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Abstract: Autism Spectrum Disorder (ASD) is a complex neurological and developmental disorder
characterized by behavioral and social impairments as well as multiple co-occurring conditions,
such as gastrointestinal abnormalities, dental/periodontal diseases, and allergies. The etiology of ASD
likely involves interaction between genetic and environmental factors. Recent studies suggest that oral
and gut microbiome play important roles in the pathogenesis of inflammation, immune dysfunction,
and disruption of the gut–brain axis, which may contribute to ASD pathophysiology. The majority of
previous studies used unrelated neurotypical individuals as controls, and they focused on the gut
microbiome, with little attention paid to the oral flora. In this pilot study, we used a first degree-relative
matched design combined with high fidelity 16S rRNA (ribosomal RNA) gene amplicon sequencing
in order to characterize the oral and gut microbiotas of patients with ASD compared to neurotypical
individuals, and explored the utility of microbiome markers for ASD diagnosis and subtyping of
clinical comorbid conditions. Additionally, we aimed to develop microbiome biomarkers to monitor
responses to a subsequent clinical trial using probiotics supplementation. We identified distinct
features of gut and salivary microbiota that differed between ASD patients and neurotypical controls.
We next explored the utility of some differentially enriched markers for ASD diagnosis and examined
the association between the oral and gut microbiomes using network analysis. Due to the tremendous
clinical heterogeneity of the ASD population, we explored the relationship between microbiome and
clinical indices as an attempt to extract microbiome signatures assocociated with clinical subtypes,
including allergies, abdominal pain, and abnormal dietary habits. The diagnosis of ASD currently
relies on psychological testing with potentially high subjectivity. Given the emerging role that the
oral and gut microbiome plays in systemic diseases, our study will provide preliminary evidence for
developing microbial markers that can be used to diagnose or guide treatment of ASD and comorbid
conditions. These preliminary results also serve as a starting point to test whether altering the oral
and gut microbiome could improve co-morbid conditions in patients with ASD and further modify
the core symptoms of ASD.
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1. Introduction

Autism Spectrum Disorder (ASD) is a complex neurological and developmental disorder with a
rapidly increasing prevalence on a global scale [1]. The etiology of ASD likely involves an interplay
between genetic and environmental factors, as well as both systemic inflammation and inflammation
of the central nervous system (CNS) [2–4]. Recent studies suggest that microbiome dysregulation
plays an important role in the pathogenesis of inflammation [5–8], which may contribute to the
manifestation of ASD symptoms [9–12]. Evidence from animal studies supports a link between
microbiome dysregulation, inflammation in the body, and development of ASD [13,14]. Patients with
autism often have difficulties maintaining a balanced diet, due to multiple factors such as highly
selective food preference, organic gastrointestinal (GI) diseases, and oral motor difficulties, and they
show high rates of gut dysbiosis compared to neurotypical individuals [9,12]. Notably, some studies
demonstrated a correlation between the severity of GI dysfunction and the severity of behavioral
symptoms [15]. Gut dysbiosis may affect the CNS via the vagus nerve, microbial metabolites and
neuroinflammation [16–18].

While most studies agree that the microbiome composition is different between autistic and
neurotypical populations, these studies have yielded inconsistent results as to the nature or extent of
these GI bacterial community differences [12,19]. Environmental factors are the dominant determinants
for gut microbiome composition [20–22], yet most previous studies using age and sex matched
controls have not adequately controlled for environmental influences [12,23,24]. In addition, compared
to the gut, the oral microbiome is understudied, despite dental plaque and saliva samples being
easier to obtain than stool samples. Alterations of the oral microbiota are associated with not only
periodontal diseases [25], but also the upper GI tract flora [26], systemic diseases such as Rheumatoid
Arthritis [27] and neurological conditions such as Alzheimer’s disease [28]. Epidemiological studies
have demonstrated a higher prevalence of oral health issues among patients with ASD, as compared to
neurotypical individuals [29]. Only two studies to date have explored differences in oral microbiota
between children with autism and controls [30,31]. Results from these studies have low degrees of
concordance, likely due to the different sequencing methodologies and study designs.

Here, we have designed a pilot study to investigate the oral and gut microbiome simultaneously in
patients with ASD and their first-degree family members. This would control for genetic and lifestyle
factors while investigating the existence of ASD-microbiome signatures and whether these signatures
hold any diagnostic value. Furthermore, to explore the poorly understood oral microbiome, we have
directly compared oral and gut microbiome to explore their relationship in ASD and their association
with systemic clinical indices. These questions are important to address in order to detail the roles of the
human microbiome in ASD, and its utility in guiding diagnosis of ASD, clinical subtypes, and potential
targeted interventions.

Given the multitude of factors that influence microbiome-host interactions, a secondary goal of
the study attempts to characterize the potential relationships between the gut and oral microbiome and
relevant clinical indices, including allergy, abdominal pain and dietary habits. Previously, Plaza-Diaz
investigated gut microbiome in ASD patients with or without mental regression and found microbiome
signatures associated with different psychiatric subtypes [32]. However, the association between
medical subtypes and microbiome has been poorly explored in ASD patients.

Research on high impact diseases such as Rheumatoid Arthritis has revealed fascinating
associations between oral and gut microbiomes [27]. Our study will serve as a starting point to
address the complex interplay between the oral microbiome and the gut microbiome in the phenotypic
presentation and pathophysiology of ASD. We believe that this study will open new horizons and



Nutrients 2019, 11, 2128 3 of 26

opportunities in disease investigation and management. As a pre-probiotics clinical trial pilot project,
we hope that this study and its continuation will provide insight for whether this new methodology
with combined oral and fecal data can be used to (1) screen, diagnose, and determine subtypes of
ASD, (2) stratify patients who may respond to probiotics therapy, (3) provide guidance on treatment
strategies and develop targeted probiotic formulation, and (4) help to monitor treatment efficacy.

2. Materials and Methods

2.1. Study Participants

We recruited 20 patients diagnosed with ASD (autism spectrum disorder) and compared them with
19 family members (parent or sibling) as neurotypical controls. Patients had been diagnosed with ASD
according to DSM-5 (Diagnostic and Statistical Manual of Mental Disorders) criteria [33]. Individuals
with ASD between 7–25 years old with a disease duration of at least 6 weeks were enlisted. Exclusion
criteria for all subjects included known genetic conditions, clinically evident serious infections or
inflammatory conditions, history of cancer, severe dental/periodontal diseases or possession of dental
braces. Subjects who had received probiotic treatment were asked to stop treatment at least one week
prior to sample collection and subjects were excluded if they had taken antibiotics in the preceding
month. Neurotypical controls had to meet the following criteria: biological sibling or biological parent
of autistic subjects with IQ equal to or greater than 80 who do not have a diagnosis of ASD, attention
deficit hyperactivity disorder, other intellectual developmental disorders, or psychiatric conditions.
For recruitment of control subjects, siblings of the same gender and comparable age (+/− 5 years apart)
received the highest priority, but an opposite-gender sibling was recruited for a control as needed. If the
subject with ASD had no siblings, a parent acting as primary caretaker was recruited. Demographics
and characteristics of study subjects are available in Table S1 and summarized in Table 1. Visual dental
inspections were performed to determine oral health status for all subjects. Lifestyle questionnaires
were distributed to assess factors that could affect microbiome status and create a GI clinical indices
(GSI) score (Table 1, Table S1) [34,35].

Table 1. Characteristics of study participants and microbiome lifestyle factors.

Autistic Neurotypical

Subjects 20 19

Age (1st–3rd quartile) 15 (13–18) 29 (11–50)

Gender (n)
Female 25% (5) 58% (11)
Male 75% (15) 42% (8)

Neighborhood in last 5 years (n)
Cities 10% (2) 11% (2)
Suburbs 90% (18) 89% (17)
Countryside 0% (0) 0% (0)

Pets (n)
Yes 10% (2) 11% (2)
No 85% (17) 84% (16)
n/a 5% (1) 5% (1)

Abdominal tenderness during exam (n)
Yes 0% (0) 0% (0)
No 95% (19) 95% (18)
n/a 5% (1) 5% (1)
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Table 1. Cont.

Autistic Neurotypical

Allergies (n)
Yes 60% (12) 37% (7)
No 40% (8) 63% (12)

Drink alcohol (n)
Yes 0% (0) 11% (2)
No 95% (19) 84% (16)
n/a 5% (1) 5% (1)

Recreational drugs (n)
Yes 0% (0) 0% (0)
No 95% (19) 19% (18)
n/a 5% (1) 5% (1)

Tobacco products (n)
Yes 0% (0) 0% (0)
No 95% (19) 95% (18)
n/a 5% (1) 5% (1)

First 6 months of life
Breast Fed 70% (14) 74% (14)
Bottle Fed 15% (3) 5% (1)
Both 25% (5) 16% (3)
n/a 5% (1) 5% (1)

Picky Eater
Yes 20% (4) 11% (2)
No 80% (16) 84% (16)
n/a 0% (0) 5% (1)

Servings of vegetables and fruits per day (n)
Less than three 65% (13) 74% (14)
Three 30% (6) 21% (4)
More than three 5% (1) 5% (1)

ASD patients were recruited from clinics at Massachusetts General Hospital (MGH), Beth Israel
Deaconess Medical Center, community ASD education events, and charity ASD programs in Boston.
The study was approved by institutional review board of MGH (Boston, MA, USA, IRB protocol
number: 2017P000573). Informed consents were obtained from subjects or the legal guardians of the
subjects. All methods were performed in accordance with the relevant guidelines and regulations.

2.2. Sample Handling and Collection

To obtain oral microbiome samples, participants were asked to produce 1–3 mL of saliva after
refraining from eating, drinking and oral hygiene practice for 1 h. Samples were collected with sterile
DNA- and RNA-free 15 mL Falcon tubes and immediately frozen at −80 ◦C. De-identified and coded
samples were shipped to Precidiag Inc. (Natick, MA, USA) for DNA extraction and sequencing on
dry ice. Stool samples were collected by the participants at home under the supervision of trained
parents with a HR-Easy Stool Collection Kit (Precidiag, Inc.) and stored at room temperature, followed
by de-identification and shipment to a Precidiag CLIA-certified laboratory for DNA extraction and
sequencing analysis. The HR-Easy Stool Collection Kit provides a superior method for collection,
storage and stabilizing stool samples for microbiome study at ambient temperature for up to a month
with minimal alterations when compared with freshly-collected samples (Yu et al., manuscript in
preparation). Microbial DNA was then extracted using a HR-Easy Fecal DNA Kit (Precidiag, Inc.)
according to the manufacturer’s instructions and DNA samples were carefully quantified with a
nanodrop spectrophotometer. A260/A280 ratios were also measured to confirm high-purity DNA yield.
DNA samples were frozen at −20 ◦C until use.
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2.3. 16S rRNA Gene Amplicon Sequencing

Microbial 16S rRNA V3-V4 genomic regions from total oral and gut DNA samples were amplified
with the following primers 341F: 5′AATGATACGGCGACCACCGAGATCTA-CACTCTTTCCCTAC
ACGACGCTCTTCCGATCTCCTACGGGAGGCAGCAGCCTACGGGNBGCASCAG3′ and 805R:
5′CAAGCAGAAGACGGCATACGAGATNNNNNNG-TGACTGGAGTTCAGACGTGTGCTCTTT
CCGATCTGACTACNVGGGTATCTAATCC3′ via polymerase chain reaction (PCR) (95 ◦C for 2 min,
followed by 25 cycles at 95 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C for 30 s, and a final extension at
72 ◦C for 5 min). PCR products were purified and analyzed using a Bioanalyzer DNA kit, followed
by quantification with real-time PCR. Serially diluted PhiX control library (Illumina, San Diego, CA,
USA) was included as a standard. DNA libraries were pooled and sequenced on an Illumina MiSeq
next-generation sequencing system (Illumina; CA) using a V2 2 × 250 bp paired-end protocol with
overlapping reads.

Of note, we included strict quality control processes involving microbial DNA extraction, 16S rRNA
gene amplicon amplification, and amplicon sequencing with a set of controls that enabled us to evaluate
the potential introduction of contaminants or off-target amplification. Non-template controls (extraction
chemistries) were included in the microbial DNA extraction process and the resulting material was
subsequently used for PCR amplification. Additionally, at the step of amplification, another set of
non-template controls (PCR-mix) was included to evaluate the potential introduction of contamination
at this step. Similarly, a positive control comprised of known and previously characterized microbial
DNA was included at this step to evaluate the efficiency of the amplification process. Before samples
were pooled together, sequencing controls were evaluated, and samples were rejected if the presence
of amplicons in any of the non-template controls or the absence of amplicons in the positive control
was detected. In the present study, no amplicons were observed in the non-template controls and a
negligible number of raw reads were recovered after sequencing.

2.4. Sequencing Data Processing

Sequencing data were processed and analyzed with a QIIME software package v. 2018.2.0 [36].
The sequencing reads with a low quality score (average Q < 25) were truncated to 240 bp, followed by
filtering using the deblur algorithm with default settings [37]. The remaining high-quality reads were
aligned with the reference library using mafft [38]. Next, the aligned reads were masked to remove
highly variable positions, and a phylogenetic tree was generated from the masked alignment using
the FastTree method [39]. Taxonomy assignment was performed using the feature-classifier method
and naïve Bayes classifier trained on the Greengenes 13_8 99% operational taxonomic units (OTUs)
(Table S2).

2.5. Biostatistical Analysis

2.5.1. Variables Measured

The main variables are the compositions of oral and gut microbiome, and quantities of microbes
on genus and phylum level within each sample (OTUs). Other variables include patients’ demographic
information, baseline medical conditions, lifestyle factors and clinical indices.

2.5.2. Alpha and Beta Diversity

Alpha diversity was calculated on the basis of the gene profile for each sample based on the
Shannon index, Faith’s index, and Simpson’s evenness index [40–42]. Beta diversity was calculated on
the unweighted and weighted UniFrac distances, Jaccard and the Bray–Curtis dissimilarity [43,44].
Alpha and beta-diversity estimates were computed using QIIME2 [36]. Alpha and beta diversity
metrics and Principal Component Analysis plots based on the Jaccard distance were generated using
default QIIME2 plugins [36,43,45–47].
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Kruskal–Wallis tests were used to compare alpha diversity between ASD patients and controls
for oral or gut microbiome respectively. A cut off false discovery rate (FDR) of 0.05 based on the
Benjamini–Hochberg (BH) method was applied [48]. Comparison of beta diversity indices were
calculated by Permutational multivariate analysis of variance (PERMANOVA).

2.5.3. Statistical Analyses of Differentially Enriched Microbiome Taxa

Significant differences in the relative abundance of microbial genera and phyla between individuals
with ASD and controls were identified by Kruskal–Wallis tests and BH adjustment for multiple
comparisons. In addition, we performed a paired Wilcoxon signed-rank test on the relative abundances
with BH adjustment. Furthermore, we explored differential bacteria enrichment on all taxonomy levels
using the ANCOM (Analysis of Composition of Microbiomes) method, an algorithm that accounts for
compositional constraints to reduce false discoveries in detecting differentially abundant taxa at an
ecosystem level, while maintaining high statistical power [49]. An FDR cutoff of 0.2 was applied for
taxa-level comparison [50].

2.6. Microbiome Biomarker Discovery

In order to measure whether the relative abundance of gut and oral microbial taxa and the
dysbiosis markers could classify ASD and control groups correctly, we created a receiver operator
characteristics (ROC) curve using Prism GraphPad (version 7.00 for Mac, GraphPad Software, La Jolla,
San Diego, CA, USA, www.graphpad.com). Statistical significance of areas under the curves (AUCs)
for dysbiosis markers were performed with the default plugin of Prism GraphPad.

2.7. Microbiome Network Analysis

In order to assess the taxonomic relatedness/association within the gut and oral microbiota as
well as between oral and gut microbiota, we performed correlation-based network analysis using
the SparCC (Sparse Correlations for Compositional data) method [51,52]. We performed SparCC for
microbiome data on phylum and genus level from all subjects, as well as within ASD and control
groups, respectively (Correlation coefficient cut-off = 0.3).

2.8. Influence of Clinical and Lifestyle Factors

Kruskal–Wallis tests with BH adjustment for FDR were used to assess differential abundance
of dysbiosis markers and bacterial taxa (phylum and genus level) between binary clinical classifiers
(i.e., presence or absence of allergy, constipation and abdominal pain) with a FDR cut off of 0.2. Relevant
clinical indices were treated as binary even though some data were collected as ordinal (e.g., GSI scores).
Analysis was further stratified by ASD and control groups. Genus level analysis was performed with
genera that have a relative abundance of at least 0.5%. We compared the dietary habits between
ASD patients and neurotypical controls based on numerical scores from baseline survey questions.
The responses for each question were recorded on a numerical scale from 0 to 4, where a larger score
indicated that the subject exhibited the behavior with greater prominence. We next assessed the
correlation between eating habit scores, allergy/autoimmunity scores, GSI total score, and key ASD gut
microbiome markers in patients with ASD. We used the Spearman’s correlation and an FDR cutoff

of 0.05.

2.9. Softwares Used

QIIME software package v. 2018.2.0 [36], RStudio (RStudio Team, 2017), R (R Core Team, 2017)
and Prism GraphPad version 7.00 for Mac (GraphPad Software, La Jolla, CA, USA) were used for
statistical testing and graph generation. Adobe Illustrator CC was used for figure editing.

www.graphpad.com
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3. Results

To characterize the gut and oral microbiota associated with autism, we recruited 20 autistic
subjects and 19 controls (Table 1). Of the controls, 8 were neurotypical biological parents and 11 were
neurotypical biological siblings. Demographic information is summarized in Table 1. One family had
1 parental control with 2 ASD children. Overall, there were significant inter-subject and inter-pair
variabilities in microbiota composition (Figure 1A,B, Figures S1 and S2).
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Figure 1. Bar plots of bacterial phylum-level relative abundances of the salivary (A) and gut
(B) microbiomes. Each bar represents one subject. (C) Salivary microbiome class-level heatmap
expression profile. (D) Gut microbiome class-level heatmap expression profile.
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3.1. Autistic Subjects Harbor an Altered Oral Microbiota Compared to First Degree-Family Member Controls

Consistent with previous studies, analysis of alpha diversity calculated by the Shannon index
revealed no significant differences between autistic and neurotypical subjects’ salivary microbiota
(Figure S2, Table S3). A heatmap (Figure 1C) visiually demonstrates that the beta diversity calculated
on the unweighted, weighted UniFrac distances and the Bray–Curtis dissimilarity revealed no
significant difference between the ASD and control groups for oral flora (Figure 2A, Figure S3, Table S4,
PERMANOVA). The major phyla that contributed to the oral microbiome in ASD and control groups
are summarized in Figure 2C. On the genus level, the ASD and control groups share 9 out of 10 most
abundant genera, including Prevotella, Fusobacterium, Rothia, Haemophilus, Streptococcus, Neisseria,
Veillonella, and an unknown genus in the Neisseriaceae family.
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Figure 2. PCA of bacterial beta diversity of saliva (A) and gut (B) microbiomes based on the Bray–Curtis
dissimilarity for ASD and neurotypical subjects. ASD and neurotypical subjects are colored in blue and
red, respectively. (C) The major contributing phyla of gut and oral microbiome, in ASD and control
subjects. The values used to compose the figures represent group mean relative abundances. (D,E)
Box plots depicting relative abundances of the most differentially abundant salivary or gut bacterial
phyla between patients with ASD and control subjects. Single asterisk indicates p < 0.1 with adjusted
FDR > 0.2; double asterisk indicates p < 0.05 with adjusted FDR > 0.2, triple asterisk indicates p < 0.05
and adjusted FDR < 0.2, Kruskal–Wallis test.

We found differential enrichment of bacterial taxa in the oral microbiota of autistic individuals
compared to the controls. On the phylum level, ASD patients showed a trend of lower relative
abundance of TM7 bacteria (Figure 2D, Figure S4). In total, 6 genera showed altered relative abundance
between the two groups (Kruskal–Wallis test, p < 0.05, Figure 3A, Figure 4B, Table S5). In particular,
the relative abundance of an unspecified genus in the class of Bacilli was statistically significant after
adjusting for the false discovery rate (FDR) (Figure 5B, Table S5).
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3.2. Autistic Subjects Harbor an Altered Bacterial Gut Microbiota Compared to First Degree-Family
Member Controls

Consistent with previous studies, the analysis of gut alpha and beta diversity as well as principal
component analysis (PCA) revealed no significant differences between autistic and neurotypical
subjects (Figure 2B, PERMANOVA, Table S4, Figure S3), as visualized by a heatmap (Figure 1D).
On the phylum level, Firmicutes, Bacteroidetes and Proteobacteria are the most abundant gut phyla in
both ASD patients and control subjects, comprising more than 90% of all operational taxonomic units
(OTUs) (Figure 2C). On the genus level, ASD and control groups share 9 out of 10 most abundant
genera, including Bifidobacterium, Blautia, Prevotella, Bacteroides, Faecalibacterium, and unknown genera
in Ruminococcaceae family, Lachnospiraceae family, Enterobacteriaceae family and Clostridiales order.Nutrients 2019, 11, x FOR PEER REVIEW 10 of 26 
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Figure 3. (A,B) Box plot representations of the relative abundances of differentially abundant salivary
or gut bacterial genera in patients with Autism Spectrum Disorder (ASD) and control subjects. (C) Box
plots representation of gut phylum-level dysbiosis marker Firmicutes/Bacteroidetes ratio, in patients with
ASD and control subjects. ASD and neurotypical subjects are colored in blue and red, respectively.
Single asterisk indicates p < 0.1 with adjusted FDR > 0.2; double asterisk indicates p < 0.05 with adjusted
FDR > 0.2, triple asterisk indicates p < 0.05 and adjusted FDR < 0.2, Kruskal–Wallis test. (D) receiver
operator characteristics (ROC) curve of the 3 differentially abundant gut or oral genera and dysbiosis
markers that have the highest area under the curve (AUC), and p < 0.05 based on two-sided Z-test
for ROC.
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Figure 4. (A,B) Overlap of differentially abundant gut or salivary genera based on Kruskal–Wallis test
and paired Wilcoxon test. Results are for taxa with unadjusted p < 0.05. (C,D) Paired-test representation
of the relative abundances of top most differentially abundant salivary bacterial genera between ASD
patient–family member control pairs. (E,F) Paired-test representation of the relative abundances of
top most differentially abundant gut bacterial genera between ASD patient–family member control
pairs. Single asterisk indicates p < 0.1 with adjusted FDR > 0.2; double asterisk indicates p < 0.05 with
adjusted FDR > 0.2, triple asterisk indicates p < 0.05 and adjusted FDR < 0.2, Wilcoxon’s paired test.

Further analysis of the dysbiosis markers revealed differences in the gut microbiota of subjects with
autism and their family member controls. Several phylum level markers showed statistically significant
changes between ASD and control, including Firmicutes/Bacteroidetes ratio (Figure 3C) likely driven by
Bacteroidetes (Figure 2E, Figure S4). The phylum Proteobacteria is associated with metabolic syndrome
and inflammatory bowel disease (IBD), and normally makes up less than 10% of the gut microbiome
in healthy individuals [53]. Among the six subjects with significant Proteobacteria overgrowth (with
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relative abundance values greater than 30%), 4 were ASD patients (Table S1). On the genus level, 6 taxa
showed trends of altered abundance between the two groups, including Paraprevotella, Granulicatella,
Butyricimonas, cc_115, Peptoniphilus and Eubacterium (Figure 5A, Table S5).Nutrients 2019, 11, x FOR PEER REVIEW 13 of 26 
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Compositional data (SparCC) method with a correlation cut-off >0.3 ((C) all subjects, (D) control only, 
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Figure 5. (A) Phylum-level heat map expression profiles of gut and oral microbiomes in ASD patients.
(B) PCA of bacterial beta diversity based on Bray–Curtis dissimilarity for saliva and gut (all subjects are
represented). Saliva and gut microbiome are colored in yellow and green, respectively. (C–E) Gut and
oral microbiome phylum level co-occurrence network using the Sparse Correlations for Compositional
data (SparCC) method with a correlation cut-off >0.3 ((C) all subjects, (D) control only, (E) ASD only).
Each node represents a saliva (Sl) or stool (St) phylum, and saliva and stool microbiomes are colored
in yellow and green, respectively. The dotted red circle highlights a co-occurrence cluster with the
greatest inter-nodal correlations.
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3.3. Gut and Saliva Biomarkers Can Classify ASD and Control Groups

In order to measure how correctly the relative abundance of gut and oral microbial taxa and the
dysbiosis markers could classify two groups of samples, we created a receiver operator characteristics
(ROC) curve, which is a common methodology used to evaluate classification performance of potential
biomarkers (Figure 3D). The performance of a potential classifier (binary) can be evaluated by measuring
the area under the curve (AUC), which represents true versus false positive rates. An AUC value
of 0.5 corresponds to random classification and a value of 1.0 corresponds to perfect classification.
Taking all gut and saliva genera as well as gut dysbiosis markers that showed statistically significant
differential expression (Kruskal–Wallis tests) from previous analyses, two genera (gut Butyricimonas,
saliva Parvimonas, Figure 3A,B) and the well-recognized dysbiosis marker gut Firmicutes/Bacteroidetes
ratio (Figure 3C), all showed the highest AUC values (up to 0.724) with p value < 0.05 (Figure 3D,
Table S8).

3.4. Results of Paired Analysis Overlap Partially with Group Analysis

Due to the nature of paired study design, we also performed paired a Wilcoxon signed-rank test
on the relative abundance of the OTUs, in addition to Kruskal–Wallis tests, by subject groups (ASD vs.
control). Those with significant Wilcoxon’s p values had partial overlap with results from grouped
Kruskal–Wallis tests (Figure 4A,B). However, after adjustment for multiple comparison, FDRs from
paired analyses were not statistically significant (Table S6). Examples of gut and oral genera that
showed the most significant pairwise changes are recorded in Figure 4C–F. Due to high inter-individual
variabilities, subsequent analysis consisted of group-wise approaches.

In addition to Kruskal–Wallis tests with FDR adjustment, we explored differential bacteria
enrichment on all taxonomy levels using the more conservative ANCOM method [49]. This method did
not reveal statistically significant differences in the enrichment patterns detected by the Kruskal–Wallis
test (Table S7).

3.5. Exploring the Relationship between Gut–Oral Microbiome and Their Co-Occurrence Network

Since the current project characterized gut and oral microbiota samples from the same subjects,
we explored the relationship between gut and oral microbiota within individuals. Consistent with
previous publications, we found that the gut and oral microbiome are distinct, based on beta diversity
indices and PCA (Figure 5B, PERMANOVA). This can be seen through heatmap clustering (Figure 5A)
as well as the OTU level ANCOM analysis (Figure S5, Table S7).

In order to assess the taxonomic association within the gut and oral microbiota as well as between
oral and gut microbiota in a non-biased manner, we performed correlation-based network analysis
using the Sparse Correlations for Compositional data (SparCC) method [51,52] (Figure 5C). This method
is capable of estimating correlation values from compositional data and has been validated as a superior
analysis technique than Pearson’s correlation methods for compositional data such as 16S rRNA gene
amplicon sequencing [51]. The goal of this analysis is to infer any potential synergistic relationships
between bacterial taxa within a community and between communities. We also hoped to detect GI
dysbiosis purely using salivary microbial markers because, due to high prevalence of constipation
in the ASD population, it is much easier to obtain saliva samples than stool samples. The salivary
microbiome could then serve as a diagnostic window into the GI environment of the ASD patients.
Previously, network correlation analysis has yielded important insights regarding bacterial community
structures related to enterotypes [54].

Overall, the oral microbiome exhibits a denser co-occurrence network compared to the gut, both at
the phylum and genus level (Figure 5C–E). The same trend holds true when analyzing ASD subjects and
control subjects separately (Figure 5D,E). Within the salivary co-occurrence network at the phylum level,
the highest correlations are observed in a cluster consisting of Actinobacteria, Proteobacteria, Firmicutes
and Bacteroidetes (Figure 5C, dotted circle), especially between Firmicutes and Actinobacteria (Figure S6).
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Importantly, some gut and oral phylum show positive inter-community co-occurrence. There is a
positive correlation between saliva Verrucomicrobia and gut Actinobacteria (Figure 5C). In the ASD
population but not the controls, gut Firmicutes, which is a known dysbiosis marker, showed positive
correlation with saliva level of Chloroflexi (Figure 5D,E). We then computed the co-occurrence network
on the genus level using bacteria genera that make up at least 0.5% of all OTUs. The genus-level
co-occurrence density was notably higher compared to phylum level (Figure S6B,C), as many genera
demonstrated intra-community co-occurring relationships. In terms of inter-community co-occurrence,
several gut genera, including Bifidobacteria, Dialister, Escherichia, SMB53 and an unspecified genus in
Enterobacteriaceae all exhibited positive correlation with salivary genera in the control subjects, whereas
only Escherichia and an unspecified genus of Clostridiales showed co-occurrence with saliva genera in
ASD patients (Figure S7).

Alpha diversity has been conventionally used as an index for dysbiosis, as low alpha diversity
indicates diminished community richness and potentially diminished resilience to disturbances.
Alpha diversity shows a positive correlation between the gut and oral microbiota, although it is not
statistically significant (Table S3, Figure S8).

3.6. Microbiome Signatures in Clinical Subtypes

Due to the tremendous clinical heterogeneity of the ASD population, we explored the relationship
between microbiome and clinical indices as an attempt to extract microbiome signatures assocociated
with clinical subtypes. We focused on three major medical comorbidities that have previously reported
associations with microbiome, including allergy, GI disturbances and poor diet.

3.7. Allergies

We first investigated whether phylum level dysbiosis markers (including gut Proteobacteria,
Firmicutes, and Bacteroidetes, and oral SR1 and Synergistetes) may be associated with disease states.
Among all clinical indices assessed, the incidences of allergy were notably higher in the ASD group
(7/19 vs. 11/18, Chi-square test, p value < 0.05). The relative abundance of oral SR1 is significantly lower
in ASD patients who also have allergies, in comparison to ASD patients without allergies, but this
trend is not present in control subjects (Kruskal–Wallis, Figure 6A). Subjects with allergies also showed
increased relative abundance of gut Proteobacteria, a phylum previously associated with autoimmune
conditions (Kruskal–Wallis, Figure 6B). These differences are detected only in ASD patients and not
in controls (Figure 6B). All ASD subjects who had significant gut Proteobacteria overgrowth (>30%)
also suffered from allergies (4/4), whereas none of the 2 control subjects with Proteobacteria overgrowth
did (0/2).

We next performed genus level correlation analysis of the oral and gut bacterial relative abundances
against allergy status, using bacteria genera that make up at least 0.5% of all OTUs. No salivary or
gut genus was significantly and differentially enriched by allergy status, after stratifying by ASD and
control group (Table S9).
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Figure 6. Box plot representation of the relative abundances of oral (A–A”) and gut (B–B”) bacterial
phyla correlating with the allergy status of the subjects enrolled in this study. (A) Oral SR1 relative
abundance in all subjects with no allergy and those with allergy; (A’) Oral SR1 relative abundance
in ASD subjects with no allergy and patients with allergy; (A”) Oral SR1 relative abundance in
neurotypical subjects with no allergy and neurotypical subjects with allergy. (B) Gut Proteobacteria
relative abundance in all subjects with no allergy and those with allergy; (B’) Gut Proteobacteria relative
abundance in ASD subjects with no allergy and patients with allergy; (B”) Gut Proteobacteria relative
abundance in neurotypical subjects with no allergy and neurotypical subjects with allergy. Box plot
representation of the gut alpha diversity (Shannon index) that correlated with the allergy status of the
subjects enrolled in this study. (C) Gut alpha diversity in all subjects with no constipation and those
with constipation; (C’) Gut alpha diversity in ASD subjects with no constipation and patients with
constipation; (C”) Gut alpha diversity in neurotypical subjects with no constipation and neurotypical
subjects with constipation. Single asterisk indicates p < 0.1 with adjusted FDR > 0.2; double asterisk
indicates p < 0.05 with adjusted FDR > 0.2, triple asterisk indicates p < 0.05 and adjusted FDR < 0.2,
Kruskal–Wallis test.

3.8. GI Disturbances

Patients with autism suffer from many co-occurring GI conditions [55]. Previous studies found that
gut microbiome is associated with and may play important roles in GI symptoms such as constipation
and abdominal pain [23]. We performed genus level correlation analysis of the gut bacterial relative
abundances by constipation and abdominal pain status, using gut genera that make up at least 0.5% of
all OTUs. Roseburia and Bacteroides were differentially enriched in subjects without abdominal pain
(Figure 7A, Kruskal–Wallis, Table S10), and this difference in Roseburia remained statistically significant
after FDR adjustment (pain 2.7% vs. no pain 5.7%). After stratifying by ASD and control subjects, ASD
patients without abdominal pain had significantly higher levels of Bacteroides, as compared to ASD
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patients with abdominal pain, whereas control subjects without abdominal pain had lower levels of
Bacteroides, as compared to control subjects with abdominal pain (Figure 7A, Kruskal–Wallis, Table S10).
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Figure 7. Bar plot representation of the relative abundances of gut (A–A’) and oral (B–B’) bacterial
genera correlating with the abdominal status of the subjects enrolled in this study. (A) The most
differentially abundant gut genera in all subjects with no abdominal pain and those with abdominal
pain; (A’) The most differentially abundant gut genera in ASD patients with no abdominal pain and
patients with abdominal pain. (B) The most differentially abundant oral genera in all subjects with
no abdominal pain and those with abdominal pain; (B’) The most differentially abundant oral genera
in ASD patients with no abdominal pain and patients with abdominal pain. Single asterisk indicates
p < 0.1; double asterisk indicates p < 0.05, Kruskal–Wallis test.

Given the concordance between the oral microbiome and upper GI microbiome [26], it is possible
that the oral microbiome may be associated with upper GI health and contribute to abdominal
pain. We explored phylum and genus levels correlation analysis of the oral bacterial relative
abundances between subjects with or without abdominal pain. No oral phylum showed differential
enrichment, but several oral genera are differentially enriched based on abdominal pain status, including
Porphyromonas, Megasphaera, Haemophilus (Figure 7B, Kruskal–Wallis test, Table S10). Remarkably,
Porphyromonas is significantly less abundant in subjects without abdominal pain after FDR adjustment
(pain 0.7% vs. no pain 2.2%). When stratifying based on ASD status, ASD patients with abdominal
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pain showed a higher trend of Actinomyces, as compared to ASD patients without abdominal pain
(Figure 7B, Kruskal–Wallis test, Table S10).

The gut alpha diversity showed no difference between the constipated and non-constipated group
(Figure 6C). When stratifying patients with ASD from the control group, there was an increased trend
of gut alpha diversity in constipated ASD patients but not in constipated controls (Figure 6C’,C”),
consistent with a previous study showing increased gut alpha diversity in functional constipation
patients [56].

3.9. Dietary Habits and Gut Microbiome Markers

Previous studies indicate dietary challenges in ASD patients, but the association between altered
dietary patterns with gut dysbiosis has not been explored in ASD patients. We found that ASD
patients exhibit a statistically more restricted diet, while finding it more difficult to accept certain foods
and try new foods (Mann–Whitney U test, Figure 8A–C). However, no significant differences were
found between groups in respect to the amount, rate, interest, environment, or multitasking habits
while eating.

Nutrients 2019, 11, x FOR PEER REVIEW 17 of 26 

3.9. Dietary Habits and Gut Microbiome Markers 

Previous studies indicate dietary challenges in ASD patients, but the association between altered 
dietary patterns with gut dysbiosis has not been explored in ASD patients. We found that ASD 
patients exhibit a statistically more restricted diet, while finding it more difficult to accept certain 
foods and try new foods (Mann–Whitney U test, Figure 8A–C). However, no significant differences 
were found between groups in respect to the amount, rate, interest, environment, or multitasking 
habits while eating. 

 
Figure 8. Box plot representation of abnormal dietary habit severity scores in ASD and control 
subjects. (A) Unwilling to try new foods. (B) Diet lacks variety. (C) Refuse to eat certain foods. Single 
asterisk indicates p < 0.1; double asterisk indicates p < 0.05, Mann–Whitney U test. (D) Spearman’s 
correlation matrix between habit scores, allergy/autoimmunity scores, gastrointestinal severity 
indices (GSI) total score, and selected ASD gut microbiome markers in patients with ASD (results 
with FDR < 0.05 were shown). 

We next assessed correlation between eating habit scores, allergy/autoimmunity scores, GSI total 
score, and key ASD gut microbiome markers in patients with ASD. Examined gut microbiome 
markers include Shannon alpha diversity index, gut Firmicutes/Bacteroidetes ratio and relative 
abundances of gut butyricimonas, paraprevotella, granulicatella, eubacterium, and cc_115 genera 
which showed significant difference between ASD and control groups based on previous grouped or 
paired analysis (Figure 4). Most notably, we found that ASD individuals uniquely display 
correlations between gut butyricimonas relative abundance, eating habit total score, and 
allergy/immune functions (Figure 8D). Firmicutes/Bacteroidetes ratio is negatively correlated with 
allergy/immune function while the same trends are not observed in neurotypical controls. Assessed 
variables lacking significant correlations with gut microbiome markers are not shown. 
  

Figure 8. Box plot representation of abnormal dietary habit severity scores in ASD and control subjects.
(A) Unwilling to try new foods. (B) Diet lacks variety. (C) Refuse to eat certain foods. Single asterisk
indicates p < 0.1; double asterisk indicates p < 0.05, Mann–Whitney U test. (D) Spearman’s correlation
matrix between habit scores, allergy/autoimmunity scores, gastrointestinal severity indices (GSI) total
score, and selected ASD gut microbiome markers in patients with ASD (results with FDR < 0.05
were shown).

We next assessed correlation between eating habit scores, allergy/autoimmunity scores, GSI total
score, and key ASD gut microbiome markers in patients with ASD. Examined gut microbiome markers
include Shannon alpha diversity index, gut Firmicutes/Bacteroidetes ratio and relative abundances of
gut butyricimonas, paraprevotella, granulicatella, eubacterium, and cc_115 genera which showed
significant difference between ASD and control groups based on previous grouped or paired analysis
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(Figure 4). Most notably, we found that ASD individuals uniquely display correlations between gut
butyricimonas relative abundance, eating habit total score, and allergy/immune functions (Figure 8D).
Firmicutes/Bacteroidetes ratio is negatively correlated with allergy/immune function while the same
trends are not observed in neurotypical controls. Assessed variables lacking significant correlations
with gut microbiome markers are not shown.

4. Discussion

In this cross-sectional study, we conducted a comparative analysis between the gut and oral
microbiota of ASD children and that of healthy, first-degree relative co-inhabitant controls. Our study
is the first to use a first-degree relative matched subject design combined with high fidelity next
generation sequencing technology to investigate the microbiome of ASD individuals. We believe
that this study design better controls for variations in genetic background and environmental factors,
and therefore has better specificity for detecting ASD-related microbial signatures [23,24]. This paired
control scheme has been increasingly used in microbiome studies for diseases that have strong genetic
and environmental contributing factors, such as IBD [57].

Our analysis detected differences between ASD and control subjects in both their gut and oral
microbiomes. We identified an unspecified oral Bacilli genus, the relative abundance of which is
significantly different between the ASD and control groups (FDR < 0.05), which has not been described
by previous reports [30,31]. Parallel to this observation, amounts of bacteria in the class Bacilli were
significantly higher in the gut of ASD individuals compared to controls (0.7% vs. 0.4%, Kruskal–Wallis
test, p < 0.05), consistent with findings of Adams et al. [15]. Previous studies of the gut microbiome
have revealed significant increases in facultative anaerobic commensal bacteria belonging to the
class Bacilli seen in individuals with IBD, supporting a potential connection between Bacilli and gut
inflammation [58]. It is unknown whether the simultaneous upregulation of Bacilli species in the
mouth and the gut environment of ASD patients represents any common causal environmental factor
(such as diet), or whether overgrowth of Bacilli in the mouth could lead to overgrowth of Bacilli in the
gut. Answers to these questions would help elucidate further the interactions between gut and mouth
microbiomes, as well as provide insight into potential ASD pathology.

Consistent with prior reports, ASD patients demonstrated a significantly higher gut Firmicutes/
Bacteroidetes ratio [59,60], which is a measure associated with inflammatory conditions such as
IBD [61,62]. Overgrowth of Proteobacteria has been associated with diarrheal diseases, metabolic
syndrome and IBD [53], and 4 out of the 6 subjects who exhibited significant Proteobacteria overgrowth
were ASD patients. Proteobacteria overgrowth observed in our study is unlikely due to confounding
factors: none of the six subjects were under 5 years-old (age range: 15–45), and none had used antibiotics
in the past month. We also explored other putative combined phylum level relative abundance or
ratios as dysbiosis markers, which all appear to be abnormal in patients with ASD.

4.1. Microbial Signatures Can Serve as Potential Diagnostic Markers for ASD

Although oral and gut microbiomes are distinct, we showed that analysis of both can be combined
to classify ASD subjects from controls. Among the dysbiosis markers and differentially expressed
taxa in the present study, three promising candidates stood out from our analysis: gut Butyricimonas,
saliva Parvimonas, and gut Firmicutes/Bacteroidetes ratio. In support of our findings is the work done by
Kang et al. (2013) which also reported decreased Butyricimonas in the gut of ASD patients as compared
to controls [24]. Butyricimonas is prevalent in healthy individuals and produces butyrate, which has
been shown to improve gut health [63]. In addition, recent work on multiple sclerosis suggests that
it may play an important role in immune tolerance and prevention against disease pathogenesis
and progression [64,65]. Butyricimonas had negative correlations with gene expression implicated in
cytokine signalling molecules IFN and IL-2, and activation of receptors PPAR and RXR [64]. Given the
important association between autoimmune conditions and ASD, it will be important to further explore
the role of Butyricimonas in the pathogenesis and autoimmune manifestation of ASD patients. Another
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study reported thedepletion of oral Parvimonas in IBD patients, although this has not been reported in
ASD patients [66,67].

Currently, ASD diagnosis is guided by criteria in the DSM-5, which are based solely on clinical
symptoms without any objective laboratory measures. Utilizing a combination of gut and oral
microbiome signatures could improve the diagnosis and screening process of ASD individuals.
This could also identify subclinical or clinical subgroups of ASD patients with potential GI involvement,
autoimmunity, or inflammation. Future studies should explore whether these microbiome markers
can predict a patient’s response to treatment. This would be particularly useful to guide treatment
with probiotics or drug options during probiotics therapy and anti-inflammatory interventions, as it
could individualize treatment and improve outcomes for patients with ASD.

4.2. Gut and Oral Co-Occurrence Network Reveal Possible Connections between Distinct
Microbial Communities

Our study is the first to co-analyze stool and oral microbiota in patients with ASD. We explored
methodologies to investigate the relationship between the oral and gut microbiomes using unbiased
approaches. Our analysis revealed novel co-occurrence networks within and between microbial
communities that may hold diagnostic significance for ASD. Given how environmental factors (such as
diet) can facilitate competitive and cooperative relationships between microbial groups [68], it is
possible that such effects can span across distant communities along the digestive tract. The SparCC
co-occurrence network analysis revealed an overall denser correlation network of the saliva microbiome
compared to the gut. It is known that inter-individual variability of gut microbiota is higher compared
with that of salivary microbiota [26], which may explain this observed difference.

Interestingly, some gut and oral taxa show evidence of co-occurrence despite the distal separation.
For example, gut Firmicutes and saliva Chloroflexi showed strong correlation in the ASD population.
From a diagnostic perspective, it would be pertinent to explore whether oral Chloroflexi can serve as
a read-out for the status of gut Firmicutes in patients with ASD, thereby using oral microbiome
as a more convenient tool to assess dysbiosis of the gut when stool samples are not readily
available. More significant oral–gut co-occurrence clusters were observed at the genus level. The oral
microbiome may help predict the levels of Bifidobacteria, Escherichia and Clostridiales genera in the gut,
which all showed positive correlations with oral genera and are likely correlated with GI and/or ASD
pathophysiology [12,69,70].

4.3. Clinical Correlates of ASD Microbiome

Despite the recognized importance of the gut microbiota in health and disease, our study is
the one of the few designed to investigate the relationship between the human microbiota and
medical comorbidities of ASD patients. Previously, Plaza-Diaz investigated gut microbiome in ASD
patients with or without mental regression and found microbiome signatures associated with different
psychiatric subtypes [32]. We analyzed gut alpha diversity, as well oral and gut phylum and genus
levels of relative abundance in the context of three common co-occurring medical conditions affecting
the ASD individuals: allergies, abdominal pain and poor dietary habits.

We found ASD patients tend to have more unhealthy and restricted dietary habits. This is consistent
with previous studies, showing that up to 79% of children with ASD suffer from feeding-related
difficulties or nutritional challenges [71] and strong preference for nutrient-poor foods [72]. Given the
correlation between severity of poor dietary habits and relative abundances of gut microbiome
biomarkers, it is conceivable that the unhealthy dietary habits may be driving gut dysbiosis [73].

Second, we detected a significantly higher prevalence of allergies in ASD patients with than
those without. Gut Proteobacteria overgrowth is also over-represented in ASD patients and its relative
abundance is positively correlated with allergy status. Overgrowth of Proteobacteria has been implicated
in autoimmune disorders such as IBD [74]. This is opposite to the trend of Bacteroidetes, a marker for
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healthy flora. We also report a negative association between oral SR1 numbers and allergy status, but
this association is only present in ASD patients and not healthy controls.

Little is known about the connection between allergies and autism. In a recent, large population-based,
cross-sectional study of data provided by the National Health Interview Survey (NHIS) from 1997–2016,
Xu et al. found that children with ASD were more likely to have a food allergy (11.25% versus 4.25%),
respiratory allergy (18.73% versus 12.08%), and skin allergy (16.81% versus 9.84%) than neurotypical
children. Further, the odds ratio of ASD among children with a food allergy is nearly triple the ratio of
ASD among those without a food allergy [75].

The “bi-directional” association between allergies and ASD raises the following questions:
(1) whether these dysbiosis markers are simply associated with allergy or whether an abnormal
microbiome is involved in the pathogenesis of allergy in ASD, (2) if a pathogenic mechanism could
be established, whether ASD patients are more vulnerable to it than neurotypical individuals, and
(3) whether there are common underlying mechanisms, potentially involving the dysregulation of
the immune system and gut and oral microbiota, that could induce the development of both allergy
and ASD. Future studies using animal models, immunology markers, genomics and metabolomics
approaches are needed to elucidate the mechanisms of possible causal relationships.

In analyzing the relationship between microbiota and GI pathology, we found significantly higher
levels of gut Roseburia in subjects without abdominal pain. The genus Roseburia consists of obligate
Gram-positive anaerobic commensal bacteria that affect one’s health in many ways. These bacteria
produce short-chain fatty acids such as butyrate, affect colonic motility, maintain the immune response,
and contribute anti-inflammatory factors to their environments [76]. Although previous studies have
linked Roseburia abundance to some disease states such as irritable bowel syndrome and IBD [77],
certain species in the genus likely play a positive role in GI health. One recent study found that
treatment with the Roseburia hominis bacterium provided protection against dextran sulfate sodium
(DSS)-induced colitis due to its immunomodulatory properties [78].

Interestingly, the oral genus Porphyromonas is significantly more abundant in subjects with
abdominal pain. Many members of this genus have been associated with periodontal diseases [79].
The most well-characterized species, Porphyromonas gingivalis, has been linked to systemic diseases
including upper GI tract inflammation and cancer due to upregulation of systemic cytokine release [80].
Further investigations should consider the mechanistic roles these genera could play in abdominal
pain, and whether these gut and oral genera can serve as markers for the diagnosis and treatment
monitoring of abdominal symptoms in patients with ASD.

The correlation between abdominal pain status and differential expression of bacterial genera
differs between the ASD and control groups. Previously, Strati et al. found that constipation status
is correlated with different amounts of bacterial taxa depending on whether an individual has ASD
or not [23]. Notably, Bacteroides is one genus that shows the most prominent differential patterns:
whereas Bacteroides appears to be protective against abdominal pain in ASD patients (higher levels
are associated with no abdominal pain), the association is the opposite in controls. Bacteroides genus
harbor species that can have either positive or negative effects on GI health. Some Bacteroides species
synthesize lipopolysaccharide, an important bacterial virulence factor, and can cause diseases such as
GI infection and septicemia in children. Many other Bacteroides species can be healthy commensals [81].
A recent meta-analysis concluded that a lower level of Bacteroides in the gut microbiota is associated
with IBD [82], and functional analysis showed that Bacteroides expresses polysaccharide A, which can
induce regulatory T-cell growth and cytokine expression to protect against colitis [83]. It is possible
that ASD patients may be more prone to positive effects of Bacteroides than control subjects, potentially
through the action of bacterial metabolites and the gut–brain axis [13]. This is supported by a mouse
study which found that administration of Bacteroides fragilis corrects gut permeability, alters microbial
composition and ameliorates ASD-related defects [13]. The ASD mice also display an altered serum
metabolomic profile, and B. fragilis modulates levels of several metabolites. Further species-level
analysis with higher 16S rRNA gene amplicon sequencing resolution and functional studies could
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elucidate the roles of different Bacteroides species on abdominal pain in ASD subjects. Future studies
should also investigate the relationships between abdominal pain, Bacteroides abundance, and the
severity of ASD symptoms.

5. Conclusions

In conclusion, our study is the first to use a first degree-relative matched design combined with
high fidelity 16S rRNA gene amplicon sequencing technology to characterize the microbiome of
patients with ASD compared to neurotypical individuals. To our knowledge, this study is the first
to co-analyze the oral and gut microbiomes in patients with ASD, as well as explore the relationship
between the two microbial communities and clinical indices. This study identified distinct features
of gut and salivary microbiota that differ between individuals with and without an ASD diagnosis.
The diagnosis of ASD currently relies on psychological testing with potential high subjectivity
and inconsistencies. We suggest improvement of current diagnostic approaches based on gut and
oral microbial signatures and co-occurrence networks. Given the emerging role that the human
microbiome plays in systemic diseases, we hope that these analyses will provide clues for developing
microbial markers for diagnosing ASD and comorbid conditions, and to guide treatment. In particular,
ASD patients have disproportional gastrointestinal symptoms compared to neurotypical individuals.
Therefore, developing “gut microbiome markers” is particularly important for monitoring GI health or
guiding interventions of the gut. For example, these preliminary results can serve as a starting point to
test whether changing the microbiome (e.g., with probiotics) would improve co-morbid conditions in
patients with ASD and further modify the core and GI symptoms of ASD.

The explorations of causal relationships between microbiomes, ASD status and co-morbidities
await future investigations. Further research could explore metabolomics profiles to characterize
microbiome-related inflammatory factors and metabolites in the oral and gut cavity such as interleukins
and short-chain fatty acids. Other areas of future study should include exploring the role of microbiota
in inflammatory conditions such as allergy and autoimmunity, investigating their genetic and/or
epigenetic linkage, researching mechanism of the gut–brain axis and relevant neural circuits, and
ultimately inquiring more about the pathogenesis of ASD. These indices and studies will improve the
algorithm for ASD screening, diagnosis, and treatment monitoring in the future.

Limitations of the current study include: (1) The use of both sibling and parental controls, where
age could contribute to the large inter-individual variability. Future studies should focus on only
age-matched sibling controls, if possible. (2) The small sample size, which likely contributed to high
FDR in the majority of our analyses and the difficulty in distinguishing true differences from noise.
Verification of our findings with a larger cohort is required. The current study was not sufficiently
powered for detecting clinically relevant biomarkers. However, with the methodologies in hand,
we will be able to expand the study to develop clinically biomarkers in the future. That being said,
even with the relatively small sample size, we were able to find biomarkers that have withstood
rigorous statistical testing and adjustment. (3) Our genus level differential expression patterns showed
discrepancies from previous reports that used neurotypical controls [12,23], but this likely reflects
the differences in study design [12]. For example, we did not detect changes in Prevotella, Bacteroides,
Clostridium cluster I/II, or Lactobacillus, which have been reported by some studies to be differentially
expressed between ASD and control groups [12], but previous studies using sibling-matched designs
also did not detect these differences [84–86].
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and Weighted Unifrac dissimilarity index. Figure S4. Differential abundances of saliva and gut microbiome
in ASD and control subjects at phylum level, shown as fold changes in mean relative abundances. Figure S5.
ANCOM volcano plots of saliva vs. gut microbiome OTU level differential expression in control and ASD
subjects, respectively. Figure S6. Pearson’s correlations of salivary Actinobacteria, Bacteroidetes, Firmicutes
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p values, FDR adjustment with BH method, Kruskal–Wallis test). Table S6. Saliva and gut genus level paired
Wilcoxon test, ASD vs. Control subjects (Wilcoxon’s F statistic, p values, FDR adjustment with BH method, Paired
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biomarkers that distinguish ASD and control groups. Table S9: Saliva and stool genus level relative abundances
based on allergy status using genera with at least 0.5% mean relative abundances (group means, p values, FDR
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Nomenclature

ANCOM Analysis of Composition of Microbes
ASD Autism Spectrum Disorder
AUC area under the graph
BH Benjamini–Hochberg
CNS central nervous system
DSM-5 Diagnostic and Statistical Manual of Mental Disorders
FDR false discovery rate
GI gastrointestinal
IBD inflammatory bowel disease
MGH Massachusetts General Hospital
OTU operational taxonomic unit
PCA principal component analysis
PCR polymerase chain reaction
PERMANOVA Permutational multivariate analysis of variance
ROC receiver operator characteristics
rRNA ribosomal RNA
SparCC Sparse Correlations for Compositional data



Nutrients 2019, 11, 2128 22 of 26

References

1. Baio, J.; Wiggins, L.; Christensen, D.L.; Maenner, M.J.; Daniels, J.; Warren, Z.; Kurzius-Spencer, M.;
Zahorodny, W.; Robinson Rosenberg, C.; White, T.; et al. Prevalence of Autism Spectrum Disorder among
Children Aged 8 Years-Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States,
2014. MMWR Surveill. Summ. 2018, 67, 1–23. [CrossRef]

2. Karimi, P.; Kamali, E.; Mousavi, S.; Karahmadi, M. Environmental factors influencing the risk of autism.
J. Res. Med. Sci. 2017, 22, 27.

3. Wu, M.; Wu, Y.; Yu, L.; Liu, J.; Zhang, M.; Kong, X.; Wu, B. A Survey of Epidemiological Studies and Risk
Factors of ASD, with a Focus on China. N. Am. J. Med. Sci. 2017, 10, 1–9.

4. Siniscalco, D.; Schultz, S.; Brigida, A.; Antonucci, N. Inflammation and Neuro-Immune Dysregulations in
Autism Spectrum Disorders. Pharmaceuticals 2018, 11, 56. [CrossRef]

5. Alam, R.; Abdolmaleky, H.M.; Zhou, J.-R. Microbiome, inflammation, epigenetic alterations, and mental
diseases. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2017, 174, 651–660. [CrossRef]

6. Bengmark, S. Gut microbiota, immune development and function. Pharmacol. Res. 2013, 69, 87–113. [CrossRef]
7. Bruce-Keller, A.J.; Salbaum, J.M.; Berthoud, H.-R. Harnessing Gut Microbes for Mental Health: Getting from

Here to There. Biol. Psychiatry 2018, 83, 214–223. [CrossRef]
8. Cryan, J.F.; Dinan, T.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and

behaviour. Nat. Rev. Neurosci. 2012, 13, 701–712. [CrossRef]
9. Vuong, H.E.; Hsiao, E.Y. Emerging Roles for the Gut Microbiome in Autism Spectrum Disorder. Biol. Psychiatry

2017, 81, 411–423. [CrossRef]
10. Petersen, C.; Round, J.L. Defining dysbiosis and its influence on host immunity and disease. Cell. Microbiol.

2014, 16, 1024–1033. [CrossRef]
11. Rossignol, D.A.; Frye, R.E. Evidence linking oxidative stress, mitochondrial dysfunction, and inflammation

in the brain of individuals with autism. Front. Physiol. 2014, 5, 150. [CrossRef]
12. Ding, H.T. Gut Microbiota and Autism: Key Concepts and Findings. J. Autism Dev. Disord. 2017, 47, 480–489.

[CrossRef]
13. Hsiao, E.Y.; McBride, S.W.; Hsien, S.; Sharon, G.; Hyde, E.R.; McCue, T.; Codelli, J.A.; Chow, J.; Reisman, S.E.;

Petrosino, J.F.; et al. Microbiota Modulate Behavioral and Physiological Abnormalities Associated with
Neurodevelopmental Disorders. Cell 2013, 155, 1451–1463. [CrossRef]

14. Buffington, S.A.; Di Prisco, G.V.; Auchtung, T.A.; Ajami, N.J.; Petrosino, J.F.; Costa-Mattioli, M. Microbial
Reconstitution Reverses Maternal Diet-Induced Social and Synaptic Deficits in Offspring. Cell 2016, 165,
1762–1775. [CrossRef]

15. Adams, J.B.; Johansen, L.J.; Powell, L.D.; Quig, D.; Rubin, R.A. Gastrointestinal flora and gastrointestinal
status in children with autism–comparisons to typical children and correlation with autism severity.
BMC Gastroenterol. 2011, 11, 22. [CrossRef]

16. Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut-brain axis: Interactions between enteric
microbiota, central and enteric nervous systems. Ann. Gastroenterol. 2015, 28, 203–209.

17. Van De Sande, M.M.H.; van Buul, V.J.; Brouns, F.J. Autism and nutrition: The role of the gut-brain axis.
Nutr. Res. Rev. 2014, 27, 199–214. [CrossRef]

18. Petra, A.I.; Panagiotidou, S.; Hatziagelaki, E.; Stewart, J.M.; Conti, P.; Theoharides, T.C. Gut-Microbiota-Brain
Axis and Its Effect on Neuropsychiatric Disorders With Suspected Immune Dysregulation. Clin. Ther. 2015,
37, 984–995. [CrossRef]

19. Kang, V.; Wagner, G.C.; Ming, X. Gastrointestinal Dysfunction in Children With Autism Spectrum Disorders.
Autism Res. 2014, 7, 501–506. [CrossRef]

20. Rothschild, D.; Weissbrod, O.; Barkan, E.; Kurilshikov, A.; Korem, T.; Zeevi, D.; Costea, P.I.; Godneva, A.;
Kalka, I.N.; Bar, N.; et al. Environment dominates over host genetics in shaping human gut microbiota.
Nature 2018, 555, 210–215. [CrossRef]

21. Yatsunenko, T.; Rey, F.E.; Manary, M.J.; Trehan, I.; Dominguez-Bello, M.G.; Contreras, M.; Magris, M.;
Hidalgo, G.; Baldassano, R.N.; Anokhin, A.P.; et al. Human gut microbiome viewed across age and
geography. Nature 2012, 486, 222–227. [CrossRef]

http://dx.doi.org/10.15585/mmwr.ss6706a1
http://dx.doi.org/10.3390/ph11020056
http://dx.doi.org/10.1002/ajmg.b.32567
http://dx.doi.org/10.1016/j.phrs.2012.09.002
http://dx.doi.org/10.1016/j.biopsych.2017.08.014
http://dx.doi.org/10.1038/nrn3346
http://dx.doi.org/10.1016/j.biopsych.2016.08.024
http://dx.doi.org/10.1111/cmi.12308
http://dx.doi.org/10.3389/fphys.2014.00150
http://dx.doi.org/10.1007/s10803-016-2960-9
http://dx.doi.org/10.1016/j.cell.2013.11.024
http://dx.doi.org/10.1016/j.cell.2016.06.001
http://dx.doi.org/10.1186/1471-230X-11-22
http://dx.doi.org/10.1017/S0954422414000110
http://dx.doi.org/10.1016/j.clinthera.2015.04.002
http://dx.doi.org/10.1002/aur.1386
http://dx.doi.org/10.1038/nature25973
http://dx.doi.org/10.1038/nature11053


Nutrients 2019, 11, 2128 23 of 26

22. Rodríguez, J.M.; Murphy, K.; Stanton, C.; Ross, R.P.; Kober, O.I.; Juge, N.; Avershina, E.; Rudi, K.; Narbad, A.;
Jenmalm, M.C.; et al. The composition of the gut microbiota throughout life, with an emphasis on early life.
Microb. Ecol. Health Dis. 2015, 26, 26050. [CrossRef]

23. Strati, F.; Cavalieri, D.; Albanese, D.; De Felice, C.; Donati, C.; Hayek, J.; Jousson, O.; Leoncini, S.; Renzi, D.;
Calabrò, A.; et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome
2017, 5, 24. [CrossRef]

24. Kang, D.-W.; Park, J.G.; Ilhan, Z.E.; Wallstrom, G.; LaBaer, J.; Adams, J.B.; Krajmalnik-Brown, R. Reduced
Incidence of Prevotella and Other Fermenters in Intestinal Microflora of Autistic Children. PLoS ONE 2013,
8, e68322. [CrossRef]

25. Sudhakara, P.; Gupta, A.; Bhardwaj, A.; Wilson, A. Oral Dysbiotic Communities and Their Implications in
Systemic Diseases. Dent. J. 2018, 6, 10. [CrossRef]

26. Tsuda, A.; Suda, W.; Morita, H.; Takanashi, K.; Takagi, A.; Koga, Y.; Hattori, M. Influence of Proton-Pump
Inhibitors on the Luminal Microbiota in the Gastrointestinal Tract. Clin. Transl. Gastroenterol. 2015, 6, e89.
[CrossRef]

27. Zhang, D.; Jia, H.; Feng, Q.; Wang, D.; Liang, D.; Wu, X.; Li, J.; Tang, L.; Li, Y.; Lan, Z.; et al. The oral and gut
microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med. 2015,
21, 895. [CrossRef]

28. Shoemark, D.K.; Allen, S.J. The microbiome and disease: Reviewing the links between the oral microbiome,
aging, and Alzheimer’s disease. J. Alzheimer’s Dis. 2015, 43, 725–738. [CrossRef]

29. Lai, B.; Milano, M.; Roberts, M.W.; Hooper, S.R. Unmet Dental Needs and Barriers to Dental Care Among
Children with Autism Spectrum Disorders. J. Autism Dev. Disord. 2012, 42, 1294–1303. [CrossRef]

30. Hicks, S.D.; Uhlig, R.; Afshari, P.; Williams, J.; Chroneos, M.; Tierney-Aves, C.; Wagner, K.; Middleton, F.A.
Oral microbiome activity in children with autism spectrum disorder. Autism Res. 2018, 11, 1286–1299.
[CrossRef]

31. Qiao, Y.; Wu, M.; Feng, Y.; Zhou, Z.; Chen, L.; Chen, F. Alterations of oral microbiota distinguish children
with autism spectrum disorders from healthy controls. Sci. Rep. 2018, 8, 1597. [CrossRef]

32. Plaza-Díaz, J.; Gómez-Fernández, A.; Chueca, N.; Torre-Aguilar, M.J.d.L.; Gil, Á.; Perez-Navero, J.L.;
Flores-Rojas, K.; Martín-Borreguero, P.; Solis-Urra, P.; Ruiz-Ojeda, F.J.; et al. Autism Spectrum Disorder
(ASD) with and without Mental Regression is Associated with Changes in the Fecal Microbiota. Nutrients
2019, 11, 337.

33. Lee, P.F.; Thomas, R.E.; Lee, P.A. Approach to autism spectrum disorder: Using the new DSM-V diagnostic
criteria and the CanMEDS-FM framework. Can. Fam. Physician 2015, 61, 421–424.

34. Mahapatra, S.; Vyshedsky, D.; Martinez, S.; Kannel, B.; Braverman, J.; Edelson, S.; Vyshedskiy, A. Autism
Treatment Evaluation Checklist (ATEC) Norms: A “Growth Chart” for ATEC Score Changes as a Function of
Age. Children 2018, 5, 25. [CrossRef]

35. Koh, H.; Lee, M.J.; Kim, M.J.; Shin, J.I.; Chung, K.S. Simple diagnostic approach to childhood fecal retention
using the Leech score and Bristol stool form scale in medical practice. J. Gastroenterol. Hepatol. 2010, 25,
334–338. [CrossRef]

36. Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.;
Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data.
Nat. Methods 2010, 7, 335–336. [CrossRef]

37. Amir, A.; McDonald, D.; Navas-Molina, J.A.; Kopylova, E.; Morton, J.T.; Zech Xu, Z.; Kightley, E.P.;
Thompson, L.R.; Hyde, E.R.; Gonzalez, A.; et al. Deblur Rapidly Resolves Single-Nucleotide Community
Sequence Patterns. mSystems 2017, 2, 759. [CrossRef]

38. Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in
Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [CrossRef]

39. Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2-approximately maximum-likelihood trees for large alignments.
PLoS ONE 2010, 5, e9490. [CrossRef]

40. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
41. Faith, D.P. Phylogenetic Diversity and Conservation Evaluation: Perspectives on Multiple Values, Indices,

and Scales of Application. In Phylogenetic Diversity; Applications and Challenges in Biodiversity Science;
Springer: Cham, Germany, 2018; Volume 302, pp. 1–26.

42. Simpson, E.H. Measurement of Diversity. Nature 1949, 163, 688. [CrossRef]

http://dx.doi.org/10.3402/mehd.v26.26050
http://dx.doi.org/10.1186/s40168-017-0242-1
http://dx.doi.org/10.1371/journal.pone.0068322
http://dx.doi.org/10.3390/dj6020010
http://dx.doi.org/10.1038/ctg.2015.20
http://dx.doi.org/10.1038/nm.3914
http://dx.doi.org/10.3233/JAD-141170
http://dx.doi.org/10.1007/s10803-011-1362-2
http://dx.doi.org/10.1002/aur.1972
http://dx.doi.org/10.1038/s41598-018-19982-y
http://dx.doi.org/10.3390/children5020025
http://dx.doi.org/10.1111/j.1440-1746.2009.06015.x
http://dx.doi.org/10.1038/nmeth.f.303
http://dx.doi.org/10.1128/mSystems.00191-16
http://dx.doi.org/10.1093/molbev/mst010
http://dx.doi.org/10.1371/journal.pone.0009490
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1038/163688a0


Nutrients 2019, 11, 2128 24 of 26

43. Lozupone, C.; Knight, R. UniFrac: A New Phylogenetic Method for Comparing Microbial Communities.
Appl. Environ. Microbiol. 2005, 71, 8228–8235. [CrossRef]

44. Chen, J.; Bittinger, K.; Charlson, E.S.; Hoffmann, C.; Lewis, J.; Wu, G.D.; Collman, R.G.; Bushman, F.D.; Li, H.
Associating microbiome composition with environmental covariates using generalized UniFrac distances.
Bioinformatics 2012, 28, 2106–2113. [CrossRef]

45. Chang, Q.; Luan, Y.; Sun, F. Variance adjusted weighted UniFrac: A powerful beta diversity measure for
comparing communities based on phylogeny. BMC Bioinform. 2011, 12, 118. [CrossRef]

46. Vázquez-Baeza, Y.; Pirrung, M.; Gonzalez, A.; Knight, R. EMPeror: A tool for visualizing high-throughput
microbial community data. Gigascience 2013, 2, 16. [CrossRef]

47. Vázquez-Baeza, Y.; Gonzalez, A.; Smarr, L.; McDonald, D.; Morton, J.T.; Navas-Molina, J.A.; Knight, R.
Bringing the Dynamic Microbiome to Life with Animations. Cell Host Microbe 2017, 21, 7–10. [CrossRef]

48. Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to
Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [CrossRef]

49. Mandal, S.; Van Treuren, W.; White, R.A.; Eggesbø, M.; Knight, R.; Peddada, S.D. Analysis of composition of
microbiomes: A novel method for studying microbial composition. Microb. Ecol. Health Dis. 2015, 26, 27663.
[CrossRef]

50. Schirmer, M.; Denson, L.; Vlamakis, H.; Franzosa, E.A.; Thomas, S.; Gotman, N.M.; Rufo, P.; Baker, S.S.;
Sauer, C.; Markowitz, J.; et al. Compositional and Temporal Changes in the Gut Microbiome of Pediatric
Ulcerative Colitis Patients Are Linked to Disease Course. Cell Host Microbe 2018, 24, 600–610. [CrossRef]

51. Friedman, J.; Alm, E.J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 2012,
8, e1002687. [CrossRef]

52. Fang, H.; Huang, C.; Zhao, H.; Deng, M. CCLasso: Correlation inference for compositional data through
Lasso. Bioinformatics 2015, 31, 3172–3180. [CrossRef]

53. Pollard, K. Proteobacteria explain significant functional variability in the human gut microbiome. Microbiome
2017, 5, 36.

54. Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.;
Bruls, T.; Batto, J.-M.; et al. Enterotypes of the human gut microbiome. Nature 2011, 473, 174–180. [CrossRef]

55. Muskens, J.B.; Velders, F.P.; Staal, W.G. Medical comorbidities in children and adolescents with autism
spectrum disorders and attention deficit hyperactivity disorders: A systematic review. Eur. Child
Adolesc. Psychiatry 2017, 26, 1093–1103. [CrossRef]

56. Mancabelli, L.; Milani, C.; Lugli, G.A.; Turroni, F.; Mangifesta, M.; Viappiani, A.; Ticinesi, A.; Nouvenne, A.;
Meschi, T.; Sinderen, D.; et al. Unveiling the gut microbiota composition and functionality associated with
constipation through metagenomic analyses. Sci. Rep. 2017, 7, 9879. [CrossRef]

57. Hedin, C.R.; McCarthy, N.E.; Louis, P.; Farquharson, F.M.; McCartney, S.; Taylor, K.; Prescott, N.J.; Murrells, T.;
Stagg, A.J.; Whelan, K.; et al. Altered intestinal microbiota and blood T cell phenotype are shared by patients
with Crohn’s disease and their unaffected siblings. Gut 2014, 63, 1578–1586. [CrossRef]

58. Winter, S.E.; Lopez, C.A.; Bäumler, A.J. The dynamics of gut-associated microbial communities during
inflammation. Nat. Publ. Group 2013, 14, 319–327. [CrossRef]

59. Williams, B.L.; Hornig, M.; Buie, T.; Bauman, M.L.; Cho Paik, M.; Wick, I.; Bennett, A.; Jabado, O.;
Hirschberg, D.L.; Lipkin, W.I. Impaired Carbohydrate Digestion and Transport and Mucosal Dysbiosis in the
Intestines of Children with Autism and Gastrointestinal Disturbances. PLoS ONE 2011, 6, e24585. [CrossRef]

60. Tomova, A.; Husarova, V.; Lakatosova, S.; Bakos, J.; Vlkova, B.; Babinska, K.; Ostatnikova, D. Gastrointestinal
microbiota in children with autism in Slovakia. Physiol. Behav. 2015, 138, 179–187. [CrossRef]

61. Frank, D.N.; Amand, A.L.S.; Feldman, R.A.; Boedeker, E.C.; Harpaz, N.; Pace, N.R. Molecular-phylogenetic
characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl.
Acad. Sci. USA 2007, 104, 13780–13785. [CrossRef]

62. Turnbaugh, P.J.; Hamady, M.; Yatsunenko, T.; Cantarel, B.L.; Duncan, A.; Ley, R.E.; Sogin, M.L.; Jones, W.J.;
Roe, B.A.; Affourtit, J.P.; et al. A core gut microbiome in obese and lean twins. Nature 2008, 457, 480–484.
[CrossRef]

63. Anand, S.; Kaur, H.; Mande, S.S. Comparative In silico Analysis of Butyrate Production Pathways in Gut
Commensals and Pathogens. Front. Microbiol. 2016, 7, 1945. [CrossRef]

64. Jangi, S.; Gandhi, R.; Cox, L.M.; Li, N.; von Glehn, F.; Yan, R.; Patel, B.; Mazzola, M.A.; Liu, S.; Glanz, B.L.; et al.
Alterations of the human gut microbiome in multiple sclerosis. Nat. Commun. 2016, 7, 12015. [CrossRef]

http://dx.doi.org/10.1128/AEM.71.12.8228-8235.2005
http://dx.doi.org/10.1093/bioinformatics/bts342
http://dx.doi.org/10.1186/1471-2105-12-118
http://dx.doi.org/10.1186/2047-217X-2-16
http://dx.doi.org/10.1016/j.chom.2016.12.009
http://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://dx.doi.org/10.3402/mehd.v26.27663
http://dx.doi.org/10.1016/j.chom.2018.09.009
http://dx.doi.org/10.1371/journal.pcbi.1002687
http://dx.doi.org/10.1093/bioinformatics/btv349
http://dx.doi.org/10.1038/nature09944
http://dx.doi.org/10.1007/s00787-017-1020-0
http://dx.doi.org/10.1038/s41598-017-10663-w
http://dx.doi.org/10.1136/gutjnl-2013-306226
http://dx.doi.org/10.1038/embor.2013.27
http://dx.doi.org/10.1371/journal.pone.0024585
http://dx.doi.org/10.1016/j.physbeh.2014.10.033
http://dx.doi.org/10.1073/pnas.0706625104
http://dx.doi.org/10.1038/nature07540
http://dx.doi.org/10.3389/fmicb.2016.01945
http://dx.doi.org/10.1038/ncomms12015


Nutrients 2019, 11, 2128 25 of 26

65. Kirby, T.; Ochoa-Repáraz, J. The Gut Microbiome in Multiple Sclerosis: A Potential Therapeutic Avenue.
Med. Sci. 2018, 6, 69. [CrossRef]

66. Xun, Z.; Zhang, Q.; Xu, T.; Chen, N.; Chen, F. Dysbiosis and Ecotypes of the Salivary Microbiome Associated
With Inflammatory Bowel Diseases and the Assistance in Diagnosis of Diseases Using Oral Bacterial Profiles.
Front. Microbiol. 2018, 9, 1136. [CrossRef]

67. Papageorgiou, S.N.; Hagner, M.; Nogueira, A.V.B.; Franke, A.; Jäger, A.; Deschner, J. Inflammatory bowel
disease and oral health: Systematic review and a meta-analysis. J. Clin. Periodontol. 2017, 44, 382–393.
[CrossRef]

68. Flint, H.J.; Duncan, S.H.; Scott, K.P.; Louis, P. Interactions and competition within the microbial community
of the human colon: Links between diet and health. Environ. Microbiol. 2007, 9, 1101–1111. [CrossRef]

69. Luna, R.A.; Oezguen, N.; Balderas, M.; Venkatachalam, A.; Runge, J.K.; Versalovic, J.; Veenstra-VanderWeele, J.;
Anderson, G.M.; Savidge, T.; Williams, K.C. Distinct Microbiome-Neuroimmune Signatures Correlate with
Functional Abdominal Pain in Children With Autism Spectrum Disorder. Cell. Mol. Gastroenterol. Hepatol.
2017, 3, 218–230. [CrossRef]

70. Gargari, G.; Taverniti, V.; Gardana, C.; Cremon, C.; Canducci, F.; Pagano, I.; Barbaro, M.R.; Bellacosa, L.;
Castellazzi, A.M.; Valsecchi, C.; et al. Fecal Clostridiales distribution and short-chain fatty acids reflect bowel
habits in irritable bowel syndrome. Environ. Microbiol. 2018, 20, 3201–3213. [CrossRef]

71. Malhi, P.; Venkatesh, L.; Bharti, B.; Singhi, P. Feeding Problems and Nutrient Intake in Children with and
without Autism: A Comparative Study. Indian J. Pediatrics 2017, 84, 283–288. [CrossRef]

72. Ahearn, W.H.; Castine, T.; Nault, K.; Green, G. An Assessment of Food Acceptance in Children with Autism
or Pervasive Developmental Disorder-Not Otherwise Specified. J Autism Dev. Disord. 2001, 31, 505–511.
[CrossRef]

73. Liu, J.; Zhang, M.; Kong, X. Gut Microbiome and Autism: Recent Advances and Future Perspectives. N. Am.
J. Med. Sci. 2016, 9, 1–12.

74. Rizzatti, G.; Lopetuso, L.R.; Gibiino, G.; Binda, C.; Gasbarrini, A. Proteobacteria: A Common Factor in
Human Diseases. BioMed Res. Int. 2017, 2017, 1–7. [CrossRef]

75. Xu, G.; Snetselaar, L.G.; Jing, J.; Liu, B.; Strathearn, L.; Bao, W. Association of Food Allergy and Other Allergic
Conditions With Autism Spectrum Disorder in Children. JAMA Netw. Open 2018, 1, e180279. [CrossRef]

76. Tamanai-Shacoori, Z.; Smida, I.; Bousarghin, L.; Loreal, O.; Meuric, V.; Fong, S.B.; Bonnaure-Mallet, M.;
Jolivet-Gougeon, A. Roseburiaspp.: A marker of health? Future Microbiol. 2017, 12, 157–170. [CrossRef]

77. Guinane, C.M.; Cotter, P.D. Role of the gut microbiota in health and chronic gastrointestinal disease:
Understanding a hidden metabolic organ. Ther. Adv. Gastroenterol. 2013, 6, 295–308. [CrossRef]

78. Patterson, A.M.; Mulder, I.E.; Travis, A.J.; Lan, A.; Cerf-Bensussan, N.; Gaboriau-Routhiau, V.; Garden, K.;
Logan, E.; Delday, M.I.; Coutts, A.G.P.; et al. Human Gut Symbiont Roseburia hominis Promotes and
Regulates Innate Immunity. Front. Immunol. 2017, 8, 1166. [CrossRef]

79. Gibson, F.C.; Genco, C.A. The Genus Porphyromonas. In The Prokaryotes; Dworkin, M., Falkow, S.,
Rosenberg, E., Schleifer, K.-H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; pp. 428–454.

80. Atanasova, K.R.; Yilmaz, Ö. Looking in the Porphyromonas gingivaliscabinet of curiosities: The microbium,
the host and cancer association. Mol. Oral Microbiol. 2014, 29, 55–66. [CrossRef]

81. Wexler, H.M. Bacteroides: The Good, the Bad, and the Nitty-Gritty. Clin. Microbiol. Rev. 2007, 20, 593–621.
[CrossRef]

82. Zhou, Y.; Zhi, F. Lower Level of Bacteroidesin the Gut Microbiota Is Associated with Inflammatory Bowel
Disease: A Meta-Analysis. BioMed Res. Int. 2016, 2016, 1–9.

83. Houston, S.; Blakely, G.W.; McDowell, A.; Martin, L.; Patrick, S. Binding and degradation of fibrinogen by
Bacteroides fragilis and characterization of a 54 kDa fibrinogen-binding protein. Microbiology 2010, 156,
2516–2526. [CrossRef]

84. De Angelis, M.; Piccolo, M.; Vannini, L.; Siragusa, S.; De Giacomo, A.; Serrazzanetti, D.I.; Cristofori, F.;
Guerzoni, M.E.; Gobbetti, M.; Francavilla, R. Fecal Microbiota and Metabolome of Children with Autism and
Pervasive Developmental Disorder Not Otherwise Specified. PLoS ONE 2013, 8, e76993. [CrossRef]

http://dx.doi.org/10.3390/medsci6030069
http://dx.doi.org/10.3389/fmicb.2018.01136
http://dx.doi.org/10.1111/jcpe.12698
http://dx.doi.org/10.1111/j.1462-2920.2007.01281.x
http://dx.doi.org/10.1016/j.jcmgh.2016.11.008
http://dx.doi.org/10.1111/1462-2920.14271
http://dx.doi.org/10.1007/s12098-016-2285-x
http://dx.doi.org/10.1023/A:1012221026124
http://dx.doi.org/10.1155/2017/9351507
http://dx.doi.org/10.1001/jamanetworkopen.2018.0279
http://dx.doi.org/10.2217/fmb-2016-0130
http://dx.doi.org/10.1177/1756283X13482996
http://dx.doi.org/10.3389/fimmu.2017.01166
http://dx.doi.org/10.1111/omi.12047
http://dx.doi.org/10.1128/CMR.00008-07
http://dx.doi.org/10.1099/mic.0.038588-0
http://dx.doi.org/10.1371/journal.pone.0076993


Nutrients 2019, 11, 2128 26 of 26

85. Finegold, S.M.; Dowd, S.E.; Gontcharova, V.; Liu, C.; Henley, K.E.; Wolcott, R.D.; Youn, E.; Summanen, P.H.;
Granpeesheh, D.; Dixon, D.; et al. Pyrosequencing study of fecal microflora of autistic and control children.
Anaerobe 2010, 16, 444–453. [CrossRef]

86. Son, J.S.; Zheng, L.J.; Rowehl, L.M.; Tian, X.; Zhang, Y.; Zhu, W.; Litcher-Kelly, L.; Gadow, K.D.; Gathungu, G.;
Robertson, C.E.; et al. Comparison of Fecal Microbiota in Children with Autism Spectrum Disorders and
Neurotypical Siblings in the Simons Simplex Collection. PLoS ONE 2015, 10, e0137725. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.anaerobe.2010.06.008
http://dx.doi.org/10.1371/journal.pone.0137725
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Participants 
	Sample Handling and Collection 
	16S rRNA Gene Amplicon Sequencing 
	Sequencing Data Processing 
	Biostatistical Analysis 
	Variables Measured 
	Alpha and Beta Diversity 
	Statistical Analyses of Differentially Enriched Microbiome Taxa 

	Microbiome Biomarker Discovery 
	Microbiome Network Analysis 
	Influence of Clinical and Lifestyle Factors 
	Softwares Used 

	Results 
	Autistic Subjects Harbor an Altered Oral Microbiota Compared to First Degree-Family Member Controls 
	Autistic Subjects Harbor an Altered Bacterial Gut Microbiota Compared to First Degree-Family Member Controls 
	Gut and Saliva Biomarkers Can Classify ASD and Control Groups 
	Results of Paired Analysis Overlap Partially with Group Analysis 
	Exploring the Relationship between Gut–Oral Microbiome and Their Co-Occurrence Network 
	Microbiome Signatures in Clinical Subtypes 
	Allergies 
	GI Disturbances 
	Dietary Habits and Gut Microbiome Markers 

	Discussion 
	Microbial Signatures Can Serve as Potential Diagnostic Markers for ASD 
	Gut and Oral Co-Occurrence Network Reveal Possible Connections between Distinct Microbial Communities 
	Clinical Correlates of ASD Microbiome 

	Conclusions 
	References

