experiments
were carried out after one week of incubation period adaptation period.

2.2. Preparation of the Extract

NF flower stalk used in this experiment were collected in Myanmar, peeled locally, dried, and then
purchased commercially available products imported and distributed by Todifarm Korea (Hanam
City, Korea). The dried NF was ground using a pulverizer, after which NF powder 100 g extracted
with 1 L of 80% EtOH at room temperature for 4 h. Following this, the filter cake was used to remove
the powder, the filtered liquid concentrated with an evaporator and dried. The extract was stored at
−20 ◦C in sterile universal bottles.

2.3. Sciatic Nerve Crush Injury Model

All experimental procedures were performed after approval by the Animal Experiment Ethic
Committee of Dong-Eui University (R2018-002) in accordance with the guidelines of the International
Association for the Study of Pain (IASP). The rat was treated with 300 mg/kg of Tribromoethanol
(Avertin) intraperitoneally before surgical treatment. The rat underwent general anesthesia with a 2 cm
incision of the skin on its right posterior femur, minimizing the damage to the surrounding tissues.
Hemostatic forceps were used to crush the exposed sciatic nerve for 30 s according to the modified
procedure described by Kalender, A [21]. The wound was then sutured, and the skin was sterilized to
prevent infection. The wound was stabilized by putting the rat in a cage for experimental animals [21].

2.4. Experimental Group and Medication

The Sham group was defined as the group that did not undergo any treatment. Male Sprague–Dawley
rats were administered NFE or vehicle or aspirin once daily. Oral gavage using a 20 gauge curved
dosing needles are used. The experimental group was treated with NFE 500 mg/kg orally, once daily
following the sciatic nerve crush injury (CNI). The aspirin (200 mg/kg) treated group, a positive control,
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was orally administered aspirin once daily following the CNI. The SB-366791 (Enzo Life Sciences,
Farmingdale, NY, USA) as the TRPV1 antagonist was intraperitoneally injected once daily with
0.3 mg/kg. SB366791 was purchased from Enzo (Farmingdale, NY, USA) and was dissolved in 100%
ethanol (10 mg/mL with warming) as well as diluted in physiological saline. Aspirin was dissolved
in physiological saline. SB366791 [N-(3-methoxyphenyl)-4-chlorocinnamide] is a more selective and
in vivo is also a more potent TRPV1 antagonist than the more commonly used TRPV1 antagonist
capsazepine [22]. It has been widely used as a selective TRPV1 antagonist in pain research [23–25].

Sham: Intact rats + saline (10 mL/kg)
Vehicle: Sciatic crush nerve injury (CNI) + saline (10 mL/kg)
Aspirin: Sciatic crush nerve injury (CNI) + aspirin (200 mg/kg)
NFE: Sciatic crush nerve injury (CNI) + NFE (500 mg/kg)
SB: Sciatic crush nerve injury (CNI) + SB366791 (0.3 mg/kg)
NF + SB: Sciatic crush nerve injury (CNI) + NFE (500 mg/kg) + SB366791 (0.3 mg/kg)

2.5. Heat Hyperalgegia Test

An evaluation method to measure the pain threshold of the heat was used. The paw withdrawal
latency was measured at the 0th, 3rd, 7th, 10th, and 14th day after the sciatic nerve injury by immersing
the right hind limb of the sciatic nerve-injured rat in hot water (46 ◦C). To prevent tissue damage,
measurements were taken within 20 s and repeated 3 times at 5 min intervals.

2.6. Protein Quantification (Western Blotting)

Sciatic nerve and L4-L6 spinal cord were separated and homogenized using a homogenizer at
4 ◦C with lysis buffer (PRO-Prep™). Homogenized tissue centrifuged at 13,000 rpm for 10 min. The
protein concentration was measured at 595 nm by adding Bio-Rad Protein Assay Kit (Bio-Rad Hercules,
CA, USA). The prepared sample was subjected to electrophoresis and nitrocellulose membrane protein
transfer and COX2 (1:1000, Cell Signaling, Danvers, MA, USA) and TRPV1 (1:1000, Neuromics, Edina,
MN, USA) primary antibody were reacted at 4 ◦C for 24 h, reacted with secondary antibody for 2 h,
and then ECL prime (Amersham Pharmacia Biotech, Buckinghamshire, UK). The degree of expression
was measured using Image J software.

2.7. Analysis of Inflammatory Markers (Cytokine Analysis)

The blood collected from the abdominal vein was stored in the SST tube. SST tube blood specimens
were centrifuged at 3000 rpm for 15 min, and the serum was transferred to an E-tube and stored
at −70 ◦C for analysis. IL-6, TNF-α and IL-1β were measured using an ELISA kit (R & D systems,
Minneapolis, MN, USA). After washing with 200 µL of washing solution in a 96-well flat-bottom
ELISA plate, 300 uL washing solution is dispensed into each well, washed three times, and then the
paper towel is wiped off. Serum was added to each well in an amount of 100 µL, and the plate was
covered with a plate sealer and reacted at room temperature for 2 h. After washing 4 times with
washing solution, 100 µL of detection antibody (0.25 µg/mL) was added to each well, followed by
reaction for 30 min, followed by washing with washing solution 4 times. 100 µL color development
solution was added to each well and reacted at room temperature for 5 min. The stop reaction was
stopped by stopping the enzyme reaction at 100 µL, and the enzyme reaction was terminated. Using a
Spectrophotometer (Bio-Tek EL 808, Bio-Tek Instruments Inc., Colmar, France) and the absorbance at
450 nm was measured. Serum concentrations of IL-6, TNF-α, and IL-1β were calculated based on the
standard curve. The cytokine levels were expressed in pg/mL in the serum.

2.8. Statistical Analysis

All data are presented as the means ± SEM. Statistical procedures were performed using SPSS
version 18. For parametric parameters, possible differences were assessed with ANOVA followed
by Tukey test for the post-hoc analysis. For non-parametric data, Kruskal–Wallis test with Dunn’s
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multiple comparison test were used for significant differences. Statistical significance is assumed for
p < 0.05.

3. Results

3.1. Heat Hyperalgegia Test

Thermal hyperalgesia was performed for behavioral experiments. This is a method of observing
the avoidance reaction when the harmful heat stimulus, excites the nociceptor and causes the pain.
The paw withdraw reaction is a rapid response to painful thermal stimuli that is a direct indicator of
the nociceptive threshold. As a positive control, aspirin was used as a typical analgesic that is used as
symptomatic relief of mild to moderate pain [26–28]. It has anti-inflammatory and anti-thrombotic
effects but can cause gastrointestinal bleeding when an overdosed is taken [29,30]. In this experiment,
there was a significant antinociceptive effect in the thermal hyperalgesia test in the aspirin group as
compared with the vehicle group on the at 7th, 10th, 14th day. This study also showed that latency
of the paw withdraw reaction was delayed with a statistically significant difference (p < 0.05) in the
NF, SB, and NF + SB treated groups as compared to the vehicle group. Also, in the NF group treated
with the TRPV1 antagonist (SB366791), significantly delayed paw withdraw reaction (p < 0.05) were
obtained on the 3rd, 7th, 10th, and 14th day as compared with the vehicle (Figure 1). It showed additive
effect of NF when administered with TRPV1 antagonist when compared with TRPV1 antagonist alone
or NF alone at the 3rd, 7th, 10th, 14th day.
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Figure 1. Antinociceptive effect of NF on the thermal hyperalgesia test as assessed by a hot water test
at the pre, 3rd, 7th, 10th and 14th day following the nerve crush injury. Data are presented as mean ±
SEM. Data were analyzed by ANOVA with Tukey’s post hoc analyses; Values with different letters are
significantly different at p < 0.05.

3.2. Analysis of Inflammatory Markers

Initial investigation of TRPV1 modulation of pro-inflammatory cytokines in vivo has been
centered on the reactivity of pain promoting the release of pro-inflammatory cytokines, including
IL-6, TNF-α, and IL-1β [31,32]. TRPV1 also modulated the occurrence and development of numerous
neurological disorders by regulating the inflammatory cytokines in the central nervous system (CNS).
These studies further illustrated that TRPV1 regulates the synaptic transmission and plasticity in
neurons and interacts with pro-inflammatory cytokines in the process of inflammatory neurological
diseases [33]. The serologic evaluation confirmed the pro-inflammatory factors; IL-1β, IL-6, and TNF-α.
Pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α were measured in the NF, SB, NF + SB
treated groups on the 7th, and 14th days. The levels of IL-1β, IL-6, and TNF-α in NF (40.9 ± 3.9, 15.1
± 6.4, 70.1 ± 18.3) SB (45.0 ± 9.2, 23.5 ± 3.3, 69.2 ± 31.5), NF + SB (39.8 ± 1.6, 15.0 ± 3.4, 46.5 ± 33.6)
treated groups at the 7th day were significantly lower than those in the vehicle group (95.7 ± 17.2, 60.0
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±7.6, 171.1 ± 53.8; p < 0.05) (Figure 2a,c,e). The levels of IL-1β, IL-6 and TNF-α in NF (33.7 ± 4.0, 14.6 ±
11.3, 38.1 ± 19.0), SB (35.3 ± 5.1, 18.3 ± 14.0, 50.0 ± 28.4), NF + SB (32.8 ± 2.5, 13.8 ± 11.0, 34.1 ± 37.8)
treated groups at the 14th day were significantly lower than those in the vehicle group (55.7 ± 7.7, 33.6
± 21.3, 79.3 ± 16.9; p < 0.05) (Figure 2b,d,f).

Nutrients 2020, 12, x FOR PEER REVIEW 5 of 11 

(95.7 ± 17.2, 60.0 ±7.6, 171.1 ± 53.8; p < 0.05) (Figure 2a,c,e). The levels of IL-1β, IL-6 and TNF-α in NF 
(33.7 ± 4.0, 14.6 ± 11.3, 38.1 ± 19.0), SB (35.3 ± 5.1, 18.3 ± 14.0, 50.0 ± 28.4), NF + SB (32.8 ± 2.5, 13.8 ± 
11.0, 34.1 ± 37.8) treated groups at the 14th day were significantly lower than those in the vehicle 
group (55.7 ± 7.7, 33.6 ± 21.3, 79.3 ± 16.9; p < 0.05) (Figure 2b,d,f).  

 
(a) 

 

(b) 

 
(c) (d) 

 
(e)  

(f) 

Figure 2. NFE (Nypa fruticans Wurmb extracts) affects the levels of (a) IL-1β, (c) IL-6, and (e) TNF-α at 
the 7th day and the levels of (b) IL-1β, (d) IL-6 and (f) TNF-α at the 14th day in the serum of the sciatic 
crush injury rats. In the Nypa fruticans (NF) and NF + SB treated groups, the levels of (a) IL-1β, (b) IL-
6, and (c) TNF-α were significantly lower than those in the vehicle group. Data are expressed as the 
mean ± SEM. (*; p < 0.05, **; p < 0.01 vs. vehicle group, Kruskal–Wallis test followed by a post hoc 
Mann–Whitney U test). 

3.3. The COX2 Expression in Sciatic Crush Injury Models 

Cyclooxygenase 2 (COX2), a key enzyme in the biosynthesis of prostaglandins, consequently 
enhanced the synthesis of prostaglandin and promoted an inflammatory response. Recent evidence 
suggests that the expression of COX2 may be involved in the development of neuropathic pain after 
nerve injury [34]. At the 7th and 14th days after surgery, sciatic nerve and L4-L6 spinal cord samples 
were taken for a western blot analysis. In the NF (p < 0.05), SB (p < 0.05), and NF + SB (p < 0.01) treated 
groups, the COX2 expression was significantly suppressed on the 7th (Figure 3a,c) and 14th days 

Figure 2. NFE (Nypa fruticans Wurmb extracts) affects the levels of (a) IL-1β, (c) IL-6, and (e) TNF-α
at the 7th day and the levels of (b) IL-1β, (d) IL-6 and (f) TNF-α at the 14th day in the serum of the
sciatic crush injury rats. In the Nypa fruticans (NF) and NF + SB treated groups, the levels of (a) IL-1β,
(b) IL-6, and (c) TNF-α were significantly lower than those in the vehicle group. Data are expressed as
the mean ± SEM. (*; p < 0.05, **; p < 0.01 vs. vehicle group, Kruskal–Wallis test followed by a post hoc
Mann–Whitney U test).

3.3. The COX2 Expression in Sciatic Crush Injury Models

Cyclooxygenase 2 (COX2), a key enzyme in the biosynthesis of prostaglandins, consequently
enhanced the synthesis of prostaglandin and promoted an inflammatory response. Recent evidence
suggests that the expression of COX2 may be involved in the development of neuropathic pain after
nerve injury [34]. At the 7th and 14th days after surgery, sciatic nerve and L4-L6 spinal cord samples
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were taken for a western blot analysis. In the NF (p < 0.05), SB (p < 0.05), and NF + SB (p < 0.01)
treated groups, the COX2 expression was significantly suppressed on the 7th (Figure 3a,c) and 14th
days (Figure 3b,d) as compared to the vehicle group. It is noteworthy that NFE has anti-inflammatory
properties in sciatic crush injury models.
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3.4. The TRPV1 Expression in Sciatic Crush Injury Models

Sciatic nerve and L4-L6 spinal cord samples were analyzed using a western blot analysis on the
7th and 14th days after the CNI surgery. In the vehicle group, the expression of TRPV1 increased as
compared to the sham group. On the other hand, the expression of TRPV1 showed a suppressive effect
on the sciatic nerve and spinal cords of the NF treated group (p < 0.05) and SB treated group (p < 0.05)
at the 7th (Figure 4a,c) and 14th days (Figure 4b,d). Also, the NF + SB (p < 0.01) treated group showed
significantly inhibition of TRPV1 expression.
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4. Discussion

Neuropathic pain (NP) is a complex network of several molecular processes, including
nitro-oxidative stress, immune response, and TRP channels activation, among others. NP is not
only promoted by direct injury to neurons but also by TRP channels mediating damage in surrounding
tissue [35]. However, how these actors and other factors (e.g., sodium channels, acid-sensing ion
channels, and synaptic receptors) are interconnected leading to noxious symptomatology remains
unresolved [36]. Interactions between TRPV1 and prolonged sustained thermal hypersensitivity in
oxidative stress-induced inflammatory hyperalgesia of mouse hind paws have been reported [37].
Current studies have strongly supported the important role of TRPV1 mediating the interchange
and bidirectional contact of inflammatory cytokines [38]. Additionally, there is a direct relationship
between increased levels of reactive oxygen species (ROS) and inflammatory hyperalgesia [39]. Also,
a peripheral nerve injury leads to an inflammatory response and the rapid production and release
of cytokines such as interleukin-1 and tumor necrosis factor. These can cause the infiltration of
neutrophills and proinflammatory M1 monocytes/macrophages into the distal nerve stump, which
impairs the recovery of the sciatic nerve [2,40]. Inflammatory mediators including inflammatory
cytokines, prostaglandins, nitric oxide (NO) and ROS, are probably implicated in acute or chronic
inflammatory responses [41,42]. Neuropathic pain is associated with inflammatory cytokines in locally
recruited macrophages, Schwann cells, and glial cells [43]. TRPV1 promotes an influx of Na+ and
Ca2+, store-operated Ca2+ entry (SOCE), and neuronal cell membrane depolarization. Therefore,
it directly affects cellular responses, such as morphological changes, proliferation, migration [44],
phagocytic activity [45], and the secretion of inflammatory cytokines [46]. NF, which was used as a
folk remedy [19,20], is a plant that is gaining more attention due to its various effects. Previous studies
have reported the anti-nociception, antioxidant, and anti-inflammatory effects of NF [18]. However,
there have been no studies that look at NFE relation to neuropathic injury.
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This study was carried out based on the hypothesis that NFE has antinociceptive and
anti-inflammatory effect by controlling the neurological function of TRPV1. In the thermal hyperalgesia
test, there was a significant antinociceptive effect in the NFE treated group compared with the vehicle
group at the 7th, 10th, 14th days (Figure 1). Although NFE did not show as comparable antinociceptive
effects as a TRPV1 antagonist, the results of this work showed the significant antinociceptive effect
of NFE similar with aspirin medication on a sciatic nerve crushing injury. Also, the expression of
TRPV1 increased in the vehicle group but the expression of TRPV1 was significantly downregulated
by NFE in the sciatic nerve, and L4-L6 spinal cord (Figure 3). Notably, NFE affects the expression
of TRPV1 in sciatic nerve injuries. In particular, TRPV1 expression was significantly decreased NF
treated with TRPV1 antagonist compared with TRPV1 antagonist. In addition, NFE showed a partially
antinociceptive additive effect when administered with TRPV1 antagonist compared with TRPV1
antagonist alone. Several reports have shown the possibility of a potential analgesic to target TRPV1.
To date, the functions of TRPV1 in the peripheral nervous system (PNS) were under comprehensive
investigation and their potential application as a target for treating neurological disorders has been
extensively demonstrated [47–49]. Initial investigation of TRPV1 modulation of pro-inflammatory
cytokines in vivo has been centered on the reactivity of pain to promote the release of pro-inflammatory
cytokines, including IL-1β, IL-6, and TNF-α [31,32]. Certainly, TRPV1 also modulated the occurrence
and development of numerous neurological disorders by regulating the inflammatory cytokines in the
CNS. TRPV1 has been demonstrated to reduce inflammation by modulating various inflammatory
signaling pathways. Endogenous ligands of TRPV1 also lead to anti-inflammatory action via inhibition
of the production of IL-6 and NO.

Moreover, TRPV1 could regulate the expression COX-2 at the gene level of the macrophages
through interfering with the upstream signaling events of LPS and IFN-γ [50]. Based on previous
studies, we confirmed that the levels of TNF-α, IL-1β, and IL-6 in the NFE treated groups are
significantly lower than those in the vehicle group. Additionally, NFE treated groups significantly
suppressed the expression of COX-2 (Figure 3). NFE has anti-inflammatory properties relating to sciatic
neuropathies. Here, NFE suppresses TRPV1 expression to reduce inflammatory factors and sciatic
neuropathy, and I think it would show antinociceptive effect. This study is supported by several studies
that TRPV1 is expected to act on the peripheral pain site and CNS, thereby reducing the incidence of
pain and modulating neuroinflammation in regulating immune processes in the CNS [51,52]. This
study suggests that ethanol extracts of NF can be distinguished from the effects of previous research
about methanol extract of NF. However, further detailed studies are essential to find out the underlying
mechanisms of antinociceptive activities and also to isolate the active compound responsible for those
pharmacological properties [53].

5. Conclusions

This study showed the antinociceptive and anti-inflammatory effects of NFE and the inhibition of
TRPV1 in neuropathic pain models induced by a sciatic nerve crushing injury. In addition, proper
administration with TRPV1 antagonist may contribute to the treatment of sciatic neuropathy. However,
the nervous system has a very complex structure and has various interactions. Additionally, it is
difficult to expect a therapeutic effect due to the action of particular mechanism or part. Therefore,
the mechanism underlying the effects of NFE on neuropathic injuries remains to be explored by
future studies.

6. Patents

South Korea Patent Number: 10-2019-0004034 “Composition for preventing and treating of
neuropathic pain containing Nypa friticans Wurmb extract”.
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