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Abstract: Associations between whole blood transcriptome and clinical phenotypes in vitamin
D-deficient overweight and obese children can provide insight into the biological effects of vitamin
D and obesity. We determined differentially expressed genes (DEGs) in relation to body mass
index (BMI) in vitamin D-deficient black children with a BMI ≥ 85th percentile and ascertained the
cardiometabolic phenotypes associated with the DEGs. We examined whole-blood transcriptome
gene expression by RNA sequencing and cardiometabolic profiling in 41, 10- to 18-year-old children.
We found 296 DEGs in association with BMI after adjusting for age, race, sex, and pubertal status.
Cardiometabolic phenotypes associated with the BMI-related DEGs, after adjusting for age, sex,
pubertal status, and %total body fat, were (i) flow-mediated dilation (marker of endothelial function),
(ii) c-reactive protein (marker of inflammation), and (iii) leptin (adipocytokine). Canonical pathways
of relevance for childhood obesity and its phenotypes that were significantly associated with the
BMI-related DEGs affected immune cell function/inflammation, vascular health, metabolic function,
and cell survival/death; several immune and inflammatory pathways overlapped across the three
phenotypes. We have identified transcriptome-based biomarkers associated with BMI in vitamin
D-deficient, overweight and obese black children. Modulating effects of vitamin D supplementation
on these biomarkers and their related phenotypes need further exploration.
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1. Introduction

Obesity is associated with a chronic inflammation, systemically and locally at fat deposits, induced
by various inflammatory factors that are implicated in metabolic dysfunction [1–3]. There has been an
increased prevalence of obesity and obesity-related disorders worldwide over the past four decades [4,5].
Childhood obesity tends to be a precursor to adulthood obesity and many of the obesity-associated
adult comorbidities may begin at a young age. Therefore, understanding the molecular and genetic
signatures of obesity in children is essential for mitigating the risk, and for improving the management,
of obesity-related pathophysiology.

A higher burden of obesity is also associated with increased incidence of vitamin D deficiency [6–8]
in adult and pediatric populations [9]. Vitamin D is essential for calcium homeostasis and bone
health, and its role in treatment and prevention of rickets was established nearly 100 years ago.
Our understanding of the function of vitamin D biology has been greatly expanded. Its effects
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are pleiotropic and extend beyond bone health and include immune modulatory activities [10,11].
Widespread tissue distributions of vitamin D receptor (VDR) and 1-α-hydroxylase, the enzyme that
coverts 25-hydroxyvitamin D [25(OH)D] to its bioactive form, 1,25(OH)2D, in cells of various tissues,
are key factors in the paracrine and autocrine effects of vitamin D. Interaction between bioactive
vitamin D [1,25(OH)2D] and VDR elicits expression of a wide array of gene products that have many
beneficial health effects [12,13].

Studies of whole blood gene expression profiling of vitamin D-deficient children and examination
of the phenotypes associated with differentially expressed genes may provide insight into the
pleiotropic regulatory effects of vitamin D in children. Data regarding in vivo gene expression
profiles in vitamin D-deficient children are limited. In type-2 diabetic adults [14,15] and in adult-aged
activity-discordant twins [16], metabolic disease phenotypes are profoundly influenced by genes
in the immune and inflammatory pathways. Given the role of vitamin D as an immunologic and
inflammatory mediator [17–20], understanding its impact on gene expression, especially as it relates to
cardiometabolism, is warranted in order to understand its comprehensive biological effects. To broaden
our current understanding of the biological determinants of obesity-associated cardiometabolic
risk factors, we sought to (i) characterize differentially expressed genes (DEGs) in relation to body
mass index (BMI) in vitamin D-deficient, overweight and obese black children, (ii) determine the
cardiometabolic phenotypes associated with the BMI-related DEGs, and (iii) identify canonical gene
expression pathways relevant to the determined phenotypes.

2. Materials and Methods

2.1. Study Design and Participants

We conducted a cross-sectional study in 43 (female 27, black 41) otherwise healthy,
vitamin D-deficient (serum 25-hydroxyvitamin D < 20 ng/mL), overweight or obese (BMI ≥ 85th
percentile), 10- to 18-year-old Pittsburgh-area children. They were recruited between 2013 and 2018 and
enrolled in a randomized controlled clinical trial designed to examine the vascular and metabolic health
benefits of vitamin D3 supplementation (ClinicalTrials.gov ID: NCT01797302). Participants were mainly
recruited from the Primary Care Center of University of Pittsburgh Medical Center (UPMC) Children’s
Hospital of Pittsburgh. Advertisements placed through UPMC Children’s Hospital of Pittsburgh,
the University of Pittsburgh Clinical and Translational Science Institute (CTSI), and Pediatric PittNet
(affiliated pediatric office-based research network) enhanced our recruitment effort to reach potential
participants in the Greater Pittsburgh area. Participants’ screening visits were completed at the Primary
Care Center and all their subsequent study visits were conducted at UPMC Montefiore Clinical and
Translational Research Center. The study was approved by the Human Research Protection Office
of the University of Pittsburgh. Informed parental consent and participant assent were obtained
prior to participation. Participants’ race and ethnicity was specified by the parents or by participant
self-identification if they were 18 years of age.

2.2. Study Measurements

Baseline study measurements from the screening/randomization visit were used for this analysis.
Participants fasted for 8–10 h prior to their visit. Vascular health assessments, serum parathyroid
hormone (PTH), glucose, and lipid battery, and plasma c-reactive protein (CRP), interleukin (IL)-6,
leptin, and adiponectin were collected in the fasting state.

Anthropometry. Participants’ weight and height were measured three times using a digital
weighing scale (Model 758C, Detecto Digital Weighing Scale, Webb City, MO, USA) and a stadiometer
(Model 242, Seca Digital Stadiometer, Hamburg, Germany), respectively. Subjects shed easily-removable
clothing (e.g., jackets, sweatshirts, shoes, etc.), but maintained a layer of clothing, when measured.
Measurements were averaged, and BMI was calculated. Waist circumference was measured three times
between the lowest rib and iliac crest during minimal respiration while standing, and then averaged.
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Waist-to-height ratio was then calculated. Waist circumference was obtained directly against the skin,
in the absence of a clothing layer around the waist.

Body composition assessment. Dual-energy x-ray absorptiometry whole-body scan was performed
using a Discovery Densitometer (Hologic Inc., Bedford, MA, USA) and percent of total body fat was
ascertained. Subjects removed their outer clothing and wore a hospital gown for testing; clothing with
embedded metal accessories and jewelry were removed prior the scan.

Biochemical measurements. Serum 25(OH)D, PTH, glucose, and lipid battery were assayed
at the UPMC Clinical Chemistry laboratory. Serum 25(OH)D was assayed by a liquid
chromatography–tandem mass spectrophotometry system as previously described [21]. The interassay
coefficient of variation of this assay at low concentration (<10 ng/mL) is <13% and at mid- (10–60 ng/mL)
and high-range (60–100 ng/mL) is <10%. PTH was measured by a chemiluminescent immunoassay
with an overall interassay coefficient of variation of <5.5%, and the imprecision was similar throughout
the assay range from 3 to 2500 pg/mL. Plasma adiponectin and leptin were analyzed using multiplexed
assays as described previously [22,23]. Plasma high sensitivity CRP and interleukin-6 (IL-6) were
measured through a multiplex technique using a Luminex system according to established protocols [24].

Vascular health assessments. We measured systemic blood pressure (BP) after subjects rested
in the supine position for 10 min. Readings were taken using an automated digital oscillometric
monitor (CONTEC08A, Contec Healthcare, Spartansburg, SC, USA) with an auto-inflate cuff (22–32 cm);
measurements were taken three times and averaged. In a small subset of extremely obese subjects,
Welch Allyn Connex® Spot Monitor automated digital oscillometric device with GE Critikon Blood Pressure
Cuff Sensa-Cuf 2491 Large Adult Long (cuff: 31–40 cm) was used instead to obtain BP measurements.

Vascular health assessments included examination of arterial stiffness by assessment of
carotid-femoral pulse wave velocity (PWV), pulse wave analysis (PWA), and endothelial function by
percent change of brachial artery flow-mediated vasodilation (FMD%). Participants fasted for 8–10 h
before testing. Using arterial tonometry (SphygmoCor CVMS V9, CPVH System, Model EM3, AtCor
Medical, Sydney, Australia), we non-invasively measured PWV and PWA characteristics including
aortic augmentation index adjusted to a heart rate of 75 beats-per-minute (AIx-75) and central (aortic)
blood pressure. Higher values of PWV and AIx-75 indicated a greater degree of arterial stiffness.

Brachial artery flow-mediated dilation was assessed using high-resolution ultrasound machine
(GE, Vivid 7, GE Health care, Milwaukee, WI, USA), equipped with a 9-L linear transducer preset
to a dedicated vascular scanning protocol, which was used to measure the brachial artery diameter.
After measuring the baseline luminal diameter, the brachial arterial flow was occluded for five
minutes at the upper forearm using a 5-cm-wide occlusive cuff (SC5, Hokanson, Bellevue, WA, USA)
inflated to 50 mmHg above the systolic BP or 200 mmHg, whichever was greater, by a rapid release
sphygmomanometer (DS400, Hokanson, Bellevue, WA, USA). Post-cuff release diameter measurements
during the reactive hyperemic phase (obtained at 60, 120, and 180 s) were used to calculate FMD%.

RNA sequencing. We analyzed the whole transcriptome broad gene expression by RNA sequencing
using viable PAXgene blood RNA samples. High quality RNA (RNA Integrity Number >6) isolated
from PAXgene tubes (500 ng) were used to generate sequencing libraries using the Illumina TruSeq
Stranded Total RNA with Ribo-Zero Human/Mouse/Rat (H/M/R) kit. Ribosomal RNA (rRNA)
and globin RNA in the sample were depleted by selective binding to biotinylated probes and the
probe-bound rRNA and globin RNA were captured by magnetic beads and removed. This process
maximized the percentage of uniquely mapped reads, including mRNA and non-coding RNA species.
This kit typically generates ≥98% of uniquely mapped reads with accurate strand origin information.
The RNA was fragmented prior to cDNA (complementary DNA) synthesis and was followed by adapter
ligation. The libraries were then PCR amplified and purified using AMPure XP beads. Quality control
(quantity, size and purity) of these libraries was performed using Agilent DNA Analysis ScreenTape
on the 2200 TapeStation (Agilent Technologies, Santa Clara, CA, USA), a Qubit 2.0 Fluorometer (Life
Technologies, Carlsbad, CA, USA), and a KAPA Library Quant kit (KAPA Biosystems, Wilmington,
MA, USA). The libraries were normalized to 2 nM prior to sequencing. The created libraries were run
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on an Illumina NextSeq 500 sequencer using NextSeq 500 High Output Kit (150 cycles) (Illumina, Inc.,
San Diego, CA, USA), as per manufacturer’s protocol, in the Health Sciences Sequencing Core at the
UPMC Children’s Hospital of Pittsburgh.

3. Statistical Analysis

RNA-seq Processing and Data Analysis

Quality control for raw fastq files was performed using FastQC [25]. The low-quality reads
and 3-prime adapters were trimmed with Trim Galore! [26]. The RNA sequence aligner, STAR [27],
was used to align the trimmed reads to the reference human genome (hg19). Gene expression was
subsequently quantified by counting the number of read fragments uniquely mapped to genes using
featureCounts [28]. DESeq2 was used to perform the statistical analyses and identify differentially
expressed genes (DEGs) based on the raw counts [29]. This analysis used a linear model to examine
the association between gene expression and BMI with adjustment for age, gender, race and pubertal
status (Tanner stage). The significance cutoff was set at a false discovery rate (FDR) of <0.05.

We then used the significantly differentially expressed genes identified in the first step and tested
their association, in black children only, with cardiometabolic variables: central and peripheral systolic
and diastolic blood pressures; endothelial function (FMD%); arterial stiffness indices (PWV, AIx-75);
serum total cholesterol, HDL, LDL, non-HDL cholesterol, triglycerides, and triglyceride-HDL ratio;
plasma adiponectin, leptin, IL-6, and CRP. These analyses were adjusted for age, gender, pubertal
status and percent total body fat. These were restricted only to black children because they represented
the major race group of this cohort (n = 41, 95%).

The final step of analysis was to ask whether the genes whose expression is associated with each
cardiometabolic variable are clustered into particular pathways, and whether those pathways are
similar or different for the different cardiometabolic variables. To test pathways, we used the Ingenuity
Pathway Analysis (IPA) software (application v. 463341M, content v. 42012434, Ingenuity Systems
Inc., Redwood City, CA, USA). Statistical significance for this analysis was set at a p-value < 0.05.
Significance was measured as the probability that our experimental gene set has the same genes as
any given canonical pathway by random chance alone (by Right-tailed Fisher’s Exact Test). Lower
p-values indicate a decreased probability of random association. We used these results to identify
pathways that appeared across multiple phenotypes.

4. Results

We examined the association between gene expression and BMI in 43, 10- to 18-yr-old, overweight
and obese, vitamin D-deficient children (mean age ± SD: 13.3 ± 2.2 years, BMI: 30 ± 5.6 kg/m2, 25(OH)D:
13.7 ± 4 ng/mL, obese 27, female 27, black 41). The demographic and cardiometabolic phenotype
characteristics of all black children (N = 41) are shown in Table 1. The cardiometabolic phenotype
characteristics that were associated with the BMI-related DEGs after adjustments for age, sex, pubertal
status, and percent total body fat among black children were FMD% (a measure of endothelial function),
leptin (an adipokine), and CRP (an inflammatory marker). BMI was positively associated with leptin
(r = 0.378, p = 0.03, n = 33) and CRP (r = 0.412, p = 0.029, n = 28). No association was detected between
BMI and serum concentrations of 25(OH)D (r = 0.11, p = 0.51, n = 41), or between BMI and FMD%
(r = 0.19, p = 0.24, n = 40).

Table 1. Demographic and Cardiometabolic Phenotype Characteristics in Black Children.

Characteristics N = 41

Demographic

Female 26 (63)
Non-Hispanic 40 (98)
Age, yrs 13.2 ± 2.0
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Table 1. Cont.

Characteristics N = 41

Anthropometrics

Weight, kg 80.6 ± 19.3
Height, cm 163.3 ± 10.9
BMI, kg/m2 30.0 ± 5.7
BMI percentile 95.8 ± 4.0
Waist circumference, cm 89.9 ± 14.4
Waist-to-height ratio 0.55 ± 0.09
Percent total body fat 32.4 ± 8.4

Weight classification

Overweight (BMI 85th to < 95th %tile) 16 (39)
Obese (BMI ≥ 95th %tile) 25 (61)

Pubertal status, Tanner Stage

I 2 (5)
II 3 (7)
III 6 (15)
IV 17 (41)
V 13 (32)

Laboratory data

25(OH)D, ng/mL 13.7 ± 4.1
PTH, pg/mL 48.1 ± 20.5
Total cholesterol, mg/dL 152.9 ± 24.6
LDL cholesterol, mg/dL 91.3 ± 23.9
HDL cholesterol, mg/dL 46.5 ± 9.8
Triglycerides, mg/dL 75.3 ± 25.1
Non-HDL cholesterol, mg/dL 106.4 ± 25.1
Triglyceride-HDL-ratio 1.7 ± 0.7
Leptin, ng/mL 18.4 ± 9.9
Adiponectin, ng/mL 13.2 ± 10
CRP, pg/mL 3028 ± 5546
Interleukin-6, pg/mL 6.9 ± 13.1

Vascular health data

Baseline brachial artery diameter, cm 0.32 ± 0.05
FMD% 7.32 ± 5.4
PWV, m/sec 4.7 ± 0.7
AIx@75bpm 2.83 ± 11.2
Central systolic BP, mm Hg 98.1 ± 9.1
Central diastolic BP, mm Hg 68.3 ± 7.6
Systemic systolic BP, mm Hg 115.1 ± 11.1
Systemic diastolic BP, mm Hg 67.5 ± 7.3

Data shown as number (percentage) or mean ± SD, unless stated otherwise Missing data, n: PTH, 1; Leptin, 7;
Adiponectin,7; CRP, 13; IL-6, 13; FMD%, 1; PWV, 2.

4.1. Differentially Expressed Genes Associated with BMI

A total of 296 genes were differentially expressed in association with BMI after adjusting for
age, race, sex, and pubertal status among 26,364 transcripts that were sequenced and available
for analysis (Table S1). The top 20 DEGs that were associated with BMI are listed in Table 2,
and 18 of them had a positive association with BMI. Broadly, these genes regulate (i) immune
and inflammatory activation (LILA5, TLR5, EXOSC10, FCER1G, UBE2F, HCAR2, CD55, IL4R, and
LAMTOR5), (ii) general cell growth/signaling/differentiation (ANXA3, S100A12, EXOSC10, S100A9,
WDR46, and UBE2F), (iii) general cellular effector and energy production function (EXOSC10, NDUFB2,
PFKL, and SRPK) (iv) vascular (ANXA3), metabolic (SLC37A3 and DEGS1), integumentary (PXK), and
muscular (MEF2A) function.
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Table 2. Top 20 Differentially Expressed Genes Associated with BMI.

Gene Name Category FDR *

LILRA5 leukocyte immunoglobulin like receptor A5 immune function (pro-inflammatory) 1.37 × 10−3

ANXA3 annexin A3 general cell growth/signaling vascular effects
(anti-coagulation) 2.73 × 10−3

PXK PX domain containing serine/threonine kinase like integumentary effector 2.73 × 10−3

S100A12 S100 calcium binding protein A12 general cell growth/differentiation innate
immune sensor (innate sensor, anti-bacterial) 2.73 × 10−3

SLC37A3 solute carrier family 37 member 3 potential metabolic effector (regulator of
adipose tissue) 2.73 × 10−3

TLR5 toll like receptor 5 innate immune signaling 2.73 × 10−3

EXOSC10 exosome component 10
general cellular effector (RNA degradation)
immune function (Ig class-switching, Ig
extracellular trafficking)

8.22 × 10−3

S100A9 S100 calcium binding protein A9 general cell growth/differentiation innate
immune sensor (anti-bacterial/fungal) 8.22 × 10−3

WDR46 WD repeat domain 46 general cellular function (nucleolar scaffolding,
granule localization) 8.22 × 10−3

DEGS1 delta 4-desaturase, sphingolipid 1 metabolic effector (fatty acid desaturation) 1.02 × 10−2

FCER1G Fc receptor for IgE immune function (hypersensitivity) 1.05 × 10−2

MEF2A myocyte enhancer factor 2A muscular effector 1.05 × 10−2

NDUFB2 NADH:ubiquinone oxidoreductase subunit B2 general cellular energy production (electron
transport system) 1.05 × 10−2

UBE2F ubiquitin conjugating enzyme E2 F (putative) general cellular function (cell cycle, protein
folding) 1.05 × 10−2

HCAR2 hydroxycarboxylic acid receptor 2 innate immune function (neutrophil apoptosis
activator) 1.15 × 10−2

PFKL phosphofructokinase, liver type general cellular energy production (glycolysis
in liver) 1.15 × 10−2

SRPK1 SRSF protein kinase 1 general cell transcriptional regulation 1.15 × 10−2

CD55 cluster of differentiation 55 immune function (regulator of
complement-driven cellular damage) 1.19 × 10−2

IL4R interleukin 4 receptor immune cell signaling 1.19 × 10−2

LAMTOR5 late endosomal/lysosomal adaptor, MAPK and
MTOR activator endosome formation, intracellular signaling 1.19 × 10−2

* Adjusted for age, gender, race, and pubertal status.

4.2. Association between Cardiometabolic Phenotypes and BMI-Related Genes

The number of BMI-related DEGs associated with FMD%, leptin, and CRP in the adjusted analyses
were 119, 74 and 29, respectively (Figure 1A, Table S2). We further examined the functional relevance
of the top 20 genes associated with the respective cardiometabolic phenotype.
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Figure 1. Overlap of significant differentially expressed genes by BMI-related cardiometabolic
phenotypes. (A) Venn-diagram depicting overlapping frequency of all BMI-related significantly
differentially expressed genes (N = 296) by each cardiometabolic phenotype; Of the 296 BMI-associated
DEGs 129 were not associated with any of the three cardiometabolic phenotypes. (B) Venn-diagram
representing the top 20 differentially expressed genes within each cardiometabolic phenotype; * The top
20 DEGs specific to BMI are indicated by asterisks symbol. BMI, body mass index; CRP, C-reactive
protein; FMD%, brachial artery flow-mediated dilation percentage.

BMI-related differentially expressed genes associated with FMD%. The top 20, out of 119,
BMI-related DEGs associated with FMD% are shown in Figure 1B and Table S3. Eleven of these
top 20 genes regulate a wide array of general cellular functions, including intracellular vesicular
traffic (RAB1A, PCSK7, and SCYL2), autophagy (DRAM1), ionic homeostasis (CLIC4 and TMBIM4), cell
cycle activity (WDR6 and SPTAN1), and apoptosis (BAG4 and NAIP). The remainder of the genes are
regulators of immune cascades (ZAP70, SUPT5H, DAPP1, BAG4 and TNFSF13B) and metabolic effector
functions (NDUFB6, MPI, and DEGS1). Nine of them were inversely associated.

BMI-related differentially expressed genes associated with leptin. The top 20, out of 74, BMI-related
DEGs associated with leptin are listed in Figure 1B and Table S4. These genes regulate (i) cell signaling
(KREMEN1), transcription regulation (SRPK1), motility (PLXNC1), and enzyme activity (SULT1B1),
(ii) immune function (TLR5, FCAR, MAPK14, PLXN1C, FCGR2A, CD55, ITGB7, and GCA), (iii) metabolic
effector function (SLC37A3, ACSL1, and MGAM2), and vascular function (F5). Only one of these was
inversely associated.

BMI-related differentially expressed genes associated with CRP. The top 20, out of 29, BMI-related
DEGs associated with CRP are enumerated in Figure 1B and Table S5. They regulate (i) innate immune
signaling and inflammasome activity (TLR5, ITGB7, FCGR1A, FCAR, FCGR1B, LAX1, and NAIP),
(ii) metabolic function (MGAM2, TCF7L2, and GK), (iii) muscle function (MEF2A), and (iv) cellular
function (WSB1, PWP2, LEPROT, and ACER3). Four of these top 20 genes were inversely associated.

Overlap among BMI-related DEGs associated with FMD%, leptin, and CRP are shown in Figure 1.
Of the 296 BMI-related DEGs, 129 were not associated with FMD%, CRP, or Leptin. Six genes (C9orf72,
GK, SLC16A6, TLR5, TNFSF12B, and WSB1) were found to have a significant expression across all
three cardiometabolic phenotypes (leptin, CRP, and FMD%). Leptin and FMD% represent the greatest
overlap of expressed genes (n = 34) relative to all other cardiometabolic phenotypic pairings. Whereas,
among the top 20 BMI-related DEGs associated with the three phenotypes, none of them overlapped
across all three phenotypes. However, NAIP crossed over between FMD% and CRP; and DOC4, ENC1,
FCAR, GK, ITB7, MGAM2, TLR5 overlapped between leptin and CRP.
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4.3. Canonical Pathways Associated with Significant Genes

From 66 IPA-identified canonical pathways that were significantly associated with BMI-related
DEGs, 24 were of obvious functional relevance in the context of childhood obesity and its attendant
risk phenotypes (Table 3).

Table 3. Functionally relevant BMI-associated biological pathways (n = 24).

Pathways p-Value

Inflammatory Signaling

Phagosome Formation 1.38 × 10−7

Chronic Inflammatory Syndrome 1.62 × 10−6

IL-10 Signaling 3.16 × 10−6

NF-κB Signaling 2.69 × 10−5

TREM1 Signaling 5.50 × 10−5

Altered T-Cell & B-Cell Signaling 1.74 × 10−4

Role of PKR in Interferon Induction 1.86 × 10−4

Role of NFAT in Regulation of the Immune Response 7.76 × 10−4

Inflammasome Pathway 2.14 × 10−3

PPARα/RXRα Activation 2.57 × 10−3

p38 MAPK Signaling 4.90 × 10−3

IL-6 Signaling 2.63 × 10−2

Role of JAK family kinases in IL-6-type Cytokine Signaling 4.17 × 10−2

Immune Cell Function

Toll-like Receptor Signaling 6.61 × 10−6

Role of Macrophages, Fibroblasts & Endothelial Cells 1.62 × 10−5

Dendritic Cell Maturation 4.79 × 10−5

Communication between Innate & Adaptive Immune Cells 2.29 × 10−4

Th1 & Th2 Activation Pathway 3.02 × 10−3

Cardiovascular Effect

Cardiac Hypertrophy Signaling 1.26 × 10−2

iNOS Signaling 2.09 × 10−2

Metabolic Functions

Phospholipase C Signaling 3.39 × 10−4

Glycolysis I 4.47 × 10−2

Cell Survival/Death

TWEAK Signaling 1.05 × 10−2

Apoptosis Signaling 3.02 × 10−2

Most of these pathways affect immune function and inflammation. Phagosome formation, chronic
inflammatory responses, IL-10, NF-κB, and TREM1 signaling represented the most significantly
associated inflammatory pathways. TLR signaling, dendritic and macrophage cell function were the
most significantly associated innate immune pathways. Several inflammatory and immune pathways
overlapped among the three significant cardiometabolic phenotypes (FMD%, CRP, and leptin), which
were discovered during the second phase analysis of cardiometabolic phenotypes associated with
BMI-related DEGs (Figure 2).
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phenotypes. Venn-diagram depicting overlap of IPA-derived functional canonical pathways associated
with each of the significant cardiometabolic phenotypes; pathway classifications are annotated as
1 inflammatory signaling, 2 immune cell function, 3 cardiovascular effect, 4 metabolic functions,
and 5 cell survival/death. CRP, C-reactive protein; FMD%, brachial artery flow mediated dilation
percentage; BMI, body mass index; IPA, Ingenuity Pathway Analysis

Gene expression related to these phenotypes suggested increased expression of inflammatory
signaling relevant to NF-κB, TREM1, and chronic inflammatory response. Immune-related pathways
overlapping across all three phenotypes included altered T- and B-cell signaling, communication
between innate and adaptive immune cells, dendritic cell maturation, phagosome formation,
involvement of macrophages, fibroblasts, and endothelial cells, pattern recognition receptors,
and toll-like receptor signaling. Cardiovascular pathways associated with leptin included cardiac
hypertrophy signaling and eNOS signaling. The atherosclerosis signaling pathway was associated
with FMD% (endothelial function). The iNOS signaling pathway was associated with both leptin
and FMD%.

5. Discussion

Our findings indicate that only a small of number of genes (≈300) with diverse biological functions
are differentially expressed in association with BMI in vitamin D-deficient overweight and obese
black children. Endothelial function, CRP concentrations, and leptin concentrations were the only
three cardiometabolic phenotypes that were associated with the BMI-associated genes. The overlap
across the clusters of the top 20 BMI-related genes found in association with endothelial function,
CRP concentrations, and leptin concentrations was minimal. However, there were a considerable
number of overlapping functional pathways across these three significant phenotypes. Most of
the overlapping pathways were relevant for immune function or mediation of inflammation. In
addition, pathways of relevance for endothelial function, metabolism, and apoptosis were also noted.
Obesity is associated with a chronic, underlying systemic inflammation; increased inflammation is an
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important driver of metabolic dysfunction. Our findings indicate that genes expressed for immune and
inflammatory functions in vitamin D-deficient overweight and obese black children have overlapping
effects on cardiometabolic risk phenotypes.

Obesity is associated with vitamin D deficiency [30]. The lack of association between 25(OH)D
concentrations and BMI in our cohort can be explained by inclusion of only vitamin D-deficient children.
Vitamin D deficiency is emerging as an independent cardiometabolic risk factor in children. In previous
studies, we have shown a positive association between serum 25(OH)D concentrations and insulin
sensitivity in black children [31], and an inverse association between serum 25(OH)D concentrations
and HDL cholesterol in black and white American children [30]. Study of gene expression profiles in
peripheral blood cells of vitamin D-deficient obese children can provide insight into genes that are
affected by obesity and/or vitamin D status. In our cohort, some of the obesity-related genes were
associated with leptin, an adipocytokine; CRP, an inflammatory marker; and FMD%, an index of
endothelial function. Most of these genes influenced pathways of relevance for immune function
and inflammation, which is consistent with the study of gene expression from peripheral blood cells.
However, several of these genes were of relevance for cardiac health and endothelial function.

Obese children, in general, have higher concentrations of leptin and CRP and are vulnerable
for endothelial dysfunction. The shared pathways between leptin, inflammatory markers,
and endothelial function may help to explain cardiovascular dysfunction in obese populations.
Previous experimentation on murine and canine models suggests that coronary arteries with the
leptin receptor were associated with increased endothelial dysfunction in the presence of obese-level
concentrations of leptin, but normal endothelial function in normal levels of leptin [32]. Obese levels
of leptin contributed to the impairment of nitric oxide-mediated vasodilation. The pathways examined
in our investigation showed similar functional overlap.

FMD is a validated, non-invasive measure of endothelial dysfunction. The nitric oxide-mediated
response on the endothelium [33], derived from ischemia in the peripheral artery, strongly predicts
cardiovascular dysfunction in adults [34]. Inflammation and oxidative stress play a key role in the
development of cardiovascular pathophysiology, especially in the early stages of atherosclerosis [35–37].
Abnormal levels of several pro-inflammatory markers (CRP, leptin, TNF-a, IL6, and adiponectin) have
been associated with poorer cardiovascular outcomes in adult and obese children. Our findings suggest
a potential link between inflammatory markers and a marker of endothelial dysfunction by highlighting
the specific canonical pathways that may be used. The overlap between leptin and FMD, especially as
it relates to cardiovascular-related functional pathways, supports the substantial, potentially direct
role that leptin may play in endothelial dysfunction and subsequent cardiometabolic pathology.

Our investigation was limited by the sample size and diversity of the cohort and a more robust
sample is necessary to build on the findings of this study. A larger and a more diverse sample
with inclusion of children across the BMI spectrum and vitamin D status is necessary to isolate
the effects of race, adiposity, and vitamin D status on gene expression. The smaller sample size
warranted the inclusion of genes for pathway analysis using a more lenient threshold based on p-values
only; fold change thresholds could not be implemented. Furthermore, the methodology used is
based on a single baseline timepoint—differential expression is relative to the baseline value of each
phenotype. Evaluating differential expression across multiple timepoints, before and after the vitamin
D intervention, is necessary for a more nuanced understanding of the role of vitamin D.

The likely contribution of persistent, low-grade inflammation to metabolic and cardiovascular
pathways was particularly relevant. An over-representation of immune/inflammatory signaling genes
was evident. This may be due to the use of peripheral blood cell (PBC) samples. PBCs have been
proposed as a useful tissue source to study cardiovascular and acute coronary disease [38,39] and have
been used to characterize immune function [40,41]. Furthermore, PBCs represent a comparatively
non-invasive, convenient means to collect relevant obesity-related cell types for study. Invasively
procuring adipose or muscle tissue samples introduces ethical challenges and complexities, especially
in the context of pediatric subjects, where cardiometabolic disease may still be in its early, subclinical
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stages. In a transcriptome analysis of PBCs of 32 young (4.7 to 8 years of age), normal-weight (N = 17,
male = 9) and overweight (N = 15, male = 7), Spanish children, a total of 1077 genes were differentially
expressed between overweight and normal-weight children [42]. The biological functions represented
by these DEGs were concordant with the functional relevance of our top 20 BMI-associated genes,
and affected (1) transcription/translation machinery, (2) cell turnover and signaling, (3) immune system,
and (4) and a wide-array of metabolic functions. In a gene expression analysis of subcutaneous adipose
tissue obtained from obese (N = 7) and lean (N = 8) children, a total of 199 genes were differentially
expressed in obese children compared to non-obese children [43]. Of those genes, 79 were upregulated
and 120 were downregulated. Like our findings, the upregulated DEGs in obese children were enriched
in pathways associated with the immune system.

6. Conclusions

Only a limited number of genes are differentially expressed in association with BMI in the PBCs
of vitamin D-deficient overweight and obese children. Furthermore, those genes were related to
endothelial function, CRP and leptin concentrations, and mediated several immune and inflammatory
signaling pathways, with considerable overlap when examined across the three phenotypes. Future
research needs to address the biological relevance related to overlapping vs. non-overlapping genes and
pathways. Although a few genes in a pathway may seem to be over- or under-expressed relative to the
baseline, it remains necessary to distinguish what subjects’ traits account for the differential expression.
Furthermore, the modulating effects of vitamin D supplementation on DEGs on a longitudinal scale and
by varying concentrations of supplementation need further elucidation. Integrating the transcriptomic
data with GWAS-derived genotypic information may further contribute to understandings of the
associations between whole blood transcriptome and clinical phenotypes of vitamin D deficiency
and/or obesity.
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