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Abstract: Diets high in saturated fatty acids (FA) represent a risk factor for the development of obesity
and associated metabolic disorders, partly through their impact on the epithelial cell barrier integrity.
We hypothesized that unsaturated FA could alleviate saturated FA-induced endoplasmic reticulum
(ER) stress occurring in intestinal secretory goblet cells, and consequently the reduced synthesis
and secretion of mucins that form the protective mucus barrier. To investigate this hypothesis, we
treated well-differentiated human colonic LS174T goblet cells with palmitic acid (PAL)—the most
commonly used inducer of lipotoxicity in in vitro systems—or n-9, n-6, or n-3 unsaturated fatty acids
alone or in co-treatment with PAL, and measured the impact of such treatments on ER stress and
Muc2 production. Our results showed that only eicosapentaenoic (EPA) and docosahexaenoic (DHA)
acids protect goblet cells against ER stress-mediated altered Muc2 secretion induced by PAL, whereas
neither linolenic acid nor n-9 and n-6 FA are able to provide such protection. We conclude that
EPA and DHA could represent potential therapeutic nutrients against the detrimental lipotoxicity
of saturated fatty acids, associated with type 2 diabetes and obesity or inflammatory bowel disease.
These in vitro data remain to be explored in vivo in a context of dietary obesity.

Keywords: palmitic acid; n-3 fatty acids; gastrointestinal barrier; intestinal goblet cells; endoplasmic
reticulum stress; Muc2 secretion

1. Introduction

Obesity is a complex and multifactorial pathology that is linked to low-grade systemic
inflammation, which is identified as a key factor in its development and of related metabolic
disorders [1,2]. Systemic inflammation has been shown to be closely related to intestinal microbiota
dysbiosis during high-fat (HF) feeding in both mice [3] and humans [4]. A strong increase of gut
permeability [5,6] associated with systemic inflammation is partly attributed to the downregulation of
genes encoding tight junctions, such as zonula-occludens 1 and occludin [6,7]. A dense mucus layer
protects the underlying colonic epithelium against injuries from luminal bacteria and the external
environment [8]. The major macromolecular component of this thick barrier is the glycoprotein Muc2,
produced by the intestinal goblet cells [9]. Muc2 contains a protein core with cysteine-rich and highly
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O-glycosylated domains requiring extensive post-translational modifications within the endoplasmic
reticulum (ER) and the Golgi body [10].

The high complexity of the Muc2 protein and the strong secretory capacity of goblet cells make
Muc2 susceptible to unfolding/misfolding, leading to ER stress [11]. ER stress is emerging as an
important contributor to many chronic diseases, such as obesity and obesity-related metabolic disorders,
including dyslipidemia and insulin resistance [12,13]. Indeed, studies in both cellular and mouse
models [14], as well as obese individuals [15,16], have demonstrated increased fat mass resulting in
chronic ER stress in liver and adipose tissues, leading to the development of insulin resistance and
type 2 diabetes [17]. Mice fed an HF diet exhibited a significant reduction (−46%) in the intestinal
mucus layer, reducing the ability to limit host cells from bacterial infection and resulting in increased
colonic and systemic inflammation [18] Mechanistically, this involves activation of the unfolded protein
response (UPR), initiating ER stress in epithelial cells and reducing the transcription of proteins such
as Muc2, as well as lowering the expression of the goblet cell differentiation factor KLF4 [11]. Similar
phenomena have also been observed with ER stressors [19].

Moreover, prolonged ER stress activates the release of free fatty acids from adipocytes, which
may contribute, in addition to a high level of saturated fatty acids (FA) brought by obesogenic diets,
to lipotoxicity and insulin resistance [20]. Several mouse models, such as Winnie, Eeyore, and Kenny,
exhibiting missense mutations in the Muc2 protein, illustrate the link between intestinal cell ER stress
and intestinal inflammation [21–23]. Prolonged HF diets rich in saturated FA induce colonic epithelial
cell ER stress and inflammation [11] and exacerbate mucosal tissue damage in mouse models of
spontaneous colitis (Muc2−/−, TNF∆ARE mice) [24].

Results over the past decade from both animal and human studies have highlighted the protective
effects of n-3 polyunsaturated fatty acids (PUFAs) on obesity and associated metabolic disorders.
Thanks to their functional properties, they can be considered useful for fighting metabolic syndrome in
obese animal models, since they are able to significantly decrease the body weight and fat mass [25–27]
and improve glucose [28] and lipid metabolism [29]. Dietary n-3 PUFAs can notably maintain gut
integrity by up-regulating the expression of tight junctions [6,30], improving the epithelial barrier
function [31] and lowering permeability-induced inflammatory cytokines [32]. Moreover, alterations
in gut microbiota represent an important factor contributing to the beneficial effects of n-3 PUFAs in
reducing endotoxemia [6]. Importantly, fatty acids have differing effects on ER stress and subsequent
inflammatory processes, for example, saturated FA (such as palmitic acid) induce ER stress [33–35],
while n-3 PUFAs (such as docosahexaenoic acid) significantly decrease ER stress in different cellular
models [36–38].

While numerous studies have reported the extensive beneficial effects of n-3 PUFAs in different
conditions, to the best of our knowledge, the effects of n-3 PUFAs on palmitic acid-induced ER stress
in relation to mucin production remain unknown. Therefore, using the well-differentiated human
intestinal goblet LS174T cells secreting the mucin Muc2, the aim of the present study was to explore
the effect of different unsaturated FAs (exhibiting various chain lengths and unsaturation degrees) to
counteract palmitic acid-induced ER stress in colonic epithelial cells. Our data indicate that palmitic
acid-altered Muc2 production is alleviated by eicosapentaenoic acid (EPA) and docosahexaenoic acid
(DHA) in LS174T cells and that such regulation is partly mediated through ER stress downregulation.

2. Materials and Methods

2.1. Reagents

Modified Eagle’s medium (MEM), trypsin, fetal bovine serum (FBS), glutamine, and antibiotics
were purchased from Dutscher Laboratories. All purified FA (palmitic acid, (PAL), DHA, EPA,
α-linolenic acid (LNA), oleic acid (OA), arachidonic acid (AA), and linoleic acid (LA)) and FA-free bovine
serum albumin (BSA), thapsigargin, and 4-phenyl butyrate acid (PBA) were purchased from Sigma
Aldrich (Saint Quentin Fallavier, France). The antibodies raised against CCAAT-enhancer-binding
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protein homologous protein (CHOP) and activating transcription factor 4 (ATF4) were purchased from
Cell Signaling Technology (Ozyme, France). The horseradish peroxidase (HRP)-linked secondary
antibodies were obtained from Jackson ImmunoResearch Laboratories (Interchim, France). The
antibody raised against β-actin (C4) HRP was purchased from Santa Cruz. The Muc2 Elisa Kit (Human)
was purchased from Aviva Systems Biology (Clinisciences, Nanterre, France).

2.2. Cell Culture and Treatments

The LS174T, a well-differentiated human colonic goblet cell line [19], was purchased from
Sigma-Aldrich (product number 87060401-1VL Saint Quentin Fallavier, France). Cells were routinely
grown as a monolayer in 75 cm2 plastic flasks and cultured at 37 ◦C in a humid environment containing
5% CO2 in MEM medium supplemented with 2 mM L-Glutamine (Dutscher, Brumath, France);
10% heat-inactivated fetal bovine serum (FBS); 1% non-essential amino acids (Dutsche, Brumath,
France); and an antibiotics cocktail containing 100 U/mL penicillin, and 100 mg/mL streptomycin and
amphotericin B (Dutscher, Brumath, France). Cells were seeded in six-well plates with 4 × 105 cells/well.
When cells reached 80% confluence, they were treated with different stimuli. PAL, DHA, EPA, LNA,
OA, AA, and LA were dissolved in 100% ethanol at a 1 mM concentration, flushed with nitrogen, and
stored at −20 ◦C until use. Before treatment, fatty acids were placed at room temperature, except for
PAL, which was heated in a 40 ◦C water bath. Fatty acids were added to 1 mL of MEM containing
FA-free BSA to be combined at a 4:1 ratio. The specific treatment concentrations and incubation times
are shown in the figure legends. For the control, cells were treated with the same quantity of ethanol
and MEM-BSA concentrations as cells treated with FA.

2.3. Western Blot Analysis

LS174T cells were washed three times with ice-cold PBS and cell lysates were obtained in RIPA
protein lysis buffer containing 50 mM Tris pH 8.0, 150 mM NaCl, 1% NP (4-Nonylphenyl Poly(ethylene
glycol)-40, 0.1% SDS, and 0.5% sodium deoxycholate, and a cocktail of protease and phosphatase
inhibitors (Sigma-Aldrich, Saint Quentin Fallavier, France). The cells were kept for 15 min at 4 ◦C
and disrupted by repeated aspiration through a 21-gauge needle. Cell lysates were sonicated and
centrifuged at 15,000 g for 15 min at 4 ◦C and supernatants containing proteins were collected. The
protein concentration was determined by a Bicinchoninic acid (BCA) assay. Thirty micrograms of total
proteins were subjected to 12% polyacrylamide gel electrophoresis (SDS-PAGE) and electroblotted to a
Protan nitrocellulose membrane (Whatman, Dassel, Germany). After blocking non-specific binding
sites with 5% free protease BSA in Tween-Tris-buffered saline (T-TBS, 0.1% Tween-20 in TBS) for
1 h, membranes were probed overnight at 4 ◦C under gentle agitation with primary CHOP and
ATF4 antibodies (Cell Signaling, Ozyme, Saint-Cyr-l’École, France) and β-actin (C4) HRP (Santa Cruz
Biotechnology, Heidelberg, Germany) at a concentration of 1/1000 and 1/5000, respectively. Blots
were then washed three times in T-TBS for 10 min each, and incubated for 1 h at room temperature
with a horseradish peroxidase-conjugated secondary antibody at a concentration of 1/5000 for all the
antibodies, except β-actin (C4), which was HRP conjugated. The detection of proteins was performed
using the enhanced chemiluminescence (ECL) western blotting analysis procedure (Clarity Western
ECL, Biorad, Marnes-la-Coquette, France), and their intensity was analyzed with the Chemidoc
Imaging System (Biorad, Marnes-la-Coquette, France).

2.4. Muc2 ELISA Quantification

After the different treatments, the supernatant was centrifuged at 1000 g for 20 min at 4 ◦C to
remove cells debris and 100 µL per sample was immediately used. The Muc2 Elisa Kit, purchased
from Aviva Systems Biology (MUC2 ELISA Kit human, #OKEH02839, Clinisciences, Nanterre, France),
was used to perform Muc2 quantification in the supernatant of LS174T cell cultures, following the
manufacturer’s instructions.
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2.5. Total RNA Extraction and Real-Time Quantitative PCR

Total RNA extraction and quantitative RT-PCRs (QRT-PCRs) were performed as previously
described [6]. Briefly, LS174T cells were washed three times with ice-cold PBS and homogenized in
Tri-Reagent (Euromedex, Souffelweyersheim, France). Total RNA (1 µg) was next reverse transcribed
using the High-Capacity RNA-to-cDNATM kit (Applied Biosystems, France). Q-PCRs were performed
using the StepOne Plus real-time PCR system (Applied Biosystems, France) and were carried out using
the following human specific primers synthesized by Eurogentec Company (Angers, France): Muc2
(F-5’CAG CAC CGA TTG CTG AGT TG3’, R-5’GCT GGT CAT CTC AAT GGC AG3’), KLF4 (F-5’AGA
GGA GCC CAA GCC AAA GA3’, R-5’CAG TCA CAG TGG TAA GGT TTC TC3’), glucose-related
protein 78 kDa (GRP78) (F-5’TGC TGC TAG GCC TGC TCC GA3’, R-5’CGA CCA CCG TGC CCA
CAT CC3’), CHOP (F-5’CTG CCT TTC ACC TTG GAG AC3’, R-5’ CGT TTC CTG GGG ATG AGA
TA 3’), ATF4 (F-5’ATG GCC GGC TAT GGA TGA T3’, R-5’CGA AGT CAA ACT CTT TCA GAT CCA
TT3’), and β-actin (F-5’ATG ATA TCG CCG GGC TCG TCG TC3’, R-5’AGG TCC CGG CCA GCC
AGG TCCAG3’). Finally, threshold cycle values were calculated by using Step One Software version
2.3 (Life technologies, Illkirch, France). Expression levels of target genes were normalized with the
housekeeping gene β-actin and the 2−∆∆Ct method was used to compare the relative expression of
gene expression.

2.6. Statistical Analyses

One-way ANOVA was used to determine significance between different conditions. Tukey’s
multiple comparison test was used as a post-hoc comparison. For stimulation time-dependent gene
expression data, one-way ANOVA with a Tukey’s multiple comparison test as a post-hoc comparison
was used to determine the significance difference of treatment at individual time points. The data
collected for the two groups were analyzed by an unpaired two-tailed student T-test (* p < 0.05;
** p < 0.01; *** p < 0.001). GraphPad Prism version 7.00 (GraphPad Software Inc., San Diego, CA, USA)
was used for the statistical analysis.

3. Results

3.1. Effects of Palmitic Acid on Muc2 and KLF4 Expression and Muc2 Production in LS174T Cells

Since an HF diet (rich in PAL) was reported to induce a strong colon mucus layer thickness decrease
in mice [11,39], we first wanted to assess the effects of PAL on Muc2 and KLF4 mRNA expressions
and its impact on Muc2 secretion, the main mucin secreted by the LS174T cell line. We observed that
300 µM of PAL (considered a mildly elevated concentration) downregulated Muc2 mRNA expression
after 6 and 24 h of treatment. Moreover, a significant decrease in goblet cell differentiation (KLF4) was
observed after 3, 6, and 24 h of treatment with PAL (Figure 1A). Furthermore, to determine whether
PAL affects secretion of the Muc2 protein by LS174T cells, Muc2 quantification was performed in
the culture medium after 24 h of treatment. The level of the mucous glycoprotein Muc2 was clearly
reduced in the culture medium of LS174T cells treated with PAL for 24 h (Figure 1B). These different
data showed that PAL altered not only Muc2 and KLF4 expressions, but also Muc2 release by the
LS174T cells, with no change in their viability at this concentration (300 µM) of PAL (Figure S1).
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Figure 1. Effects of palmitic acid on MUC2 and KLF4 expressions and MUC2 production in LS174T
cells. LS174T cells were incubated for 3, 6, or 24 h with PAL (300 µM), or BSA as the control. Cells
were harvested, the total mRNA was isolated, and the levels of Muc2 and KLF4 (A) expressions were
analyzed by real-time quantitative PCR. (B): After 24 h of treatment of LS174T cells with PAL, Muc2
quantification was performed in cell culture supernatants by ELISA. Data are expressed as the mean
± SEM of three independent experiments. ** p < 0.01 and *** p < 0.001 versus CTL-treated groups
(Student t test). ns: non-significant; CTL: control bovine serum albumin (BSA); PAL: palmitic acid.

3.2. Effects of Palmitic Acid on Endoplasmic Reticulum Stress in LS14T Cells

The high secretory output of the goblet cell makes Muc2, containing highly glycosylated domains,
prone to misfolding, and failure to resolve this misfolding leads to ER stress, as shown in high-fat
diets [11]. With this is mind, we investigated the impact of PAL on ER stress, by treating LS174T cells
with PAL at various times ranging from 3 to 24 h and next evaluated markers of ER stress. ATF4
(activating transcription factor 4) and CHOP (CCAAT-enhancer-binding protein homologous protein)
protein expressions were drastically increased in PAL-treated LS174T cells, whatever the duration of
the treatment (Figure 2A). Comparable results were observed by the use of thapsigargin as a positive
control (Figure 2B). Moreover, whatever the time of treatment, a clear increase in the mRNA expression
of ER stress markers, GRP78 (glucose-related protein 78 kDa), and CHOP was observed in LS174T
cells treated with PAL (Figure 2C,D). ATF4 gene expression was increased at 6 h after PAL treatment,
whereas it remained unchanged at 3 and 24 h (Figure 2E).
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Figure 2. Effects of palmitic acid on endoplasmic reticulum stress in LS174T cells. Cells were treated
for 3, 6, or 24 h with PAL (300 µM) or thapsigargin (200 nM) as a strong inducer of ER stress. BSA was
used as the control. Representative western blots for ATF4 and CHOP are shown for PAL (A) and
thapsigargin (B) treatments. mRNA expressions of UPR genes GRP78 (C), CHOP (D), and ATF4 (E)
in LS174T were measured by quantitative RT-PCR, expressed relatively to CTL and normalized to
actin. Data are represented as the mean ± SEM of three independent experiments. Differences were
analyzed by Tukey’s multiple comparison test. Bars assigned different superscript letters (a, b, c) were
statistically different at p < 0.05. ns: non-significant; ATF4: activating transcription factor 4; CHOP:
CCAAT-enhancer-binding protein homologous protein; CTL: control bovine serum albumin (BSA); ER:
endoplasmic reticulum; GRP78: glucose-related protein 78 kDa; PAL: palmitic acid.

3.3. Preventing Endoplasmic Reticulum Stress Restores Palmitic Acid-Altered Muc2 Secretion

We next co-treated LS174T cells with PAL and 4-phenylbutyrate (4-PBA), an ER stress inhibitor,
in order to verify whether altered Muc2 secretion is due to ER stress induced by PAL. After 24 h
of treatment with PAL, the Muc2 concentration significantly decreased in the culture medium of
LS174T cells, whereas co-treatment with 4-PBA normalized Muc2 secretion (Figure 3). These results
evidenced that the altered Muc2 release observed in PAL-treated LS174T cells mainly occurs through
the triggering of ER stress.
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Figure 3. Preventing endoplasmic reticulum stress restores palmitic acid-altered MUC2 secretion.
LS174T cells were treated for 24 h with control BSA, 300 µM PAL, or 500 µM 4-PBA, or were co-treated
with PAL and 4-PBA. After incubation, cell culture supernatants were centrifuged to remove cell debris
and the Muc2 protein released by LS174T cells was then quantified by ELISA. Results are presented as
the mean ± SEM. of three independent experiments. Differences were analyzed by Tukey’s multiple
comparison test. Bars assigned different superscript letters (a, b, c) were statistically different at p < 0.05.
BSA: bovine serum albumin; PAL: palmitic acid; 4-PBA: 4-phenyl butyrate acid.
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3.4. Only EPA and DHA Prevent Endoplasmic Reticulum Stress Induced by Palmitic Acid

As n-3 fatty acids have been shown to prevent ER stress in both in vitro [36,40] and in vivo
models [41–43], we investigated the interaction between PAL, n-3, n-6, and monounsaturated FA
upon ER stress. As observed above (Figure 2), the protein expression levels of CHOP and ATF4 were
increased when LS174T cells were treated with PAL for 6 h. Moreover, co-treatment with PAL and
-linolenic acid, linoleic acid, arachidonic acid, or oleic acid (Figure 4A,B) also overexpressed ATF4 and
CHOP protein expression. More interestingly, the upregulation observed with PAL was lowered only
when PAL was combined with 25 µM of DHA or EPA (Figure 4A). We next evaluated CHOP and ATF4
mRNA expressions in the same conditions. PAL overexpressed CHOP and similarly tended to increase
ATF4, as already observed in Figure 2. Co-treatment of PAL with EPA and DHA alleviated CHOP and
tended to reduce ATF4 overexpression, whereas LNA, OA, AA, and LA did not (Figure 4C,D). Similar
results were obtained after 3 and 24 h of treatment (Figure S2).Nutrients 2019, 11, x FOR PEER REVIEW 8 of 14 
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Figure 4. Only EPA and DHA prevent endoplasmic reticulum stress induced by palmitic acid. LS174T
cells were treated for 6 h with control BSA, 300 µM PAL, or 200 nM thapsigargin alone, or with 25 µM
DHA (docosahexaenoic acid), EPA (eicosapentaenoic acid), LNA (linolenic acid), OA (oleic acid), AA
(arachidonic acid), or LA (linoleic acid) alone or in co-treatment with 300 µM PAL. After 6 h of treatment,
cell lysates were immunoblotted for ATF4, CHOP, and actin. Representative western blots are presented
in (A) and (B). The impact of 6 h of treatment with the different fatty acids and the ER stress inducer
thapsigargin on the mRNA expressions of CHOP and ATF4 were analyzed by quantitative RT-PCR.
Results are expressed relatively to CTL and normalized to β-actin (C) and (D). Data are expressed as
the mean ± SEM of three independent experiments. Differences were analyzed by Tukey’s multiple
comparison test. Bars assigned different superscript letters (a, b, c) were statistically different at p < 0.05.
CTL: control bovine serum albumin (BSA); TG, thapsigargin; ATF4: activating transcription factor 4;
CHOP: CCAAT-enhancer-binding protein homologous protein; ER: endoplasmic reticulum.

3.5. EPA and DHA Prevent Palmitic Acid-Altered Muc2 and KLF4 Expressions and Muc2 Production in
LS174T Cells

As observed above (Figure 1A), Muc2 and KLF4 mRNA expressions were downregulated when
LS174T cells were treated with PAL for 6 h. Co-treatments with PAL and LNA, LA, AA, or OA also
significantly decreased Muc2 and KLF4 mRNA expressions. Nevertheless, when EPA and DHA were
added to PAL-treated LS174T cells, Muc2 and KLF4 mRNA expressions remained comparable to those
of the control (Figure 5A). Similar results were obtained at 24 h of treatment (Figure S3). Lastly, when
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the level of the mucous glycoprotein Muc2 in the culture medium of LS174T cells was not affected by
treatment with EPA, DHA, or AA alone, it was statistically reduced with PAL and with PAL and AA.
In contrast, the secretion of Muc2 remained similar to the control when EPA and DHA were added to
PAL (Figure 5B).Nutrients 2019, 11, x FOR PEER REVIEW 9 of 14 
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Figure 5. EPA and DHA prevent palmitic acid-altered MUC2 and KLF4 expressions and MUC
production in LS174T cells. LS174T cells were treated for 6 h with control BSA, 300 µM PAL, or 200
nM thapsigargin alone, or with 25 µM DHA, EPA, LNA, OA, AA, or LA alone or in co-treatment with
300 µM PAL. (A): The mRNA expressions of Muc2 and KLF4 were evaluated by quantitative RT-PCR
after 6 h of treatment with the different fatty acids and the ER stress inducer thapsigargin. The mRNA
expressions are relative to CTL and normalized to actin. (B): After treatment for 24 h with the different
fatty acids, cell culture supernatants were centrifuged to remove cell debris and the Muc2 protein
produced by LS174T cells was then quantified by ELISA. Data are expressed as the mean ± SEM of
three independent experiments. Differences were analyzed by Tukey’s multiple comparison test. Bars
assigned different superscript letters (a, b, c) were statistically different at p < 0.05. CTL: control bovine
serum albumin (BSA); ER: endoplasmic reticulum.

4. Discussion

Obesity is now widely known to be associated with low-grade systemic inflammation. Indeed, it
has been shown that HF diets, rich in saturated FA and particularly PAL, strongly increase intestinal
permeability, leading to lipopolysaccharide absorption and metabolic endotoxemia that triggers
inflammation and metabolic disorders [1,2,44]. The mucus layer, mainly comprised of the glycoprotein
Muc2 produced by intestinal goblet cells [45], forming a physical barrier protecting the underlying
epithelium against luminal substances and microbes [46,47], has been shown to be considerably altered
under diets rich in saturated FA [11,18], exacerbating epithelium leakage and endotoxemia. We and
others have evidenced that mice enriched in n-3 polyunsaturated fatty acids (PUFAs) are protected
against gut barrier dysfunction, with consequences on metabolic endotoxemia [6,48–50]. However,
the effects of n-3 PUFAs on the secretory function of intestinal goblet cells remain largely unexplored.
Using the well-differentiated human colonic goblet LS174T cell line, the present study shows that
PAL decreases Muc2 production, mainly by generating a rise of ER stress in LS174T cells which
detrimentally affects the production of the secreted mucosal barrier. More interestingly, we evidenced
here, for the first time, that long-chain n-3 FA (C20 and C22 carbon chain length) are able to prevent the
altered Muc2 production induced by PAL, mainly by alleviating ER stress.
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Our results agree with previous reports showing that PAL induces ER stress in many cell
types [33,34,51,52] and particularly with the one by Gulhane and co-workers, who showed that
500 µM of PAL induced significant stress in LS174T cells with a decrease in Muc2 and the goblet cell
differentiation transcription factor KLF4 mRNA expressions [11]. These mRNA downregulations were
also accompanied in the present study by a significant decrease of the secretion of the Muc2 protein
by the cells (Figure 1). This result can be explained by the fact that PAL reduces the production of
mature fully glycosylated Muc2 accompanied by an increase of the non-glycosylated Muc2 precursor
and a reduction in mature Muc2 secretion, demonstrating protein misfolding consistent with the
unfolded protein response (UPR) activation observed [11]. Due to their large size and complexity,
mucins are extremely susceptible to misfolding in the ER, which can eventually lead to ER stress. We
presently observed that PAL strongly increased ER stress in LS174T cells (Figure 2), which has also
been observed with other ER stressors, such as thapsigargin, in the present study or tunicamycin
in others [19]. In vivo, a decreased Muc2 secretion resulted in a thinner mucus layer more easily
penetrated by diffusing microbial products, and more easily degraded by mucin-degrading bacteria.
This is supported by previous studies evidencing that HF diet-induced obese mice exhibit a 50%
thinner colon mucus layer [18]. Then, we may assume that the altered thickness of the mucus layer by
an obesogenic diet (rich in PAL) could be explained by mucin misfolding leading to ER stress and an
UPR-activated inhibition of Muc2 transcription with a downstream effect of reducing Muc2 production.
This assumption is strengthened here by the use of the chemical ER chaperone 4-PBA (an ER stress
inhibitor), which was able to prevent PAL-induced alteration of Muc2 production by LS174T cells
(Figure 3).

To our knowledge, the present study is the first to demonstrate that ER stress produced by PAL in
goblet LS174T cells can be significantly reduced by EPA and DHA, two highly unsaturated FA of the
n-3 series exhibiting strong anti-inflammatory properties [53]. This is mechanistically supported by
a decrease in the raised levels of UPR-related gene expression of CHOP and ATF4 associated with
PAL in LS174T cells (Figure 4). In vitro studies have already suggested that DHA is able to counteract
palmitate-induced ER stress in different cell types, including primary mouse hepatocytes [37], mouse
3T3L1 and rat primary preadipocytes [54], pancreatic cells [36,38], and C2C12 myotubes [40], but it has
never been studied in colon cells in relation to mucus secretion. We evidenced in the present study that
EPA and DHA are able to prevent altered Muc2 production in PAL-treated LS174T cells (Figure 5B).
This protective effect of EPA and DHA can be explained by ER stress alleviation, as shown Figure 4.
The well-known anti-inflammatory effects of EPA and DHA can also be involved in the modulation of
altered goblet cell homeostasis and the decreased production of mucin. Indeed, resolvins—derived
from EPA and DHA—due to their anti-inflammatory properties, have also been suggested to attenuate
ER stress-induced apoptosis in HepG2 cells, mainly through the JNK pathway [55]. Moreover, it has
also been suggested that n-3 PUFA suppression of ER stress was partly due to AMP-activated protein
kinase (AMPK) activation. In support of this, compound C (an AMPK inhibitor) is able to block the
effects of DHA in PAL-induced ER stress inhibition [41].

LNA was supposed to have a similar efficiency to EPA and DHA against PAL lipotoxicity via
reducing ER stress and apoptosis, as already shown in primary rat hepatocytes [56] or renal NRK-52E
cells [57]. Unexpectedly, while LNA is also a n-3 fatty acid, it failed to prevent PAL alterations,
as observed with EPA or DHA. Indeed, the expression of CHOP, ATF4, and Muc2 in LS174T cells
co-treated with PAL and LNA remained similar to the one observed with PAL alone, whereas it was
changed at least twice when cells were co-treated with PAL and EPA or DHA (Figures 4 and 5). Then,
EPA, DHA, and LNA would be able to differently modulate PAL metabolism and consequently its
lipotoxic effect. This has already been observed in other cell types, such as C2C12 myoblasts [58] and
L6 myotubes [59], where partial and total oxidation were decreased during PAL treatment, which was
restored by EPA and DHA, but not with LNA [58,59]. Then, we might expect comparable modulations
in the present study. Moreover, besides alterations in its oxidation, it has also been shown that PAL
treatment increased the formation of lipotoxic compounds, such as diglycerides and ceramides [60],
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and that EPA or DHA were able to 1) reduce such accumulation, 2) enhance triglyceride synthesis, and
3) preferentially address PAL to mitochondrial oxidation [58,61]. In contrast and in agreement with
Pinel and coworkers [58], LNA failed to prevent PAL incorporation into cytotoxic diglycerides, and
then to reduce the related ER stress activation and finally Muc2 production. Therefore, our results
highly suggest that LNA intake in a diet high in n-3 fatty acids would not represent an alternative to
oily fish consumption (rich in EPA and DHA) with regard to gut barrier integrity and especially to the
preservation of the thickness of the mucus layer. In addition, a greater expression (+75%) of CHOP
was observed in cells co-treated with PAL and AA compared with PAL alone (Figure 4). This increase
could be due to the proinflammatory effects of AA-derived prostanoids and leukotrienes, as previously
described [62], and supports the idea that certain n-6 fatty acids may have detrimental effects when
consumed excessively.

In short, our results suggest that very long-chain n-3 PUFAs, by protecting goblet cells against ER
stress-mediated altered Muc2 secretion induced by PAL, could be potential therapeutic nutrients used
in strategies against the detrimental lipotoxicity of saturated FA, associated with type 2 diabetes and
obesity or inflammatory bowel disease. Nevertheless, the relevance of our in vitro data remain to be
explored in vivo in a context of dietary obesity, as well as the efficiency of n-3 PUFAs in alleviating the
decrease of the thickness of the intestinal mucus layer and consequently preserving gut barrier integrity.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/11/9/2179/s1:
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prevent palmitic acid-altered Muc2 and KLF4 expressions in LS174T cells at 3 and 24 h.
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