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Abstract: Serum 25-hydroxyvitamin D (25(OH)D) has been largely associated with latitude and
sunshine exposure across several regions. According to previous results, 25(OH)D concentrations
are, on average, relatively low in countries with abundant sunshine, including those of the Middle
East and North Africa region, as well as lower-latitude Europe. The standard explanation for this
phenomenon is that people wear concealing clothing because of cultural and religious practices
and that high temperatures in summer limit direct sun exposure. However, the role of diet in the
development of profound hypovitaminosis D has not been adequately explored in those countries.
To examine how diet affects vitamin D status in the Middle Eastern and European countries, a search
was conducted for papers from that region reporting 25(OH)D concentrations. Papers were sought
that reported summertime and wintertime 25(OH)D concentrations for healthy nonpregnant adults
representative of the entire population. Data from 15 Middle Eastern and European countries were
found through this search. Data for postmenopausal women from 19 European countries were also
obtained. Dietary supply data for animal products containing vitamin D (animal fat, eggs, ocean
fish, animal meat, and milk) were obtained from the Food and Agriculture Organization of the
United Nations. Latitude and a solar UVB dose index also were obtained for each country. For the
15-country study, energy from dietary factors was highly correlated with latitude, making it difficult
to separate the effects of UVB exposure and dietary factors. However, for the 19-country study, dietary
factors were only weakly correlated with latitude. In that study, ocean fish was the most important
single dietary factor affecting serum 25(OH)D concentration for postmenopausal women in various
European countries, but animal fat and meat also contributed. Because this is an ecological study,
further research is encouraged to evaluate and extend the findings.

Keywords: animal fat; diet; eggs; Europe; ocean fish; latitude; Middle East; solar UVB; vitamin D
deficiency; 25-hydroxyvitamin D
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1. Introduction

In countries in the Middle East and North Africa (MENA) region and Southern Europe, serum
25-hydroxyvitamin D (25(OH)D) concentrations are generally lower than those in Europe and the
United States [1]. According to a recent review of 41 observational studies from the MENA region,
hypovitaminosis D—defined as a serum level of 25(OH)D < 50 nmol/L—ranged from 11% to 96% in
children and adolescents and from 54% to 90% in adults [2]. Moreover, a recent analysis reported
that more than 30% of the population in Southern Europe is vitamin D deficient (<20 ng/mL, or
<50 mmol/L) [3].

In the MENA region, one reason for low 25(OH)D concentrations is the cultural and religious
practice of covering the body with concealing clothing [4]. That practice is relevant to countries where
most of the population practices Islam. Veiled women have lower 25(OH)D concentrations than
those of unveiled women in Tunisia [5], Jordan [6], and Lebanon [7]. However, a study of 25(OH)D
concentrations showed little difference in women with different amounts of skin area exposed to
sunlight [8]. A second reason for low 25(OH)D concentrations is the hot summers in Arabian Gulf
countries, encouraging people to stay in air-conditioned buildings in summer. Therefore, 25(OH)D
concentrations are lower in summer than in winter in Bahrain [9] and Saudi Arabia [10].

Another factor is that vitamin D fortification of food in the MENA region is limited [11]. Most
inhabitants do not take vitamin D supplements, whereas many people in Iran do [12]. In addition,
although vitamin D food fortification strategies were implemented in Northern Europe decades ago,
Mediterranean countries with abundant sunshine, including Greece, Italy, and Spain, have not yet
adopted similar policies [13].

A factor generally overlooked, especially in the MENA region, is that animal products are an
important source of vitamin D. A study from Lebanon in 2005 regarding dietary vitamin D intake
acknowledged that animal products contained vitamin D (100 ± 70 IU/d in the Lebanese diet), but
overlooked the fact that animal products also can contain 25(OH)D [14]. In a UK study on diet and
serum 25(OH)D for predominantly white European participants, researchers found that meat eaters
had the highest 25(OH)D concentrations throughout the year [15]. The adjusted geometric means
were as follows: meat eaters, 77 nmol/L; fish eaters, 72 nmol/L; vegetarians, 66 nmol/L; and vegans, 56
nmol/L. The reason for that finding is that most animal products other than milk also have vitamin D
as 25(OH)D [16–18].

This paper evaluates the hypothesis that dietary animal products are an important source of
vitamin D and that low–animal product diets in the MENA region are an important reason for low
25(OH)D concentrations. In addition, the study explores the relationship between latitude, a possible
index for UVB exposure, and 25(OH)D concentration in the Middle East and Europe.

2. Methods and Materials

To evaluate the diet–25(OH)D hypothesis, we obtained dietary supply values and serum 25(OH)D
concentrations from countries in the Middle East and European regions. Dietary supply values (in
kilocalories/person/day) for animal fat, eggs, ocean fish, meat (bovine, mutton, pig meat, poultry, other,
and offals), and milk were obtained from the Food and Agriculture Organization (FAO) data for the
year when the 25(OH)D data were obtained [19]. However, if the 25(OH)D data were obtained after
2013, data for 2013 were used because that is the last year for which data are available. Those values
represent the supply of food available to the general population. In general, an estimated 70% of the
supply is actually consumed, with 30% lost to spoilage or waste [20]. The FAO dietary supply data
have been used in several studies examining the role of diet in the risk of disease, starting with the
paper by Armstrong and Doll regarding dietary links to various types of cancer [21].

Serum 25(OH)D concentration data were obtained largely through searching the National Library
of Medicine’s pubmed.gov database for the terms “25-hydroxyvitamin D” and “vitamin D”, as well as
country names. In addition, some studies were found in review papers. The criteria for inclusion in
the present study were that subjects were nonpregnant adults and that subjects were representative of
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the healthy adult population. An additional criterion was that separate values were given for summer
and for winter, because it was assumed that solar UVB exposure would be the most important source
of vitamin D in summer, whereas diet would be an important source in winter.

In addition, data on 25(OH)D concentration for postmenopausal women in 19 European countries
were obtained from a paper reporting findings from a clinical trial on bazedoxifene for treating
osteoporosis [22]. The women were enrolled between December 2001 and September 2003. The 25(OH)D
concentrations were measured at the Covance Central Laboratory by the DiaSorin 25(OH)D assay with
an intra-assay coefficient of variation between 8.2% and 11%. It is assumed that those study participants
were generally healthy and representative of the elderly population in each country. The authors noted
that 25(OH)D concentrations had significant direct correlations with both latitude and per capita gross
domestic product.

No adjustment was made for the 25(OH)D assay used, although during the early period of
this study, results varied considerably depending on the assay used [23,24]. However, 25(OH)D
concentrations measured using BioSource assays were omitted because that assay reports much higher
values than other assays.

UVB dose data were obtained from a table in a paper estimating the effect of UVB dose on
pancreatic cancer incidence by country [25]. The values were based on those that NASA derived for
solar radiation at the top of the atmosphere for the population center for each country at solar noon
on the date of the winter solstice, multiplied by 0.004 to account for the UVB fraction of total solar
radiation and then corrected for cloud cover. No correction was made for aerosol or ozone loading
or for surface elevation. Thus, it appears that these data are essentially a function of latitude with a
correction for mean cloud cover.

Linear regression analyses were performed using SigmaStat 4.0 (Systat Software, San Jose,
CA, USA).

3. Results

Overall, the searches and criteria used yielded 15 countries with useful data, nine from the
Middle East and six from Europe (Table 1). For the data from Israel, Italy, and Qatar, data for multiple
groups were averaged by apportioning the 25(OH)D concentration for each group by the number of
participants in that group. The dietary supply values (energy/capita/day) for that data set are given in
Table 2.

Table 1. 25-hydroxyvitamin D (25(OH)D) concentration data used in this study for the set of 15 countries
from the Middle East and Europe.

Country
(City),

Latitude

Age
(years) N Year Assay

25(OH)D
(nmol/L),
Summer *

25(OH)D
(nmol/L),
Winter *

Ref.

Bahrain, 43◦ Mean 35 250 M
250 F

2010
2011 ELISA 27 ± 15 M

18 ± 15 F
41 ± 32 M
26 ± 24 F [9]

Germany,
47◦–49◦ 18–79

694 M su
748 M wi
770 F su
841 F wi

2008
2011 LIAISON, Roche 62 (59–65) M

59 (56–62) F
31 (29–34) M
35 (33–38) F [26]

Iran (Babol),
36.5◦

M 20–80
F 30–50

120 M
576 F

Sep
2010–Sep

2012

ELISA, lyophilized
competitive protein

binding

59 ± 29 M
52 ± 56 F

46 ± 58 M
48 ± 52 F [27]

Iran (W.
Azerbaijan),

37.5◦
5–60 273 M

268 F 2015 ELISA, confirmed with
HPLC

62 ± 5 M
50 ± 7 F

32 ± 4 M
30 ± 4 F [28]

Israel, 31◦
All ages 295,556

Jews 2009 LIAISON, DiaSorin 64 ± 24 M
50 ± 24 F

43 ± 24 M
41 ± 24 F

[29]

All ages 59,203
Arabs 2009 LIAISON, DiaSorin 57 ± 22 M

38 ± 20 F
36 ± 22 M
24 ± 24 F
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Table 1. Cont.

Country
(City),

Latitude

Age
(years) N Year Assay

25(OH)D
(nmol/L),
Summer *

25(OH)D
(nmol/L),
Winter *

Ref.

Italy, 41.4◦ 49–74
1820 sum
1885 win

78% F
2014 LIAISON, DiaSorin 55 ± 21 M

72 ± 21 F
50 ± 20 M
50 ± 20 F [30]

Jordan, 30.6◦
18–45 23 M ? Radioimmune, DiaSorin 44 ± 5 M 35 ± 4 M

[31]
18–45 124 F Radioimmune, DiaSorin 29 ± 5 F 25 ± 4 F

Lebanon, 33.8◦ 30–50 74 M
318 F 2009–2010 Chemiluminescent,

DiaSorin 51 ± 20 M + F 34 ± 20 M + F [32]

Portugal
(Porto), 41.2◦ 18–67 103 M

95 F

Jul/Aug
2015

Apr 2016
Elecsys, Cobas, Roche 70 ± 22 M

66 ± 22 F
43 ± 16 M
41 ± 16 F [33]

Qatar, 23.4◦ 18–80 503 M
702 F

Dec 2012
Feb 2014 LIAISON, DiaSorin 42 ± 10 M + F 43 ± 10 M + F [34]

Romania,
45.9◦ Mean 50 1429 M

6569 F 2012–2016 Liaison XL, DiaSorin 66 ± 19 M
59 ± 16 F

38 ± 14 M
33 ± 13 F [35]

Saudi Arabia,
23.9◦

19+ 659 F 2009 HPLC, Chromsystems,
Germany 37 ± 2 F (±SE)

[36]
19+ 897 F 2009 HPLC, Chromsystems,

Germany
34 ± 1 F
(±SE)

Sweden
(Gothenburg),

57.7◦
28–54 325 M

215 F
Oct 2009
Sep 2010 ? 81 ± 27 M + F 48 ± 20 M + F [37]

Switzerland,
47.1◦ 8–92 300 M

476 F
Sep 2011
Mar 2012

Immuno-diagnosticsystems,
IDS 54 ± 20 M + F 42 ± 19 M + F [38]

Syria, 34.8◦ 18–62 184 M
188 F

Apr 2011
Mar 2013 Elecsys 2010, Roche 37 ± 19 M

20 ± 14 F
23 ± 15 M

18 ± 9–23 F [39]

Turkey
(Ankara),

39.0◦
21–52 53 M

65 F
Aug 2008

& Feb 2009
HPLC, AB Sciex, Foster

City, CA, USA
72 ± 20 M
70 ± 30 F

38 ± 16 M
34 ± 17 F [40]

*, mean, standard deviation; ELISA, enzyme-linked immunosorbent assay; F, female; HPLC, high-performance
liquid chromatography; M, male; SE, standard error; su, summer; wi, winter; for Germany, numbers in parentheses
are 95% confidence intervals.

Table 2. Dietary supply data for the 12 Middle East and European countries with data available from
the Food and Agriculture Organization (FAO).

Country (City) Latitude (◦N)
Energy (kcal/Capita/Day) from:

Animal Fat Eggs Ocean Fish Meat Milk

Saudi Arabia 23.9 60 17 11 217 131

Jordan 30.6 23 29 7 140 115

Israel 31.0 16 37 20 418 250

Lebanon 33.8 16 22 17 242 160

Iran
36.5 20 21 10 143 74

37.5 50 30 10 133 66

Turkey 39.0 15 33 8 138 309

Portugal 41.2 187 34 63 396 252

Italy 41.4 84 52 42 374 272

Romania 45.9 68 50 8 217 431

Switzerland 47.1 78 40 22 556 400

Germany 50.5 153 48 30 365 337

Sweden (Gothenburg) 57.7 51 49 43 357 402

Sweden (Stockholm) 60.0 47 43 47 344 428
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Data for dietary factors for postmenopausal women in 19 European countries were obtained
from a paper reporting data from a clinical trial on bazedoxifene for treating osteoporosis [22] and are
presented in Table 3. The data for latitude, number of participants, and serum 25(OH)D concentrations
are not given here due to copyright restrictions, but are freely available in Table 1 in [22]. If there were
fewer than five, the concentration was not used. For those values included in Table 5, the number of
participants ranged from five to 456, with the median number ~45 in both winter and in summer. That
data set avoids three problems associated with the data set in Table 1—that is, the participants were
similar, the 25(OH)D assay was identical, and vitamin D supplement use was very low.

Table 3. Data on dietary energy supply for animal products in 2002 for 19 European countries from the
women with osteoporosis study [22].

Country
Energy (kcal/Capita/Day) from:

Animal Fat Eggs Ocean Fish Meat Milk

Greece 70 36 23 323 379

Spain 41 59 63 502 248

Italy 90 46 31 409 291

Bulgaria 51 42 8 234 239

Croatia 66 37 23 177 271

Romania 67 52 6 254 393

Hungary 285 66 5 419 214

France 85 60 56 559 393

Slovakia 210 47 12 245 153

Germany 147 48 32 355 249

Belgium 250 46 34 309 394

Poland 117 46 24 369 250

Netherlands 92 74 39 440 433

Lithuania 86 50 77 269 279

Denmark 199 66 48 381 276

Russian Fed. 37 52 29 240 239

Estonia 13 43 9 295 426

Norway 126 38 82 371 351

Finland 24 34 43 495 434

The linear regression analysis results for 25(OH)D concentration as a function of latitude, UVB
dose, and dietary factors for the set of 15 countries (12 of which have dietary supply data) in the
Middle East and Europe are given in Table 4, whereas the results for the 19 European countries for
postmenopausal women are given in Table 5. The cross-correlation coefficients for UVB dose and
various dietary factors are given for these two sets of data in Table 6; Table 7. For the 15-country study,
the dietary supply factors are highly correlated with latitude while in the 19-country study they are
not. Thus, for the 15-country study, it is difficult to separate the effects of UVB dose from the effects
of diet. The regression results for the 19-country study suggest that ocean fish is the most important
single dietary factor affecting serum 25(OH)D concentration for postmenopausal women in various
European countries, but that animal fat and meat also contribute.
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Table 4. Regression results for 25(OH)D for the set of 15 countries from the Middle East and Europe
with respect to latitude, UVB dose, and dietary factors (Aug. 25).

Factor * 25(OH)D, Males (R, β, p) 25(OH)D, Females (R, β, p)

Summer

Latitude 0.61, 0.80, 0.03 0.84, 1.45, <0.001

UVB 0.56, −3.0, 0.06 0.76, −5.2, 0.002

Eggs, milk 0.57, 0.044, 0.053 0.69, 0.087, 0.007

Milk 0.57, 0.047, 0.053 0.68, 0.093, 0.007

Eggs 0.50, 0.46, 0.12 0.60, 0.93, 0.02

Ocean fish 0.42, 0.25, 0.17 0.67, 0.67, 0.009

Meat NS 0.33, 0.045, 0.25

Animal fat NS NS

Winter

Latitude 0.36, 0.28, 0.25 0.62, 0.68, 0.02

UVB 0.51, −1.7, 0.09 0.37, −1.6, 0.20

Eggs, milk 0.55, 0.026, 0.07 NS

Milk 0.54, 0.027, 0.07 NS

Eggs 0.60, 0.36, 0.04 NS

Ocean fish 0.64, 0.23, 0.03 0.54, 0.34, 0.047

Meat 0.59, 0.027, 0. 04 NS

Animal fat NS NS

*, only 12 counties have dietary supply data; NS, not significant: adjusted r2 < 0.01; β, slope.

Table 5. Regression results for 20(OH)D concentration for 19 European countries from the European
postmenopausal women’s study [22] with respect to dietary factors separately or in combination,
latitude, and UVB dose.

Factor 25(OH)D Summer (R, β, p) 25(OH)D Winter * (R, β, p)

Animal fat, ocean fish, meat 0.74, 0.032, <0.001 0.46, 0.027, 0.09

Animal fat, ocean fish, eggs, meat 0.73, 0.030, <0.001 0.44, 0.025, 0.10

Animal fat, ocean fish 0.65, 0.049, 0.003 0.48, 0.05, 0.07

Animal fat, eggs, ocean fish 0.65, 0.046, 0.03 0.46, 0.048, 0.08

Ocean fish 0.54, 0.14, 0.02 0.63, 0.21, 0.01

Animal fat 0.51, 0.039, 0.03 0.32, 0.040, 0.25

Latitude 0.51, 0.45, 0.02 0.78, 0.90, <0.001

Meat 0.50, 0.030, 0.03 NS

UVB dose 0.47, −2.7, 0.04 0.56, −3.9, 0.03

*, data available for only 15 countries; NS, not significant: adjusted r2 < 0.01; β, slope.
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Table 6. Cross-correlation for various factors with latitude for the 15-country study.

Factor Latitude Latitude (Omit Portugal)

Milk, eggs 0.80, 0.058, <0.001 0.80, 0.058, 0.001

UVB 0.89, −3.6, <0.001 0.89, −3.6, <0.001

Milk 0.79, 0.062, <0.001 0.79, 0.062, 0.001

Eggs 0.75, 0.67, 0.002 0.75, 0.67, 0.003

Ocean fish 0.57, 0.33, 0.03 0.73, 0.53, 0.005

Meat 0.43, 0.034, 0.12 0.44, 0.20, 0.13

Animal fat 0.30, 0.093, 0.29 0.42, 0.12, 0.15

Table 7. Cross-correlation for various factors with latitude for the 19-country study.

Factor Latitude

UVB 0.78, −5.2, <0.001

Milk 0.47, 0.023, 0.27

Ocean fish 0.32, 0.098, 0.18

Eggs NS

Meat NS

Animal fat NS

NS, not significant: adjusted r2 < 0.01.

Figures 1–4 show scatter plots of 25(OH)D concentration vs. latitude for the two country data sets,
as well as for dietary supply of ocean fish for the European postmenopausal women’s study.
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Figure 4. Serum 25(OH)D concentration vs. energy supply from animal fat, ocean fish, and meat for
the European postmenopausal women’s study [22].

4. Discussion

The results of these ecological studies indicate that dietary factors may play a role in the higher
25(OH)D concentrations at higher European latitudes. The higher 25(OH)D concentrations in summer
than in winter could be due to the combined effect of human and animal solar UVB exposure, resulting
in both higher endogenous vitamin D production and oral vitamin D intake.

The finding regarding latitude is difficult to interpret. As shown in a pair of papers [41,42], skin
pigmentation for indigenous humans in the Middle East and Europe lightens in relation to prevailing
UV doses. That relationship is considered an evolutionary adaptation that provides photoprotection
against free radical production and folate destruction at a level that also permits adequate production
of vitamin D. In addition, oily fish has been a source of vitamin D in winter in Europe [43]. Thus,
in general, latitude might have a limited effect on serum 25(OH)D concentrations related to UVB
production from solar UVB. However, several factors might help explain that finding. One is that in
predominantly Muslim countries, women tend to wear concealing clothing. Table 8 presents results
regarding the effect of women being veiled or not veiled. Modest to large differences in 25(OH)D
concentration can result depending on the type of clothing worn. However, although men are not
veiled, they may wear robes that cover much of the body. A second factor is that it can be very hot in
summer at lower latitudes. Thus, inhabitants of lower-latitude countries may elect to stay indoors
where it is air conditioned. A third factor is that skin pigmentation becomes paler with increasing
latitude to facilitate the production of vitamin D [44]. A fourth factor is that days are longer at higher
latitudes in summer, giving inhabitants at higher latitudes more time to obtain UVB.
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Table 8. Influence of clothing style on 25(OH)D concentrations in the Middle East.

Country Assay Mean Age
(years)

Veiled
(nmol/L)

Not Veiled
(nmol/L)

Western
(nmol/L) Ref.

Bahrain ELISA 33 20 ± 19
Abayah 23 ± 19 [9]

Egypt *
IEMA

radioimmune,
DiaSorin

42 ± 8 58 ± 23 [45]

Jordan Immunodiagnostic

39
29 ± 4
Niqab

(7.3%) *

[46]
34

31 ± 6
Hijab

(46.7%) *

23 40 ± 8
(13.3%) *

Lebanon

Radioimmune,
Instar 39 13 ± 9

(47%) *
25 ± 16
(53%) * [7]

Protein-binding,
DiaSorin 55 40 ± 19

(17%) *
68 ± 35
(83%) * [47]

Syria Elecsys 2010,
Roche 36

13 (10–22
IQR)

(60%) *

17 (10–33
IQR)

(40%) *
[39]

Tunisia Radioimmune,
Instar 40? 35 ± ?

(38%) *
43 ± ?

(62%) * [5]

UAE

chemiluminescent
microparticle
immunoassay,

Abbott

45 44 ± 14
(38%) *

40 ± 13
(41%) *

47 ± 16
(21%) [8]

*, percentage of participants in the study; ELISA, enzyme-linked immunosorbent assay; IQR, interquartile range.

Use of the FAO dietary supply factors has strong support based on a review of key dietary
ecological studies and their impact. The first major ecological study to examine the link between
dietary factors and cancer incidence was by Armstrong and Doll [21]. As of 1 August 2019, that
report had 2882 citations according to scholar.google.com. That study was extended and its results
generally confirmed in a paper that used multiple linear regression analysis [48]. That paper inspired
conducting the first study to identify the macrodietary factors, including fish, related to Alzheimer’s
disease (AD) [49]. That ecological study resulted in researchers at Columbia University embarking
on a lengthy investigation of the role of diet in the risk of AD [50–52]. The finding regarding fish
was confirmed in 2003 [53]. In the most recent ecological study of diet and AD, meat was the most
important factor, and the Mediterranean diet reduced the risk of AD by about half [54].

The results of an ecological study which found that sweeteners were an important risk factor
for acute myocardial infarction for women [55] were rejected by the American Heart Association at
the time because the association was unaware that triglycerides from sugars could clog the arteries
through the production of triglycerides. The association accepted that mechanism in 2009 [56].

One important implication of the present study is that it casts considerable doubt on the assumption
in multicountry studies that serum 25(OH)D concentrations are directly correlated with solar UVB
doses, or its proxy, latitude, as is done for cancer [25]. However, that assumption seems correct in
single-country studies (e.g., for cancer [57]). Thus, multicountry studies related to serum 25(OH)D
concentrations should consider using 25(OH)D concentration data from each country, perhaps in
conjunction with the UVB data, but should also consider skin pigmentation and clothing styles.
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Several studies have investigated the amount of 25(OH)D in animal products, which is important
for two reasons: it can be more important in raising human 25(OH)D concentrations than the vitamin
D3 in the food; and because it is not included in most food frequency tables, it is generally not included
in human studies involving dietary sources of vitamin D. A review from 2013 tabulated findings from
various countries for vitamin D and 25(OH)D in raw meat and offal, milk and dairy products, chicken
eggs, and fish [18], and found that meat and egg yolk had the highest values. However, the present
study did not confirm the finding regarding meat and high 25(OH)D concentrations. A U.S. study
measured the vitamin D and 25(OH)D content of several meat products, as well as eggs [17]. Beef,
chicken, and pork meat had 0.9–1.4 µg/100 g of vitamin D + 25(OH)D (VitDE); beef fat and poultry
skin had 2.2–2.75 µg/100 g of VitDE; and egg had 5.75 µg/100 g of VitDE. The researchers estimated
that men consumed 4.15 µg/d of VitDE from meat and eggs, whereas women consumed 2.48 µg/d.

Another study measured the VitDE in retail white fish and eggs in Australia [18]. The VitDE in
cooked white fish ranged from 2.2 to 3.0 µg/100 g, whereas that for hard-boiled eggs ranged from 2.4 to
6.5 µg/100 g, averaging ~4.2 µg/100 g. Those researchers also tabulated results from the Netherlands,
the UK, and the U.S., finding lower values for those countries. The lower values could be due to a
combination of lower solar UVB doses, increased consumption of farmed versus wild salmon, and, for
eggs, keeping laying hens indoors [58].

A study from Taiwan, including 5664 community-dwelling participants aged 55 years or above,
starting in 2008, examined the link between dietary factors and serum 25(OH)D concentrations [59].
Fish consumption was correlated with 25(OH)D concentrations to the p < 0.001 level, with >68.6 g/d
intake vs. <12.9 g/d associated with a 14-nmol/L increase for males, whereas for females, >68.6 g/d vs.
0 of rarely was associated with an 11-nmol/L increase in 25(OH)D. Milk consumption was associated
with much smaller increases in 25(OH)D concentrations, whereas egg and meat consumption were
nonsignificantly inversely correlated with 25(OH)D concentration.

The UK study showed that fish eaters had 8-nmol/L higher 25(OH)D concentration than vegetarians
and 18 nmol/L higher than vegans [15]. A meta-analysis of increases in 25(OH)D concentration from
eating fatty fish indicated an increase of 7 nmol/L (95% confidence interval, 4 to 10 nmol/L) [60]. Thus,
the increase in 25(OH)D for high vs. low fish supply is slightly higher than expected, which might be
due to contributions from other animal products associated with fish or human solar UVB exposure.

The findings of the present study indicate that apart from the well-demonstrated effects of clothing
habits, lack of food fortification policies, and sun exposure, the effect of specific dietary patterns
followed in these regions might also constitute a key factor for the prevalence of hypovitaminosis D,
including in populations such as the elderly, children, and pregnant women.

Although commercial 25(OH)D assays have come a long way, the results obtained by different
methodologies are still not fully comparable. Now, all assays dedicated to measure 25(OH)D measure
total 25(OH)D, that is, D2 + D3. Nonetheless, it has been repeatedly proven that different methodologies
result in different levels of bias, either positive or negative [61–64]. It can be well recognized from
summary reports of the Vitamin D External Quality Assurance Scheme (DEQAS) that different assays
yield different results, and no association seems to exist between the range of measurement and the extent
or the direction of the bias. However, it can be stated that the differences between methodologies have
been reduced tremendously in the past decade (www.deqas.org). With more than 1000 international
participants, and more than 25% using the DiaSorin chemiluminescence immunoassay LIAISON
platform, perhaps DEQAS reports are well suited to follow the evolution in methodology. Liquid
chromatography–tandem mass spectrometry is the “gold standard” to measure total 25(OH)D, but it is
available mainly in research institutes, and the growing demand in 25(OH)D measurements favors
high-throughput automated approaches. Although the National Institute of Health’s Office of Dietary
Supplements established the Vitamin D Standardization Program, it has laid down its guidelines
to standardize historic vitamin D data and only a few studies have been done [65–67]. The present
study is a review of data available from the regions of interest, and these historic data have not been
standardized. As is generally true for all inferences drawn from nonstandardized methodologies, they
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contribute to the limitations of the utility of the values generated. Standardization of vitamin D is one of
the terms of reference of the International Federation of Clinical Chemistry and Laboratory Medicine’s
Scientific Committee on Bone Metabolism. Among other projects, the committee also propose services
to reassess the true value of 25(OH)D obtained in former epidemiological or interventional studies that
had used nonstandardized methods (http://www.ifcc.org/ifcc-scientific-division/sd-committees/c-bm/).
Standardization of vitamin D values measured by different assays remains a challenge.

Although 25(OH)D concentrations above 50 nmol/L may be appropriate for bone health,
concentrations above 75–100 nmol/L are required for many nonskeletal effects [68]. Through various
approaches, researchers have linked higher 25(OH)D concentrations to better health and reduced risk
of many diseases [69–71], including cancer [72–74] and respiratory tract infections [75], as well as to
better pregnancy and birth outcomes, such as preterm birth [76]. Also, the secondary analyses in
two recently reported large clinical trials reported significantly reduced adverse outcomes: reduced
incidence of cancer for people with body mass index <25 kg/m2 of body surface area taking 2000 IU/d
of vitamin D3 [74] and reduced conversion from prediabetes to diabetes mellitus for people with body
mass index <30 kg/m2 taking 4000 IU/d of vitamin D [77].

Limitations of our study include that the assays for the 25(OH)D concentration values used
for the 15-country study varied between countries. Also, the standard deviations of the 25(OH)D
concentrations were large for both data sets. The dietary supply data are approximations of the food
actually consumed by people whose 25(OH)D concentrations were measured. Moreover, although
food waste is generally estimated to be 30% of the supply [20], the rate of food wastage appears to
be much higher in Saudi Arabia, where buffets are commonly served [78]. One report estimated
food waste there to reach 50%, where annual food wastage per person is 427 kg in Saudi Arabia
compared with 277 kg in the United States [79]. Finally, the external validity of the ecological study of
postmenopausal women in Europe could be questioned. However, the results of this ecological study
could lay a foundation for more careful observational studies.

5. Conclusions

Previous research studies have concluded that 25(OH)D concentrations are relatively low in the
MENA region, as well as in Southern Europe. The risk factors that contribute to that public health
burden are numerous and include the concealing dress code, owing to cultural and religious practices,
as well as avoidance of direct sun exposure because of high temperatures in summer. However, the role
of diet in developing profound hypovitaminosis D has not been adequately explored in these countries.
Our study shows that dietary habits could play a minor role in the prevalence of hypovitaminosis
D in the Middle East region. Serum 25(OH)D concentrations could be raised through a combination
of vitamin D fortification of common food groups, such as dairy and grain products, as well as by
advocating for vitamin D supplementation at the population level.
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